Алгоритм работы программы. Алгоритмы в программировании

ОТКРЫТЫЙ УРОК ПО МАТЕМАТИКЕ

«Алгоритм. Программа действий»

2 класс «Школа 2100»

Цели урока: 1. Доказать, что с помощью общего алгоритма, можно выполнять большое количество разных частных заданий; 2. Закрепить умение действовать по алгоритму, выполняя то или иное задание; 3. Закрепить умение различать алгоритмы разных видов: линейный, разветвленный, циклический; 4. На примере доказать присутствие действий по алгоритму в обычной жизни.

Задачи урока: 1. Решение различных видов заданий с помощью алгоритмов действий; 2. Обосновать выбор данного вида алгоритма.

ХОД УРОКА:

Организационный момент – проверка готовности к уроку, настрой на успех.

Проверка домашнего задания – составление алгоритма «Сбор портфеля в школу».

Математическая разминка:

Определить, сколько в числе 534 сотен, десятков и единиц? (В числе 534 – 5 сотен, 53 десятка, 534 единицы). Запишите это число в тетради разными способами.

(534 = 5 сот. 34 ед. = 53 дес. 4 ед. = 534 ед.)

Соберите число по сумме разрядных слагаемых и запишите его.

700 + 30 + 4 = (734) 500 + 6 = (506)

В ряду чисел найдите «лишнее» число и объясните свой выбор.

720, 540, 306, 50, 910, 300.

(Все числа, кроме 50 , - трехзначные; все числа, кроме 306 , - круглые; во всех числах, кроме 300 по одному нулю).

Итак, после небольшой разминки, вы готовы двигаться вперед? Чтобы ваш боевой настрой сохранился до конца урока, наш друг Совушка будет помогать его поддерживать. (Желаю успеха! У вас всё получится!)

Каждый день человек выполняет огромное количество разных дел. Он не должен ничего забыть. Как же не запутаться, не пропустить важного? Вы можете что-то посоветовать человеку, чтобы облегчить ему день? (Записать все свои дела по порядку в ежедневник (тетрадь, в которую записывают все свои ежедневные дела) и следовать им в течение дня).

Что напоминает вам этот совет? Если все действия проговорим по порядку, то что получим? (Алгоритм). А если мы запишем действияи посоветуем кому-нибудь воспользоваться этими записями, то что получим? (Программу действий). В чем отличие алгоритма от программы действий? (Алгоритм – это устный порядок действий, а программа действий – это записанный алгоритм).

Ну что ж, вы готовы назвать тему нашего урока? Чему же он будет посвящен? «Алгоритм. Программа действий». А с какой целью мы будем сегодня говорить об этом и выполнять задания? (Обратить внимание учащихся на цели урока).

Какие задачи мы перед собой ставим, чтобы добиться этих целей? (Обратиться к задачам урока).

Прежде, чем мы перейдем к выполнению наших задач, предлагаю вам вспомнить основные понятия, связанные с нашей темой. (На доске вывешены основные понятия: алгоритм, программа действий, блок-схема, виды алгоритмов:, - линейный, - разветвленный, - циклический).

Перейдем к первому заданию:

- вычислить сумму чисел 517 + 76 (593)

По какому алгоритму будем действовать? («Сложение в столбик с переходом через разряд»).

2 – сложить единицы;

3 – записать единицы под единицами и учесть переход через разряд;

4 – сложить десятки с учетом перехода через разряд;

5 – записать десятки под десятками и учесть переход через разряд

6 – сложить сотни с учетом перехода через разряд;

Действуя по общему алгоритму, мы можем вычислить сумму любых чисел. Докажем это. Самостоятельно вычислите сумму чисел 409 и 298 (707).

- вычислить разность чисел 724 – 235 (489)

По какому алгоритму будем действовать? («Вычитание трехзначных чисел с переходом через разряд»).

1 – записать числа столбиком разряд под разрядом;

2 – вычитаем единицы: если можем вычесть, вычитаем и записываем единицы под единицами, если не можем, занимаем 1 десяток и раскладываем его на 10 единиц плюс те единицы, которые уже есть и вычитаем единицы, записываем единицы под единицами;

3 – помним, что занимали 1 десяток, вычитаем десятки: если можем вычесть, вычитаем и записываем десятки под десятками, если не можем, занимаем 1 сотню и раскладываем ее на 10 десятков плюс те десятки, которые уже есть и вычитаем десятки, записываем десятки под десятками;

4 – помним, что занимали 1 сотню, вычитаем сотни и записываем сотни под сотнями; 5 – прочитать полученный результат.

Самостоятельно вычислите разность чисел 961 – 583 (378)

А теперь подтвердите свои умения и выполните сложение и вычитание «сказочных чисел»:

ΨӘ0 + Δ = (ΨӘΔ) Ω00 + ӨΛ = (ΩӨΛ)

ΥφΨ – φΨ = (Υ00) £0§ - £00 = (§)

Какие дополнительные правила помогут вам справиться с этим заданием?

(Если к любому числу прибавить 0, то получим то же самое число; если из любого числа вычесть то же самое число, то получим 0).

Изменился ли алгоритм ваших рассуждений при решении примеров со «сказочными числами»?

Итак, мы доказали, что используя общий алгоритм действий, мы можем решить различные примеры.

На доске приведены записи тех алгоритмов, которыми мы сейчас пользовались, но только уже не в устной форме, а в письменной, поэтому эти записи носят какое название? (Программы действий). Как называется такая запись программы действий? (Блок-схема).

Определите какой вид имеет блок-схема алгоритма сложения трехзначных чисел? (Линейный). Что такое линейный алгоритм? (Алгоритм, в котором все действия следуют друг за другом в определенном порядке. В некоторых случаях порядок действий можно изменять). Какой вид имеет блок-схема алгоритма вычитания трехзначных чисел? (Линейный, разветвленный, циклический). Что такое разветвленный алгоритм? (Алгоритм, содержащий условие и выбор действия). Что такое циклический алгоритм? (Алгоритм, в котором есть возврат к предыдущим действиям). Покажите на 2-ой схеме части каждого вида алгоритмов.

Блок-схема 1 алгоритма Блок-схема 2 алгоритма

ФИЗМИНУТКА

Мы встречаемся с алгоритмами не только при решении примеров. Приведите примеры заданий, в которых также удобно использовать алгоритм. (Уравнения). Проверим нашу гипотезу. Что такое гипотеза? (Научное предположение. Если предположение подтвердится, то оно становится правилом или законом. Если не подтвердится, то выдвигаем новую гипотезу).

Решаем уравнение. Что такое уравнение? (Равенство, в котором есть неизвестная величина, переменная). Что значит решить уравнение? (Найти такое значение переменной, при котором наше равенство будет верным).

Х + 241 = 729

Применяем алгоритм.

1 – смотрим на знак, чтобы определить целое и части;

2 – обозначаем целое и части и подписываем компоненты действия;

3 – определяем, чем является неизвестная величина;

4 – выбираем нужное правило;

5 – записываем способ решения;

6 – вычисляем;

7 – записываем результат;

8 – выполняем проверку.

К какому виду относится этот алгоритм? (К линейному). Опираясь на алгоритм, решаем уравнение.

1 слаг. 2 слаг. сумма

Убедились, что алгоритмы нужны не только для решения примеров. И если мы будем продолжать эту работу, то сможем доказать, что есть большое количество разных заданий, которые можно выполнять с опорой на алгоритм.

Но только ли в математике мы можем встретиться с действиями по алгоритму? Я предлагаю вам построить макет школы «Мир интеллекта», для которого нужен особый строительный материал, который отвечал бы строго определенным требованиям.

Соответствие нашего строительного материала необходимо проверять, пользуясь программой действий. (Работа с блоками Дьенеша).

У меня на столе лежат строительные блоки, но не все из них пригодны для нашей стройки. Нам потребуются только те блоки, которые пройдут отбор. В этом нам поможет программа действий «Архитекторы».

Пользуясь данной программой действий, отобрать несколько блоков. Предложить поучаствовать в отборе гостям. Отобрав несколько блоков, подвести учащихся к выводу, что для стройки нам нужны не красные блоки и не круглые. Отметить, что эту работу мы продолжим и обязательно построим макет школы «Мир интеллекта».

Эта работа доказывает, что не только в математике, но и в обычной жизни нам может понадобиться умение работать по алгоритму.

А теперь вернемся к нашим целям и задачам урока. (Проанализировать, добились ли мы каждой цели и выполнили ли поставленные задачи – ИТОГ УРОКА).

В качестве оценок за урок, мне бы хотелось вручить вам сертификаты и дипломы за участие в олимпиадах по математике и информатике.

Домашнее задание: составить алгоритм решения задач.

Спасибо за вашу работу на уроке. Урок окончен.

Бесплатная визуальная среда разработки программного обеспечения. Конструктор «Алгоритм» поможет начинающим пользователям быстро создать собственную, полноценную программу, без использования специальных языков. Воплощайте в жизнь самые оригинальные идеи уже сегодня, с помощью гибких настроек и удобного интерфейса.

Создание программ в Алгоритм

Принцип разработки ПО, в конструкторе Алгоритм 2, представляет собой построение логической цепи действий. С помощью визуальных функций создается интерфейс будущей программы, после чего к элементам привязываются события, условия и действия. Например, добавив в программу кнопку, вы можете назначить ей действие открывания файла, воспроизведения звука, смены текста и т.д. Функционал Алгоритм 2.7 весьма разнообразен и при умелом подходе может выдать очень интересные результаты.

Особенности конструктора:

  • Удобный интерфейс.
  • Множество готовых функций и визуальных объектов.
  • Возможность создания браузеров, текстовых редакторов и медиа-плееров за пару минут.
  • Создание программ, работающих с файлами, папками и реестром.
  • Набор полезных объектов с расширенными возможностями. К примеру перезагрузка ПК, или рабочий стол.
  • Вывод готовой программы в формате exe, за пару кликов.
  • Экспорт программы в язык Visual Basic.NET, для доработки на высоком уровне программирования.

Конечно, для серьезной разработки программ, Алгоритму 2, существенно не достает возможностей, но для простых задач этот конструктор подойдет идеально. Если вам нужно быстро создать программу с определенным набором функций и уникальным интерфейсом, то данная среда разработки отлично вам в этом поможет.

Как вам уже известно, компьютер -- это программно-управляемая система для работы с информацией, и именно программное управление делает его столь универсальным. Тому, как составляются программы, посвящена эта часть курса информатики и информационных технологий. А начнем мы ее с двух базовых понятий: "алгоритм" и "программа".

Алгоритм1 -- одно из фундаментальных понятий информатики. Этим словом обозначают точное и безотказное предписание последовательности действий, переводящей автоматическое устройство из исходного состояния в результирующее. Т.е. мы можем считать алгоритмом любую инструкцию, если:

ее команды не допускают различных вариантов исполнения;

указания предусмотрены для всех возможных вариантов развития событий.

С этой точки зрения можно составить, к примеру, алгоритм переливания из пустого в порожнее. Однако, на практике алгоритмы составляют для решения тех или иных задач, т.е. получения необходимых результатов по заданным исходным данным. Вид алгоритма, да и сама возможность его написания зависят от исполнителя (это может быть и человек, и автоматическое устройство), или точнее, от его системы команд (т.е. набора инструкций, которые он "умеет" выполнять). Поэтому, в дальнейшем мы будем пользоваться следующим определением.

Алгоритм решения задачи -- это последовательность допустимых команд исполнителя, определяющих его действия по переходу от исходных данных к искомому результату.

Какими свойствами должен обладать алгоритм? Перечислим их:

дискретность2 -- алгоритм делится на отдельные элементарные шаги;

определенность -- каждая команда однозначно определяет действие исполнителя;

конечность(результативность) -- алгоритм должен завершаться за конечное число шагов.

Кроме этого, алгоритм может обладать еще одним полезным (но не обязательным) свойством -- массовостью. Это значит, что он будет годиться не для одной конкретной задачи, а для целого класса похожих задач.

С определенностью непосредственно связана существенная особенность, о которой нельзя забывать: исполнитель выполняет алгоритм формально3, абсолютно не задумываясь над смыслом производимых действий. Поэтому не стоит обижаться на компьютер, "не догадавшийся", что вы подразумевали, -- он честно делает то, что вы написали.

Существует много разных способов записи алгоритмов: графические (например, в виде блок-схем), с помощью естественного языка, какими-нибудь условными знаками идр. Но если мы хотим, чтобы алгоритм был исполнен компьютером, он должен быть обязательно записан на особом языке. Такая запись называется программой4, а язык -- языком программирования.

Вы знаете, что вся информация в компьютере представляется в виде двоичных кодов. В кодах, каждый из которых обозначал одно простейшее действие (вроде, "перенести число из одной ячейки памяти в другую"), приходилось писать и программы для первых ЭВМ. Но это занятие очень сложное и кропотливое, а кроме того, требующее глубокого знания особенностей конкретной машины. Поэтому были придуманы языки программирования высокого уровня. Программа на таком языке -- это последовательность команд, обозначаемых словами естественного языка или их сокращениями. Каждая из них соответствует последовательности из десятков, а то и сотен машинных команд. В результате запись получается гораздо более компактной и понятной.

Но процессор не понимает команд языков высокого уровня, поэтому их предварительно нужно "перевести". Для этого служат особые программы -- трансляторы5.

Сейчас в мире существует множество языков программирования, рассчитанных на различные области применения. Мы в нашем курсе будем использовать Лого6 -- язык, специально созданный для обучения основам программирования. Этот язык очень простой (кстати, в отличие от профессиональных языков программирования, он позволяет записывать команды на русском языке), но, в то же время, способствует формированию навыков, позволяющих затем, при желании, без особых проблем перейти к работе с такими популярными языками, как Си или Паскаль. Особо знаменит язык Лого своей "черепашьей графикой". О том, что это такое, мы и поговорим в следующей главе.

Примечания

Algorithmi (лат.) -- искаженное имя математика IX века аль-Хорезми, предложившего способ выполнения арифметических вычислений с многозначными числами.

Заметим, что подход к определению алгоритма как последовательности операций -- не единственно возможный. Кроме такого -- процедурного (императивного), возможен и функциональный подход, когда алгоритм рассматривается как система функций.

Discrete (англ.) -- состоящий из отдельных частей

Formalis (лат.) -- строго по установленным правилам

Programma (греч.) -- распоряжение

Translator (англ.) -- переводчик

Язык Лого (Logo, от греч. Logos -- слово, мысль) разработан в 1972 г. Сеймуром Пейпертом (Массачусетский Технологический институт, США). "Прародителем" его был наиболее известный из языков функционального программирования -- Лисп, однако, в процессе развития Лого приобрел ряд особенностей, позволяющих использовать при работе с ним как функциональный, так и процедурный подходы.

Понятие алгоритма является одним из основных в современной науке и практике. Еще на самых ранних ступенях развития математики (Древний Египет, Вавилон, Греция) в ней стали рассматриваться различные вычислительные процессы чисто механического характера. С их помощью искомые величины ряда задач вычислялись последовательно из исходных величин по определенным правилам и инструкциям. Со временем все такие процессы в математике получили название алгоритмов (алгорифмов).

Алгоритм есть совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.

Термин алгоритм происходит от имени средневекового узбекского математика Аль-Хорезми, который еще в IX в. (825 г.) дал правила выполнения четырех арифметических действий в десятичной системе счисления. Процесс выполнения арифметических действий был назван алгоризмом.

С 1747 г. вместо слова алгоризм стали употреблять алгорисмус, смысл которого состоял в комбинировании четырех операций арифметического исчисления - сложения, вычитания, умножения, деления.

К 1950 г. алгорисмус стал алгорифмом. Смысл алгорифма чаще всего связывался с алгорифмами Евклида - процессами нахождения наибольшего общего делителя двух многочленов, наибольшей общей меры двух отрезков и т. п.

Способы записи алгоритмов

Алгоритм должен быть понятен (доступен) пользователю и/или машине. Доступность пользователю означает, что он обязан отображаться посредством конкретных формализованных изобразительных средств, понятных пользователю. В качестве таких изобразительных средств используются следующие способы их записи:

  • словесный;
  • формульный;
  • табличный;
  • операторный;
  • графический;
  • язык программирования.

При словесном способе записи содержание последовательных этапов алгоритма описывается в произвольной форме на естественном языке.

Формульный способ основан на строго формализованном аналитическом задании необходимых для исполнения действий.

Табличный способ подразумевает отображение алгоритма в виде таблиц, использующих аппарат реляционного исчисления и алгебру логики для задания подлежащих исполнению взаимных связей между данными, содержащимися в таблице.

Операторный способ базируется на использовании для отображения алгоритма условного набора специальных операторов: арифметических, логических, печати, ввода данных и т. д.; операторы снабжаются индексами и между ними указываются необходимые переходы, а сами индексированные операторы описываются чаще всего в табличной форме.

Графическое отображение алгоритмов в виде блок-схем - весьма наглядный и распространенный способ. Графические символы, отображающие выполняемые процедуры, стандартизованы. Наряду с основными символами используются и вспомогательные, поясняющие процедуры и связи между ними.

Алгоритмы могут быть записаны и в виде команд какого-либо языка программирования. Если это макрокоманды, то алгоритм читаем и пользователем-программистом, и вычислительной машиной, имеющей транслятор с соответствующего языка.

Приведем пример словесного представления алгоритма на примере нахождения произведения п натуральных чисел (с= п = = 1 х 2 х 3 х 4 х... х п).

Этот процесс может быть записан в виде следующей системы последовательных указаний (пунктов):

  • 1. Полагаем с равным единице и переходим к следующему пункту.
  • 2. Полагаем / равным единице и переходим к следующему пункту.
  • 3. Полагаем с равным с=сх/ и переходим к следующему указанию.
  • 4. Проверяем, равно ли /" числу п. Если / = п, то вычисления прекращаем. Если / п, то увеличиваем / на единицу и переходим к пункту 3.

Классификация и свойства алгоритмов

Алгоритмы, в соответствии с которыми решение поставленных задач сводится к арифметическим действиям, называются численными алгоритмами.

Алгоритмы, в соответствии с которыми решение поставленных задач сводится к логическим действиям, называются логическими алгоритмами. Примерами логических алгоритмов могут служить алгоритмы поиска минимального числа, поиска пути на графе, поиска пути в лабиринте и др.

Алгоритмом является последовательность четких однозначных указаний, которые, будучи применены к определенным имеющимся данным, обеспечивают получение требуемого результата. Данными называют все величины, участвующие в решении задачи. Данные, известные перед выполнением алгоритма, являются начальными, исходными данными. Результат решения задачи - это конечные, выходные данные.

Каждое указание алгоритма предписывает исполнителю выполнить одно конкретное законченное действие. Исполнитель не может перейти к выполнению следующей операции, не закончив полностью выполнения предыдущей. Предписания алгоритма надо выполнять последовательно одно за другим, в соответствии с указанным порядком их записи. Выполнение всех предписаний гарантирует правильное решение задачи.

Поочередное выполнение команд алгоритма за конечное число шагов приводит к решению задачи, к достижению цели. Разделение выполнения решения задачи на отдельные операции (выполняемые исполнителем по определенным командам) - важное свойство алгоритмов, называемое дискретностью.

Для того чтобы алгоритм мог быть выполнен, нельзя включать в него команды, которые исполнитель не в состоянии исполнить. У каждого исполнителя имеется свой перечень команд, которые он может выполнить. Совокупность команд, которые могут быть выполнены исполнителем, называется системой команд исполнителя.

Каждая команда алгоритма должна определять однозначное действие исполнителя. Такое свойство алгоритмов называется определенностью (или точностью) алгоритма.

Алгоритм, составленный для конкретного исполнителя, должен включать только те команды, которые входят в его систему команд. Это свойство алгоритма называется понятностью. Алгоритм не должен быть рассчитан на принятие каких-либо самостоятельных решений исполнителем, не предусмотренных составлением алгоритма.

Еще одно важное требование, предъявляемое к алгоритмам, - результативность (или конечность) алгоритма. Оно означает, что исполнение алгоритма должно закончиться за конечное число шагов.

Поскольку разработка алгоритмов - процесс творческий, требующий умственных усилий и затрат времени, предпочтительно разрабатывать алгоритмы, обеспечивающие решения всего класса задач данного типа. Например, если составляется алгоритм решения кубического уравнения ах 3 + Ьх 2 + сх + с1 = 0, то он должен быть вариативен, т. е. обеспечивать возможность решения для любых допустимых исходных значений коэффициентов а, Ь, с, с1. Про такой алгоритм говорят, что он удовлетворяет требованию массовости. Свойство массовости не является необходимым свойством алгоритма. Оно, скорее, определяет качество алгоритма; в то же время свойства точности, понятности и конечности являются необходимыми (иначе это не алгоритм).

Запись алгоритмов в виде блок-схем

Алгоритмы можно записывать по-разному. Форма записи, состав и количество операций алгоритма зависят от того, кто будет исполнителем этого алгоритма. Если задача решается с помощью ЭВМ, алгоритм решения задачи должен быть записан в понятной для машины форме, т. е. в виде программы.

Схема алгоритма - графическое представление алгоритма, дополняемое элементами словесной записи. Каждый пункт алгоритма отображается на схеме некоторой геометрической фигурой или блоком. При этом правило выполнения схем алгоритмов регламентирует ГОСТ 19.002-80 «Единая система программной документации» (табл. 1.28).

Блоки на схемах соединяются линиями потоков информации. Основное направление потока информации идет сверху вниз и слева направо (стрелки могут не указываться), снизу вверх и справа налево - стрелка обязательна. Количество входящих линий для блока не ограничено. Выходящая линия - одна, за исключением логического блока.

Таблица 1.28. Основные элементы блок-схем

Наименование

по ГОСТ 19.003-80 (ЕСПД):а = 10,15,20 мм; b = ^, 5а

Блок вычислений

Вычислительные действия или последовательность действий

Логический

Выбор направления выполнения алгоритма в зависимости от некоторого условия

Блок ввода-

  • 1. Общие обозначения ввода (вывода) данных (вне зависимости от физического носителя).
  • 2. Вывод данных, носителем которых является документ

Начало или конец алгоритма, вход в программу или выход из нее

г = а/4

Процесс пользователя (подпрограмма)

Вычисление по стандартной программе или подпрограмме

модификации

Функция выполняет действия, изменяющие пункты (например, заголовок цикла) алгоритма

Соединитель

Указание связи прерванными линиями между потоками информации в пределах одного листа

Межстраничное соединение

Указание связи между информацией на разных листах

Базовые структуры алгоритмов

Это определенный набор блоков и стандартных способов их соединения для выполнения типичных последовательных действий. К основным структурам относятся следующие - линейные, разветвляющиеся, циклические (рис. 1.26).


Рис. 1.26. Примеры структур алгоритмов: а - линейный алгоритм; б - алгоритм с ветвлением; в - алгоритм с циклом

Линейными называются алгоритмы, в которых действия осуществляются последовательно друг за другом. Стандартная блок-схема линейного алгоритма приводится на рис. 1.26, а (вычисление суммы двух чисел - А и В).

Разветвляющимся называется алгоритм, который, в отличие от линейных алгоритмов, содержит условие, в зависимости от истинности или ложности которого выполняется та или иная последовательность команд. Таким образом, команда ветвления состоит из условия и двух последовательностей команд.

Примером может являться разветвляющийся алгоритм, изображенный в виде блок-схемы (рис. 1.26, б). Аргументами этого алгоритма являются две переменные А, В , а результатом - переменная X. Если условие А > В истинно, то выполняется операция X := А х В, в противном случае выполняется X := А + В. В результате печатается то значение переменной X, которое она получает при выполнении одной из серий команд.

Циклическим называется алгоритм, в котором некоторая последовательность операций (тело цикла) выполняется многократно. Однако «многократно» не означает «до бесконечности». Организация циклов, никогда не приводящая к остановке в выполнении алгоритма, является нарушением требования его результативности - получения результата за конечное число шагов.

В цикл в качестве базовых входят - блок проверки условия и тело цикла. Перед операцией цикла осуществляется начальное присвоение значений тем переменным, которые используются в теле цикла. Если тело цикла расположено после проверки условий Р (цикл с предусловием), то может случиться так, что при определенных условиях тело цикла не выполнится ни разу. Такой вариант организации цикла, управляемый предусловием, называется цикл «ПОКА»/«WHILE» (здесь условие - это условие на продолжение цикла).

Возможен другой случай, когда тело цикла выполняется, по крайней мере, один раз и будет повторяться до тех пор, пока не станет истинным условие. Такая организация цикла, когда его тело расположено перед проверкой условия, носит название цикла с постусловием, или цикла «ДО»/«FOR». Истинность условия в этом случае - условие окончания цикла. Отметим, что возможна ситуация с постусловием и при организации цикла «ПОКА». Итак, цикл «ДО» завершается, когда условие становится истинным, а цикл «ПОКА» - когда становился ложным. Современные языки программирования имеют достаточный набор операторов, реализующих как цикл «ПОКА», так и цикл «ДО».

Рассмотрим пример алгоритма вычисления факториала, изображенный на рис. 1.26 (с циклом «ПОКА»). Переменная N получает значение числа, факториал которого вычисляется. Переменной N, которая в результате выполнения алгоритма должна получить значение факториала, присваивается первоначальное значение 1. Переменной К также присваивается значение 1. Цикл будет выполняться, пока справедливо условие N> К. Тело цикла состоит из двух операций N = N1 х К и К= К + 1.

Циклические алгоритмы, в которых тело цикла выполняется заданное число раз, реализуются с помощью цикла со счетчиком. Цикл со счетчиком реализуется с помощью команды повторения.

Процесс решения сложной задачи довольно часто сводится к решению нескольких более простых подзадач. Соответственно при разработке сложного алгоритма он может разбиваться на отдельные алгоритмы, которые называются вспомогательными. Каждый такой вспомогательный алгоритм описывает решение какой-либо подзадачи.

Процесс построения алгоритма методом последовательной детализации состоит в следующем. Сначала алгоритм формулируется в «крупных» блоках (командах), которые могут быть непонятны исполнителю (не входят в его систему команд) и записываются как вызовы вспомогательных алгоритмов. Затем происходит детализация, и все вспомогательные алгоритмы подробно расписываются с использованием команд, понятных исполнителю.

Контрольные вопросы

  • 1. Дайте классификацию информации.
  • 2. Каковы преимущества цифровой информации по отношению к аналоговой?
  • 3. Перечислите методы кодирования символов.
  • 4. Перечислите методы кодирования численной информации.
  • 5. Переведите число 32 451 10 в шестнадцатеричную и восьмеричную системы счисления.
  • 6. Переведите число 32 451 16 в десятичную и восьмеричную системы счисления.
  • 7. В чем заключаются особенности двоичной арифметики?
  • 8. Подсчитайте произведение 1ГА 16 и 2ВС1 6 по модулю 8.
  • 9. Подсчитайте сумму 457 8 и 375 8 по модулю 3.
  • 10. Перечислите логические элементы ЭВМ.
  • 11. Что такое логические узлы ЭВМ?
  • 12. Составьте таблицы истинности для левого (-1(А д В)) и правого (-И V -,б) выражений 1-го закона де Моргана. Проверьте их на соответствие.
  • 13. Составьте таблицы истинности для левого (-1(А V В)) и правого (-.А V -,б) выражений 2-го закона де Моргана. Проверьте их на соответствие.
  • 14. Последний столбец таблицы истинности для двухместных операций, очевидно, может содержать 16 = 2 4 различных сочетаний «1» и «О». Следовательно, всего может быть определено 16 логических операций над двумя переменными, из которых нами рассмотрены только пять. Составьте таблицу истинности для одной из 9 оставшихся вне рассмотрения функций и попытайтесь построить логическое выражение для этой функции.
  • 15. Перечислите базовые структуры алгоритмов и программ.

Основы программирования


Программа. Этапы разработки программы. Спецификация. Разработка алгоритма. Кодирование. Отладка. Тестирование. Создание справочной системы. Создание установочного диска. Алгоритм и программа. Компиляция. Язык программирования Delphi. Тип данных. Переменная. Константы. Инструкция присваивания. Выражение. Тип выражения. Выполнение инструкции присваивания. Стандартные функции. Математические функции. Функции преобразования. Ввод данных. Вывод результатов. Процедуры и функции. Структура процедуры. Структура функции. Запись инструкций программы. Стиль программирования

Программа

Программа, работающая на компьютере, нередко отождествляется с самим компьютером, т. к. человек, использующий программу, "вводит в компьютер" исходные данные, как правило, при помощи клавиатуры, а компьютер "выдает результат" на экран, на принтер или в файл. На самом деле, преобразование исходных данных в результат выполняет процессор компьютера. Процессор преобразует исходные данные в результат по определенному алгоритму, который, будучи записан на специальном языке, называется программой. Таким образом, чтобы компьютер выполнил некоторую работу, необходимо разработать последовательность команд, обеспечивающую выполнение этой работы, или, как говорят, написать программу.

Этапы разработки программы

Выражение "написать программу" отражает только один из этапов создания компьютерной программы, когда разработчик программы (программист) действительно пишет команды (инструкции) на бумаге или при помощи текстового редактора.

Программирование - это процесс создания (разработки) программы, который может быть представлен последовательностью следующих шагов:

1. Спецификация (определение, формулирование требований к программе).

2. Разработка алгоритма.

3. Кодирование (запись алгоритма на языке программирования).

4. Отладка.

5. Тестирование.

6. Создание справочной системы.

7. Создание установочного диска (CD-ROM).

Спецификация

Спецификация, определение требований к программе - один из важнейших этапов, на котором подробно описывается исходная информация, формулируются требования к результату, поведение программы в особых случаях (например, при вводе неверных данных), разрабатываются диалоговые окна, обеспечивающие взаимодействие пользователя и программы.

Разработка алгоритма

На этапе разработки алгоритма необходимо определить последовательность действий, которые надо выполнить для получения результата. Если задача может быть решена несколькими способами и, следовательно, возможны различные варианты алгоритма решения, то программист, используя некоторый критерий, например, скорость решения алгоритма, выбирает наиболее подходящее решение. Результатом этапа разработки алгоритма является подробное словесное описание алгоритма или его блок-схема.



Кодирование

После того как определены требования к программе и составлен алгоритм решения, алгоритм записывается на выбранном языке программирования. В результате получается исходная программа.

Отладка - это процесс поиска и устранения ошибок. Ошибки в программе разделяют на две группы: синтаксические (ошибки в тексте) и алгоритмические. Синтаксические ошибки - наиболее легко устраняемые. Алгоритмические ошибки обнаружить труднее. Этап отладки можно считать законченным, если программа правильно работает на одном-двух наборах входных данных.

Тестирование

Этап тестирования особенно важен, если вы предполагаете, что вашей программой будут пользоваться другие. На этом этапе следует проверить, как ведет себя программа на как можно большем количестве входных наборов данных, в том числе и на заведомо неверных.

Создание справочной системы

Если разработчик предполагает, что программой будут пользоваться другие, то он обязательно должен создать справочную систему и обеспечить пользователю удобный доступ к справочной информации во время работы с программой. В современных программах справочная информация представляется в форме СНМ- или HLP-файлов. Помимо справочной информации, доступ к которой осуществляется из программы во время ее работы, в состав справочной системы включают инструкцию по установке (инсталляции) программы, которую оформляют в виде Readme-файла в одном из форматов: TXT, DOC или НТМ.

Создание установочного диска

Установочный диск или CD-ROM создаются для того, чтобы пользователь мог самостоятельно, без помощи разработчика, установить программу на свой компьютер. Обычно помимо самой программы на установочном диске находятся файлы справочной информации и инструкция по установке программы (Readme-файл). Следует понимать, что современные программы, в том числе разработанные в Delphi, в большинстве случаев (за исключением самых простых программ) не могут быть установлены на компьютер пользователя путем простого копирования, так как для своей работы требуют специальных библиотек и компонентов, которых может и не быть у конкретного пользователя. Поэтому установку программы на компьютер пользователя должна выполнять специальная программа, которая помещается на установочный диск. Как правило, установочная программа создает отдельную папку для устанавливаемой программы, копирует в нее необходимые файлы и, если надо, выполняет настройку операционной системы путем внесения дополнений и изменений в реестр.

Алгоритм и программа

На первом этапе создания программы программист должен определить последовательность действий, которые необходимо выполнить, чтобы решить поставленную задачу, т. е. разработать алгоритм. Алгоритм - это точное предписание, определяющее процесс перехода от исходных данных к результату.

Рис. 1. Основные символы, используемые для представления алгоритма в виде блок-схемы

Алгоритм решения задачи может быть представлен в виде словесного описания или графически - в виде блок-схемы. При изображении алгоритма в виде блок-схемы используются специальные символы (рис. 1).

Представление алгоритма в виде блок-схемы позволяет программисту уяснить последовательность действий, которые должны быть выполнены для решения задачи, убедиться в правильности понимания поставленной задачи.

При программировании в Delphi алгоритм решения задачи представляет собой совокупность алгоритмов процедур обработки событий.


Компиляция

Программа, представленная в виде инструкций языка программирования, называется исходной программой. Она состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, исходная программа должна быть переведена на машинный язык - язык команд процессора. Задачу преобразования исходной программы в машинный код выполняет специальная программа - компилятор.

Компилятор, схема работы которого приведена на рис. 2, выполняет последовательно две задачи:

1. Проверяет текст исходной программы на отсутствие синтаксических ошибок.

2. Создает (генерирует) исполняемую программу - машинный код.

Рис. 2. Схема работы компилятора

Следует отметить, что генерация исполняемой программы происходит только в том случае, если в тексте исходной программы нет синтаксических ошибок.

Генерация машинного кода компилятором свидетельствует лишь о том, что в тексте программы нет синтаксических ошибок. Убедиться, что программа работает правильно можно только в процессе ее тестирования - пробных запусках программы и анализе полученных результатов. Например, если в программе вычисления корней квадратного уравнения допущена ошибка в выражении (формуле) вычисления дискриминанта, то, даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.

Язык программирования Delphi

В среде программирования Delphi для записи программ используется язык программирования Delphi. Программа на Delphi представляет собой последовательность инструкций, которые довольно часто называют операторами. Одна инструкция от другой отделяется точкой с запятой.

Каждая инструкция состоит из идентификаторов. Идентификатор может обозначать:

· Инструкцию языка(:=, if, while, for);

· переменную;

· константу (целое или дробное число);

· арифметическую (+, -,*,/) или логическую (and, or, not) операцию;

· подпрограмму (процедуру или функцию);

· отмечать начало (procedure, function) или конец (end) подпрограммы ИЛИ блока (begin, end).

Тип данных

Программа может оперировать данными различных типов: целыми и дробными числами, символами, строками символов, логическими величинами.

Целый тип

Язык Delphi поддерживает семь целых типов данных: shortint, smailint, Longint, Int64, Byte, word и Longword, описание которых приведено в табл. 1.


Таблица 1. Целые типы

Тип Диапазон Формат
Shortint -128-127 8 битов
Smallint -32 768 - 32 767 16 битов
Longint -2 147 483 648 - 2 147 483 647 32 бита
Int64 -2 63 - 2 63 - 1 64 бита
Byte 0-255 8 битов, беззнаковый
Word 0-65 535 16 битов, беззнаковый
Longword 0 - 4 294 967 295 32 бита, беззнаковый

Object Pascal поддерживает и наиболее универсальный целый тип - Integer, который Эквивалентен Longint.

Вещественный тип

Язык Delphi поддерживает шесть вещественных типов: Real48, single, Double, Extended, comp, Currency. Типы различаются между собой диапазоном допустимых значений, количеством значащих цифр и количеством байтов, необходимых для хранения данных в памяти компьютера (табл. 2).

Таблица 2. Вещественные (дробные) типы

Тип Диапазон Значащих цифр Байтов
Real48 2.9x 10 -39 -1.7x10 38 11-12
Single 1.5 x 10 -45 -3.4х 10 38 7-8
Double 5.0x10- 324 -1.7x10 308 15-16
Extended 3.6x10- 4951 -1.1 х10 4932 19-20
Comp 2 63 +1 - 2 63 -1 19-20
Currency -922 337 203 685 477.5808 --922 337 203 685 477.5807 19-20

Язык Delphi поддерживает и наиболее универсальный вещественный тип - Real, который эквивалентен Double.


Символьный тип

Язык Delphi поддерживает два символьных типа: Ansichar и Widechar:

· тип Ansichar - это символы в кодировке ANSI, которым соответствуют числа в диапазоне от 0 до 255;

· тип widechar - это символы в кодировке Unicode, им соответствуют числа от 0 до 65 535.

Object Pascal поддерживает и наиболее универсальный символьный тип - Char, который эквивалентен Ansichar.

Строковый тип

Язык Delphi поддерживает три строковых типа: shortstring, Longstring

· тип shortstring представляет собой статически размещаемые в памяти компьютера строки длиной от 0 до 255 символов;

· тип Longstring представляет собой динамически размещаемые в памяти строки, длина которых ограничена только объемом свободной памяти;

· тип WideString представляет собой динамически размещаемые в памяти строки, длина которых ограничена только объемом свободной памяти. Каждый символ строки типа WideString является Unicode-символом.

В языке Delphi для обозначения строкового типа допускается использование идентификатора string. Тип string эквивалентен типу shortstring.

Логический тип

Логическая величина может принимать одно из двух значений True (истина) или False (ложь). В языке Delphi логические величины относят к типу Boolean.


Переменная

Переменная - это область памяти, в которой находятся данные, которыми оперирует программа. Когда программа манипулирует с данными, она, фактически, оперирует содержимым ячеек памяти, т. е. переменными.

Чтобы программа могла обратиться к переменной (области памяти), например, для того, чтобы получить исходные данные для расчета по формуле или сохранить результат, переменная должна иметь имя. Имя переменной придумывает программист.

В качестве имени переменной можно использовать последовательность из букв латинского алфавита, цифр и некоторых специальных символов. Первым символом в имени переменной должна быть буква. Пробел в имени переменной использовать нельзя.

Следует обратить внимание на то, что компилятор языка Delphi не различает прописные и строчные буквы в именах переменных, поэтому имена SUMMA, Summa и summa обозначают одну и ту же переменную.

Желательно, чтобы имя переменной было логически связано с ее назначением. Например, переменным, предназначенным для хранения коэффициентов и корней квадратного уравнения, которое в общем виде традиционно записывают

ах2 + bх + с = 0

вполне логично присвоить имена а, b, с, x1 и х2. Другой пример. Если в программе есть переменные, предназначенные для хранения суммы покупки и величины скидки, то этим переменным можно присвоить имена TotalSumm и Discount или ObSumma и Skidka.

В языке Delphi каждая переменная перед использованием должна быть объявлена. С помощью объявления устанавливается не только факт существования переменной, но и задается ее тип, чем указывается и диапазон допустимых значений.

В общем виде инструкция объявления переменной выглядит так:

· имя - имя переменной;

· тип - тип данных, для хранения которых предназначена переменная.

а: Real; b: Real; i: Integer;

В приведенных примерах объявлены две переменные типа real и одна переменная типа integer.

В тексте программы объявление каждой переменной, как правило, помещают на отдельной строке.

Если в программе имеется несколько переменных, относящихся к одному типу, то имена этих переменных можно перечислить в одной строке через запятую, а тип переменных указать после имени последней переменной через двоеточие, например:

а,b,с: Real; x1,x2: Real;

Константы

В языке Delphi существует два вида констант: обычные и именованные.

Обычная константа - это целое или дробное число, строка символов или отдельный символ, логическое значение.

Числовые константы

В тексте программы числовые константы записываются обычным образом, т. е. так же, как числа, например, при решении математических задач. При записи дробных чисел для разделения целой и дробных частей используется точка. Если константа отрицательная, то непосредственно перед первой цифрой ставится знак "минус".

Ниже приведены примеры числовых констант:

Дробные константы могут изображаться в виде числа с плавающей точкой. Представление в виде числа с плавающей точкой основано на том, что любое число может быть записано в алгебраической форме как произведение числа, меньшего 10, которое называется мантиссой, и степени десятки, именуемой порядком.

В табл. 3 приведены примеры чисел, записанных в обычной форме, в алгебраической форме и форме с плавающей точкой.

Таблица 3. Примеры записи дробных чисел

Строковые и символьные константы

Строковые и символьные константы заключаются в кавычки. Ниже приведены примеры строковых констант:

"Язык программирования Delphi 1 "Delphi 6"

Здесь следует обратить внимание на константу " 2.4". Это именно символьная константа, т. е. строка символов, которая изображает число "две целые четыре десятых", а не число 2,4.

Логические константы

Логическое высказывание (выражение) может быть либо истинно, либо ложно. Истине соответствует константа True, значению "ложь" - константа False.

Именованная константа

Именованная константа - это имя (идентификатор), которое в программе используется вместо самой константы.

Именованная константа, как и переменная, перед использованием должна быть объявлена. В общем виде инструкция объявления именованной константы выглядит следующим образом:

константа = значение;

· константа - имя константы;

· значение - значение константы.

Именованные константы объявляются в программе в разделе объявления констант, который начинается словом const. Ниже приведен пример объявления именованных констант (целой, строковой и дробной).