Архитектура и процессоры персональных компьютеров. Архитектура и принцип работы микропроцессора

Микропроцессор характеризуется: 1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ; 2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.

Разрядностть МП обозначается m/n/k/ и включает: m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров; n - разрядность шины данных, определяет скорость передачи информации; k - разрядность шины адреса, определяет размер адресного пространства. Например, МП i8088 характеризуется значениями m/n/k=16/8/20; 3) архитектурой. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.

Микроархитектура микропроцессора - это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

Макроархитектура - это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.

Структура типового микропроцессора

Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 2.1 Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

Рис. 2.1. Архитектура типового микропроцессора.

Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.

В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций: 1. Нажать клавишу с буквой "А" на клавиатуре. 2. Поместить букву "А" в память микроЭВМ. 3. Вывести букву "А" на экран дисплея.

Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.

На рис. 2.2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд: 1. Ввести данные из порта ввода 1. 2. Запомнить данные в ячейке памяти 200. 3. Переслать данные в порт вывода 10.

Рис. 2.2. Диаграмма выполнения процедуры ввода-запоминания-вывода.

В данной программе всего три команды, хотя на рис. 2.2 может показаться, что в памяти программ записано шесть команд. Это связано с тем, что команда обычно разбивается на части. Первая часть команды 1 в приведенной выше программе - команда ввода данных. Во второй части команды 1 указывается, откуда нужно ввести данные (из порта 1). Первая часть команды, предписывающая конкретное действие, называется кодом операции (КОП), а вторая часть - операндом. Код операции и операнд размещаются в отдельных ячейках памяти программ. На рис. 2.2 КОП хранится в ячейке 100, а код операнда - в ячейке 101 (порт 1); последний указывает откуда нужно взять информацию.

В МП на рис. 2.2 выделены еще два новых блока - регистры: аккумулятор и регистр команд.

Рассмотрим прохождение команд и данных внутри микроЭВМ с помощью занумерованных кружков на диаграмме. Напомним, что микропроцессор - это центральный узел, управляющий перемещением всех данных и выполнением операций.

Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий: 1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания. 2. ЗУ программ пересылает первую команду ("Ввести данные") по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд. 3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания. 4. Из памяти программ на ШД пересылается операнд "Из порта 1". Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду ("Ввести данные из порта 1"). 5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы "А" передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения. 6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания. 7. Код команды "Запомнить данные" подается на ШД и пересылается в МП, где помещается в регистр команд. 8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ. 9. Из памяти программ на ШД пересылается код сообщения "В ячейке памяти 200". МП воспринимает этот операнд и помещает его в регистр команд. Полная команда "Запомнить данные в ячейке памяти 200" выбрана из памяти программ и декодирована. 10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных. 11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы "А" передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы "А". 12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания. 13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд. 14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания. 15. Из памяти программ по ШД к МП поступает код операнда "В порт 10", который далее помещается в регистр команд. 16. МП дешифрирует полную команду "Вывести данные в порт 10". С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы "А" (все еще находящийся в аккумуляторе) по ШД. Буква "А" выводится через порт 10 на экран дисплея.

В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.

Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. Однако фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.

Таким образом, в МПС микропроцессор выполняет следующие функции: - выборку команд программы из основной памяти; - дешифрацию команд; - выполнение арифметических, логических и других операций, закодированных в командах; - управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода; - отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств; - управление и координацию работы основных узлов МП.

Литература

1. Д. Гивоне, Р. Россер. Микропроцессоры и микрокомпьютеры. Вводный курс. Перевод с английского. – М.: Мир, 1983.

2. Д. Корфрон. Технические средства микропроцессорных систем. Практический курс. Перевод с английского. – М.: Мир, 1983.

3. С.Т. Хвощ, Н.Н. Варлинский, Е.А. Попов. Микропроцессоры и микроЭВМ в системах автоматического управления. Справочник. – Л.: Машиностроение, 1987.

4. Р. Токхайм. Микропроцессоры: курс и упражнения. Перевод с английского, под ред. В.Н. Грасевича – М.: Энергоатомиздат, 1988.


1. ЭВМ и микроЭВМ. Общие сведенья.

Поколения ЭВМ.

В 1949г. создана первая ЭВМ на лампах. В 1951 году была создана первая промышленная ЭВМ (Univac I). В этом же году появилась и в СССР Киев у Глушкова первая ЭВМ. Это были машины первого поколения.

Второе поколение – на транзисторах и полупроводниках (Проминь, Днепр, Минск).

В 1959г. изобрели интегральные схемы.

В 1965г. был создан первый миникомпьютер. (В СССР – М6000, М40-30, БЭСМ, машины ряда ЕС). Миникомпьютеры уже не были всецело предназначены для обработки данных и решения задач; их начали включать как составные части в системы, требовавшие быстрого принятия решений, - системы реального времени .

С появлением в 1971г. микропроцессоров началась эра программируемой логики.

Микропроцессор – это программируемое логическое устройство, изготовленное по БИС-технологии. В конструкцию микропроцессора заложена большая гибкость. Сам по себе он не может решить ту или иную конкретную задачу. Чтобы решить задачу, его нужно запрограммировать и соединить с другими устройствами. В их число входят память и устройства ввода/вывода.



В общем случае, некоторая совокупность соединенных друг с другом системных устройств, включающая микропроцессор, память и устройства ввода/вывода, нацеленная на выполнение некоторой четко определенной функции, называется микропроцессорной системой или микроЭВМ.


Типовая структура ЭВМ.

Типовая ЭВМ включает пять функциональных блоков: устройство ввода, память, арифметическое устройство, устройство управления и устройство вывода.

Рис. 1.1. Принцип организации ЭВМ

Аппаратура способна выполнять только ограниченный набор элементарных операций. Все остальные функциональные возможности ЭВМ достигаются программным путем .

Программа – это определенным образом организованная совокупность элементарных машинных операций, называемых командами , с помощью которых осуществляется обработка информации и данных.

Программа и данные сначала накапливаются в памяти, куда они поступают через устройство ввода. Затем отдельные команды программы одна за другой автоматически поступают в устройство управления, которое их расшифровывает и выполняет. Для выполнения операции обычно требуется, чтобы данные поступили в арифметическое устройство, содержащее все необходимые для их обработки электронные схемы. В процессе вычислений или после их завершения полученные результаты направляются в устройство вывода. Арифметическое устройство и устройство управления вместе обычно называются центральным процессорным устройством (ЦПУ) или центральнымпроцессором (ЦП). Центральный процессор, изготовленный в виде БИС, и есть микропроцессор .

Память

Запоминание и хранение больших объемов информации происходит в памяти, точнее в запоминающем устройстве . ЗУ подразделяются на подблоки, называемые регистрами , каждый из которых способен хранить одно машинное слово. Группа двоичных цифр, обрабатываемых одновременно, называется машинным словом , а число двоичных цифр, составляющих слово, называется длиной слова . Типичные микроЭВМ имеют длину слова 4, 8, 12, 16 двоичных разрядов. В силу особой распространенности слово длиной 8 бит имеет специальное название – байт .

Каждый регистр в ЗУ, или ячейка памяти имеет свой адрес. Адрес – это просто целое число, однозначно идентифицирующее ячейку. Слово, хранящееся в ячейке, называют содержимым этой ячейки.

Арифметическое устройство (АУ)

Обработка данных осуществляется главным образом в АУ. Эта обработка включает в себя как арифметические, так и логические операции – они очень элементарны (сложить два числа, вычесть, сравнить, сдвинуть одно по отношению к другому, инвертировать, логический умножить, исключить ИЛИ).

Главный регистр в АУ – аккумулятор .

Имеется в АУ несколько рабочих регистров для кратковременного хранения результатов вычисления.

АУ содержит также признаковые биты – флажки . Флажки содержат информацию, характеризующую состояние процессора и результаты сравнения чисел. Состояние флажков вместе с другой важной информацией о состоянии ЭВМ хранится в специальном регистре – слове состоянии программы (PSW – program status word).

Устройство управления (УУ)

УУ управляет работой ЭВМ. Оно автоматически, последовательно по одной, получает команды из памяти, декодирует каждую из них и генерирует необходимые для ее выполнения сигналы.

В УУ находится программный счетчик для указания адреса очередной команды. При получении в УУ команды содержимое счетчика автоматически увеличивается на 1.

Поступающие в УУ команды записываются в регистре команд . Каждая команда содержит код операции, данные или адрес . Код операции – это совокупность двоичных цифр, которые однозначно определяют операцию, выполняемую в процессе интерпретации команды. Адресная часть команды (если она присутствует) указывает на ячейки (например, в памяти), к которым нужно обратиться, выполняя команду.

Необходимо адрес ячейки различать с ее содержимым и не путать эти понятия.

Следующая функция УУ – это синхронизация работы отдельных блоков ЭВМ. Она осуществляется с помощью тактового генератора . Обработка команды занимает несколько периодов тактового генератора. В общем случае, команда в ЭВМ сначала выбирается из памяти, потом декодируется, а затем выполняется. Выборка, декодирование и выполнение распадаются на несколько временных интервалов. Каждый из этих интервалов, включающий один или несколько периодов тактового генератора, представляет собой так называемый машинный цикл . Совокупное время, требуемое для выборки, декодирования и выполнения команды, образует командный цикл , или цикл выполнения команды.

Устройство ввода/вывода (УВВ)

Через устройство ввода/вывода осуществляется контакт ЭВМ с внешним миром. Они являются буферами для преобразования информации с тех языков, уровней и тех скоростей, на которых работает ЭВМ, к тем, которые воспринимает человек или другая связанная с ЭВМ система. УВВ представляет собой периферийные устройства ЭВМ. Точки контакта между УВВ и ЭВМ называются портами ввода/вывода.


Архитектура микропроцессора.

МикроЭВМ

МикроЭВМ – это система с шинной организацией, состоящая из модулей или блоков, реализованных в виде БИС. Эти модули обрабатывают информацию, управляют потоком и интерпретацией команд, управляют работой шин, хранят информацию и осуществляют взаимодействие между микроЭВМ и ее окружением. Это взаимодействие осуществляют блоки, называемые портами ввода/вывода. Каждый такой порт является интерфейсом между микропроцессором и каким-либо внешним устройством (например, терминалом, внешней памятью, измерительным прибором и др.). Взаимодействие блоков осуществляется при помощи шин трех типов: адресных шин, шин данных и управляющих шин.


Рис. 2.1. Структура микроЭВМ с шинной организацией


Структура микропроцессора

Рис. 2.2. Гипотетический МП

В приведенном гипотетическом микропроцессоре:

· программный счетчик (счетчик команд), стек и регистр команд служат для обработки команд;

· АЛУ, триггер переноса, общие регистры, регистр адреса данных служат для обработки данных;

· остальные компоненты – дешифратор команд, БУС – управляют работой микропроцессора в целом.

Взаимодействие компонентов осуществляется по внутренним каналам передачи данных. Связь МП с другими блоками (ЗУ и устройства ввода/вывода) происходит по адресной шине, шине данных и шине управления.

Микропроцессор работает со словами, состоящими из 8 битов, называемых байтами.

Адресная шина МП однонаправленная, а шина данных двунаправленная. Управляющая шина состоит из 5 линий, ведущих к блоку управления и синхронизации и 8 выходящих из него линий. По этим линиям передаются управляющие и тактирующие сигналы между компонентами микропроцессора и между МП и другими блоками микроЭВМ.

Счетчик команд состоит из 16 битов и содержит адрес очередного байта команды, считываемого из памяти. Он автоматически увеличивается на единицу после чтения каждого байта. Одна из функций стека – сохранение адреса возврата из подпрограммы. В стеке могут также сохраняться данные из верхних трех общих регистров и триггера переноса.

В то время как слово данных всегда состоит из одного байта, команда может состоять из 1, 2 или 3 байтов. Первый байт любой команды поступает из памяти по шине данных на регистр команд . Этот первый байт подается на вход дешифратора команд, который определяет ее смысл. В частности, дешифратор определяет, является ли команда однобайтной или она состоит из большого числа байтов. В последнем случае дополнительные байты передаются по шине данных из памяти и принимаются или на регистр адреса данных, или на один из общих регистров.

Регистр адреса данных содержит адрес операнда для команд, обращающихся к памяти, адрес порта для команд ввода/вывода или адрес следующей команды для команд перехода.

Пятнадцать 8-битовых общих регистров содержат операнды для всех команд, работающих с данными. Для указания этих регистров используются 4-битовые коды от 0000 до 1110. Регистр 0000 называется аккумулятором (АК) и участвует во всех арифметических и логических операциях (в АК содержится один из операндов перед началом выполнения операции и в АК загружается результат после ее выполнения). Обычно обращение к общим регистрам осуществляется при помощи R-селектора или r-селектора . R-селектор позволяет обращаться к любому регистру, тогда как через r-селектор доступны только три первые регистры.

Важной возможностью МП является косвенная адресация. Задание несуществующего регистра общего назначения 1111используется как указание на то, что нужно обратиться к байту памяти по 16-разрядному адресу, который получается комбинированием содержимого двух фиксированных общих регистров. Старшие 8 разрядов адреса – из регистра 0001, а следующие 8 разрядов – из регистра 0010 (часто эти регистры называют H и L соответственно).

Все арифметические и логические операции выполняются в арифметико-логическом устройстве (АЛУ) . Входами АЛУ служат две 8-битовые шины. Одна из них идет от аккумулятора (регистр 0000), а другая – от R-селектора, который выбирает либо один из регистров общего назначения от 0000 до 1110, либо ячейку памяти, если задана косвенная адресация. Еще одна входная линия поступает в АЛУ от триггера переноса С, который участвует в некоторых арифметических и логических операциях. Результаты из АЛУ передаются в аккумулятор по выходной 8-битовой шине. Существуют еще две линии, идущие от АЛУ к блоку управления и синхронизации; они передают информацию о наличии или отсутствии двух особых условий: аккумулятор содержит нули (линия Z) и старший разряд аккумулятора равен 1 (линия N). Триггер переноса и обе линии состояния АЛУ Z и N называются флажками и используются в командах условного перехода.

Последний компонент МП – блок управления и синхронизации (БУС) . Он получает сигналы от дешифратора команд, который анализирует команду. В БУС из АЛУ и от триггера переноса поступают сигналы, по которым определяются условия для передач управления. Все остальные компоненты МП получают от БУС управляющие и синхронизирующие сигналы, необходимые для выполнения команды. С помощью 13 внешних линий реализуется интерфейс устройства управления с другими модулями микроЭВМ.

  • ВВЕДЕНИЕ
  • 1. Общая характеристика архитектуры процессора
    • 1.1 Базовая структура микропроцессорной системы
    • 1.2 Понятие архитектуры микропроцессора
    • 1.3 Обзор существующих типов архитектур микропроцессоров
  • 2. Устройство управления
  • 3. Особенности программного и микропрограммного управления
  • 4. Режимы адресации
  • Заключение
  • Список используемой литературы
  • ВВЕДЕНИЕ
  • Процесс взаимодействия человека с ЭВМ насчитывает уже более 40лет. До недавнего времени в этом процессе могли участвовать только специалисты - инженеры, математики - программисты, операторы. В последние годы произошли кардинальные изменения в области вычислительной техники. Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек, будь то школьник или домохозяйка, врач или учитель, рабочий или инженер. Часто это явление называют феноменом персонального компьютера. В настоящее время мировой парк персональных компьютеров превышает 20 млн.
  • Почему возник этот феномен? Ответ на этот вопрос можно найти, если четко сформулировать, что такое персональный компьютер и каковы его основные признаки. Надо правильно воспринимать само определение " персональный", оно не означает принадлежность компьютера человеку на правах личной собственности. Определение "персональный" возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ. Существующие в компьютере программные средства обеспечат благоприятную " дружественную" форму диалога пользователя и ЭВМ.
  • В настоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера.
  • Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов - холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.
1. Общая характеристика архитектуры процессора 1.1 Базовая структура микропроцессорной системы Задача управления системой возлагается на центральный процессор (ЦП), который связан с памятью и системой ввода-вывода через каналы памяти и ввода-вывода соответственно. ЦП считывает из памяти команды, которые образуют программу и декодирует их. В соответствии с результатом декодирования команд он осуществляет выборку данных из памяти портов ввода, обрабатывает их и пересылает обратно в память или порты вывода. Существует также возможность ввода-вывода данных из памяти на внешние устройства и обратно, минуя ЦП. Этот механизм называется прямым доступом к памяти (ПДП).С точки зрения пользователя при выборе микропроцессора целесообразно располагать некоторыми обобщенными комплексными характеристиками возможностей микропроцессора. Разработчик нуждается в уяснении и понимании лишь тех компонентов микропроцессора, которые явно отражаются в программах и должны быть учтены при разработке схем и программ функционирования системы. Такие характеристики определяются понятием архитектуры микропроцессора. 1.2 Понятие архитектуры микропроцессора Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 1. Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.Рис. 1. Архитектура типового микропроцессора.Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций:1. Нажать клавишу с буквой "А" на клавиатуре.2. Поместить букву "А" в память микроЭВМ.3. Вывести букву "А" на экран дисплея.Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.На рис. 2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд:1. Ввести данные из порта ввода 1.2. Запомнить данные в ячейке памяти 200.3. Переслать данные в порт вывода 10.В данной программе всего три команды, хотя на рис. 2 может показаться, что в памяти программ записано шесть команд. Это связано с тем, что команда обычно разбивается на части. Первая часть команды 1 в приведенной выше программе - команда ввода данных. Во второй части команды 1 указывается, откуда нужно ввести данные (из порта 1). Первая часть команды, предписывающая конкретное действие, называется кодом операции (КОП), а вторая часть - операндом. Код операции и операнд размещаются в отдельных ячейках памяти программ. На рис. 2 КОП хранится в ячейке 100, а код операнда - в ячейке 101 (порт 1); последний указывает откуда нужно взять информацию.В МП на рис. 2 выделены еще два новых блока - регистры: аккумулятор и регистр команд.Рис. 2. Диаграмма выполнения процедуры ввода-запоминания-выводаРассмотрим прохождение команд и данных внутри микроЭВМ с помощью занумерованных кружков на диаграмме. Напомним, что микропроцессор - это центральный узел, управляющий перемещением всех данных и выполнением операций.Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий:1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания.2. ЗУ программ пересылает первую команду ("Ввести данные") по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд.3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания.4. Из памяти программ на ШД пересылается операнд "Из порта 1". Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду ("Ввести данные из порта 1").5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы "А" передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения.6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания.7. Код команды "Запомнить данные" подается на ШД и пересылается в МП, где помещается в регистр команд.8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ.9. Из памяти программ на ШД пересылается код сообщения "В ячейке памяти 200". МП воспринимает этот операнд и помещает его в регистр команд. Полная команда "Запомнить данные в ячейке памяти 200" выбрана из памяти программ и декодирована.10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных.11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы "А" передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы "А".12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания.13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд.14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания.15. Из памяти программ по ШД к МП поступает код операнда "В порт 10", который далее помещается в регистр команд.16. МП дешифрирует полную команду "Вывести данные в порт 10". С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы "А" (все еще находящийся в аккумуляторе) по ШД. Буква "А" выводится через порт 10 на экран дисплея.В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. При этом фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.Таким образом, в МПС микропроцессор выполняет следующие функции:- выборку команд программы из основной памяти;- дешифрацию команд;- выполнение арифметических, логических и других операций, закодированных в командах;- управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;- отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;- управление и координацию работы основных узлов МП.1.3 Обзор существующих типов архитектур микропроцессоров Существует несколько подходов к классификации микропроцессоров по типу архитектуры. Так, выделяют МП с CISC (Complete Instruction Set Computer) архитектурой, характеризуемой полным набором команд, и RISC (Reduce Instruction Set Computer) архитектурой, которая определяет систему с сокращенным набором команд одинакового формата, выполняемых за один такт МП.Определяя в качестве основной характеристики МП разрядность, выделяют следующие типы МП архитектуры:- с фиксированной разрядностью и списком команд (однокристальные);- с наращиваемой разрядностью (секционные) и микропрограммным управлением.Анализируя адресные пространства программ и данных, определяют МП с архитектурой фон Неймана (память программ и память данных находятся в едином пространстве и нет никаких признаков, указывающих на тип информации в ячейке памяти) и МП с архитектурой Гарвардской лаборатории (память программ и память данных разделены, имеют свои адресные пространства и способы доступа к ним).Рассмотрим более подробно основные типы архитектурных решений, выделяя связь со способами адресации памяти.1. Регистровая архитектура определяется наличием достаточно большого регистрового файла внутри МП. Команды получают возможность обратиться к операндам, расположенным в одной из двух запоминающих сред: оперативной памяти или регистрах. Размер регистра обычно фиксирован и совпадает с размером слова, физически реализованного в оперативной памяти. К любому регистру можно обратиться непосредственно, поскольку регистры представлены в виде массива запоминающих элементов - регистрового файла. Типичным является выполнение арифметических операций только в регистре, при всём этом команда содержит два операнда (оба операнда в регистре или один операнд в регистре, а второй в оперативной памяти).К данному типу архитектуры относится микропроцессор фирмы Zilog. Процессор Z80 - детище фирмы Zilog помимо расширенной системы команд, одного номинала питания и способности исполнять программы, написанные для i8080, имел архитектурные "изюминки".Рис. 3. Микропроцессор Z80 фирмы Zilog.В дополнение к основному набору РОН, в кристалле был реализован второй комплект аналогичных регистров. Это значительно упрощало работу при вызове подпрограмм или процедур обслуживания прерываний, поскольку программист мог использовать для них альтернативный набор регистров, избегая сохранения в стеке содержимого РОНов для основной программы с помощью операций PUSH. Кроме того, в систему команд был включен ряд специальных инструкций, ориентированных на обработку отдельных битов, а для поддержки регенерации динамической памяти в схему процессора введены соответствующие аппаратные средства. Z80 применялся в машинах Sinclair ZX, Sinclair Spectrum, Tandy TRS80.Предельный вариант - архитектура с адресацией посредством аккумуляторов (меньший набор команд).МП фирмы Motorola имел ряд существенных преимуществ. Прежде всего, кристалл МС6800 требовал для работы одного номинала питания, а система команд оказалась весьма прозрачной для программиста. Архитектура МП также имела ряд особенностей.Рис 4. Микропроцессор МС6800 фирмы Motorola.Микропроцессор МС 6800 содержал два аккумулятора, и результат операции АЛУ мог быть помещен в любой из них. Но самым ценным качеством структуры МС 6800 было автоматическое сохранение в стеке содержимого всех регистров процессора при обработке прерываний (Z80 требовалось для этого несколько команд PUSH). Процедура восстановления РОН из стека тоже выполнялась аппаратно.2. Стековая архитектура дает возможность создать поле памяти с упорядоченной последовательностью записи и выборки информации.В общем случае команды неявно адресуются к элементу стека, расположенному на его вершине, или к двум верхним элементам стека.3. Архитектура МП, ориентированная на оперативную память (типа "память-память"), обеспечивает высокую скорость работы и большую информационную емкость рабочих регистров и стека при их организации в оперативной памяти.Архитектура этого типа не предполагает явного определения аккумулятора, регистров общего назначения или стека; все операнды команд адресуются к области основной памяти.С точки зрения важности для пользователя-программиста под архитектурой в общем случае понимают совокупность следующих компонентов и характеристик:- разрядности адресов и данных;- состава, имен и назначения программно-доступных регистров;- форматов и системы команд;- режимов адресации памяти;- способов машинного представления данных разного типа;- структуры адресного пространства;- способа адресации внешних устройств и средств выполнения операций ввода/вывода;- классов прерываний, особенностей инициирования и обработки прерываний.2. Устройство управления Коды операции команд программы, воспринимаемые управляющей частью микропроцессора, расшифрованные и преобразованные в ней, дают информацию о том, какие операции надо выполнить, где в памяти расположены данные, куда надо направить результат и где расположена следующая за выполняемой команда.Управляющее устройство имеет достаточно средств для того, чтобы после восприятия и интерпретации информации, получаемой в команде, обеспечить переключение (срабатывание) всех требуемых функциональных частей машины, а также для того, чтобы подвести к ним данные и воспринять полученные результаты. Именно срабатывание, т. е. изменение состояния двоичных логических элементов на противоположное, позволяет посредством коммутации вентилей выполнять элементарные логические и арифметические действия, а также передавать требуемые операнды в функциональные части микроЭВМ.Устройство управления в строгой последовательности в рамках тактовых и цикловых временных интервалов работы микропроцессора (такт - минимальный рабочий интервал, в течение которого совершается одно элементарное действие; цикл - интервал времени, в течение которого выполняется одна машинная операция) осуществляет: выборку команды; интерпретацию ее с целью анализа формата, служебных признаков и вычисления адреса операнда (операндов); установление номенклатуры и временной последовательности всех функциональных управляющих сигналов; генерацию управляющих импульсов и передачу их на управляющие шины функциональных частей микроЭВМ и вентили между ними; анализ результата операции и изменение своего состояния так, чтобы определить месторасположение (адрес) следующей команды.3. Особенности программного и микропрограммного управления В микропроцессорах используют два метода выработки совокупности функциональных управляющих сигналов: программный и микропрограммный.Выполнение операций в машине сводится к элементарным преобразованиям информации (передача информации между узлами в блоках, сдвиг информации в узлах, логические поразрядные операции, проверка условий и т.д.) в логических элементах, узлах и блоках под воздействием функциональных управляющих сигналов блоков (устройств) управления. Элементарные преобразования, неразложимые на более простые, выполняются в течение одного такта сигналов синхронизации и называются микрооперациями.В аппаратных (схемных) устройствах управления каждой операции соответствует свой набор логических схем, вырабатывающих определенные функциональные сигналы для выполнения микроопераций в определенные моменты времени. При этом способе построения устройства управления реализация микроопераций достигается за счет однажды соединенных между собой логических схем, поэтому ЭВМ с аппаратным устройством управления называют ЭВМ с жесткой логикой управления. Это понятие относится к фиксации системы команд в структуре связей ЭВМ и означает практическую невозможность каких-либо изменений в системе команд ЭВМ после ее изготовления.При микропрограммной реализации устройства управления в состав последнего вводится ЗУ, каждый разряд выходного кода которого определяет появление определенного функционального сигнала управления. Поэтому каждой микрооперации ставится в соответствие свой информационный код - микрокоманда. Набор микрокоманд и последовательность их реализации обеспечивают выполнение любой сложной операции. Набор микроопераций называют микропрограммами. Способ управления операциями путем последовательного считывания и интерпретации микрокоманд из ЗУ (наиболее часто в виде микропрограммного ЗУ используют быстродействующие программируемые логические матрицы), а также использования кодов микрокоманд для генерации функциональных управляющих сигналов называют микропрограммным, а микроЭВМ с таким способом управления - микропрограммными или с хранимой (гибкой) логикой управления.К микропрограммам предъявляют требования функциональной полноты и минимальности. Первое требование необходимо для обеспечения возможности разработки микропрограмм любых машинных операций, а второе связано с желанием уменьшить объем используемого оборудования. Учет фактора быстродействия ведет к расширению микропрограмм, поскольку усложнение последних позволяет сократить время выполнения команд программы.Преобразование информации выполняется в универсальном арифметико-логическом блоке микропроцессора. Он обычно строится на основе комбинационных логических схем.Для ускорения выполнения определенных операций вводятся дополнительно специальные операционные узлы (например, циклические сдвигатели). Кроме того, в состав микропроцессорного комплекта (МПК) БИС вводятся специализированные оперативные блоки арифметических расширителей.Операционные возможности микропроцессора можно расширить за счет увеличения числа регистров. Если в регистровом буфере закрепление функций регистров отсутствует, то их можно использовать как для хранения данных, так и для хранения адресов. Подобные регистры микропроцессора называются регистрами общего назначения (РОН). По мере развития технологии реально осуществлено изготовление в микропроцессоре 16, 32 и более регистров.В целом же, принцип микропрограммного управления (ПМУ) включает следующие позиции:1) любая операция, реализуемая устройством, является последовательностью элементарных действий - микроопераций;2) для управления порядком следования микроопераций используются логические условия;3) процесс выполнения операций в устройстве описывается в форме алгоритма, представляемого в терминах микроопераций и логических условий, называемого микропрограммой;4) микропрограмма используется как форма представления функции устройства, на основе которой определяются структура и порядок функционирования устройства во времени.ПМУ обеспечивает гибкость микропроцессорной системы и позволяет осуществлять проблемную ориентацию микро- и миниЭВМ.4. Режимы адресации Для взаимодействия с различными модулями в ЭВМ должны быть средства идентификации ячеек внешней памяти, ячеек внутренней памяти, регистров МП и регистров устройств ввода/вывода. Поэтому каждой из запоминающих ячеек присваивается адрес, т.е. однозначная комбинация бит. Количество бит определяет число идентифицируемых ячеек. Обычно ЭВМ имеет различные адресные пространства памяти и регистров МП, а иногда - отдельные адресные пространства регистров устройств ввода/вывода и внутренней памяти. Кроме того, память хранит как данные, так и команды. Поэтому для ЭВМ разработано множество способов обращения к памяти, называемых режимами адресации.Режим адресации памяти - это процедура или схема преобразования адресной информации об операнде в его исполнительный адрес.Все способы адресации памяти можно разделить на:1) прямой, когда исполнительный адрес берется непосредственно из команды или вычисляется с использованием значения, указанного в команде, и содержимого какого-либо регистра (прямая адресация, регистровая, базовая, индексная и т.д.);2) косвенный, который предполагает, что в команде содержится значение косвенного адреса, т.е. адреса ячейки памяти, в которой находится окончательный исполнительный адрес (косвенная адресация).В каждой микроЭВМ реализованы только некоторые режимы адресации, использование которых, как правило, определяется архитектурой МП.Заключение Число персональных компьютеров как в мире, так и, в частности, в России стремительно растет; рынок ПК - самый перспективный и доходный среди остальных рынков вычислительной техники. В северной Америке и Западной Европе процент семей, имеющих ПК, приближается к 30. Без сомнения, в наши дни каждый должен изучить и понять компьютер не только теоретически, но, что наиболее важно, и практически.Анализ новых решений построения структуры компьютера показывает, что процессор, память, устройства ввода - вывода составляют основу любого компьютера. Рассмотрим наиболее распространенную структурную схему, которая лежит в основе наиболее часто встречающихся моделей компьютеров, в частности персональных.Современный компьютер можно представить в большинстве случаев упрощенной структурной схемой, где выделены центральная и периферийная части. К центральной части относятся процессор и внутренняя память, к периферийной части - устройства ввода-вывода и внешняя память. В основу упрощенной структурной схемы заложены принципы магистральности, модульности, микропрограммирумостью.Не следует надеяться, что развитие вычислительной техники как-то кардинально изменит наше существование. Компьютер не более (но и не менее) чем один из мощных двигателей прогресса (как энергетика, металлургия, химия, машиностроение), который берет на свои "железные плечи" такую важную функцию, как рутину обработки информации. Эта рутина всегда и везде сопровождает самые высокие полеты человеческой мысли. Именно в этой рутине очень часто тонут дерзкие решения, недоступные компьютеру. Поэтому так важно " свалить" на компьютер рутинные операции, чтобы освободить человека для его истинного предназначения-творчества.Будущее микропроцессорной техники связано сегодня с двумя новыми направлениями - нанотехнологиями и квантовыми вычислительными системами. Эти пока еще главным образом теоретические исследования касаются использования в качестве компонентов логических схем молекул и даже субатомных частиц: основой для вычислений должны служить не электрические цепи, как сейчас, а положение отдельных атомов или направление вращения электронов. Если "микроскопические" компьютеры будут созданы, то они обойдут современные машины по многим параметрам.Список используемой литературы 1. Балашов Е.П., Григорьев В.Л., Петров Г.А. Микро- и миниЭВМ. - СПб.: Энергоатомиздат, 2004.2. Еремин Е.А. Популярные лекции об устройстве компьютера. - СПб.: БХВ-Петербург, 2003.3. Ибрагим К.Ф. Устройство и настройка ПК / Пер. с англ. - М.: Бином, 2004..4. Косарев В.П., Сурков Е.М., Бакова И.В. Технические средства систем управления. - М.: Изд-во "Финансы и статистика", 2006.5. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. - М.: ОЛМА-ПРЕСС, 2004.6. Столлингс У. Структурная организация и архитектура компьютерных систем. - М.: Вильямс, 2002.7. Уинн Л. Рош. Библия по модернизации персонального компьютера. - М.: Тивали-Стиль, 2005.8. Фигурнов В.Э. IBM PC для пользователя, 6-е издание, переработанное и дополненное. - M.: ИНФРА-М, 1996.

Базовая структура микропроцессорной системы имеем вид

Задача управления системой возлагается на центральный процессор (ЦП), который связан спамятью и системой ввода-вывода через каналы памяти и ввода-вывода соответственно. ЦП считывает из памяти команды, которые образуют программу и декодирует их. В соответствии с результатом декодирования команд он осуществляет выборку данных из памяти м портов ввода, обрабатывает их и пересылает обратно в память или порты вывода. Существует также возможность ввода-вывода данных из памяти на внешние устройства и обратно, минуя ЦП. Этот механизм называется прямым доступом к памяти (ПДП). Каждая составная часть микропроцессорной системы имеет достаточно сложную внутреннюю структуру.

С точки зрения пользователя при выборе микропроцессора целесообразно располагать некоторыми обобщенными комплексными характеристиками возможностей микропроцессора. Разработчик нуждается в уяснении и понимании лишь тех компонентов микропроцессора, которые явно отражаются в программах и должны быть учтены при разработке схем и программ функционирования системы. Такие характеристики определяются понятием архитектуры микропроцессора.

Архитектура микропроцессора - это его логическая организация, рассматриваемая с точки зрения пользователя; она определяет возможности микропроцессора по аппаратной и программной реализации функций, необходимых для построения микропроцессорной системы. Понятие архитектуры микропроцессора отражает:

Его структуру, т.е. совокупность компонентов, составляющих микропроцессор, и связей между ними; для пользователя достаточно ограничиться регистровой моделью микропроцессора;

Способы представления и форматы данных;

Способы обращения ко всем программно-доступным для пользователя элементам структуры (адресация к регистрам, ячейкам постоянной и оперативной памяти, внешним устройствам);

Набор операций, выполняемых микропроцессором;

Характеристики управляющих слов и сигналов, вырабатываемых микропроцессором и поступающих в него извне;

Реакцию на внешние сигналы (система обработки прерываний и т.п.).

По способу организации пространства памяти микропроцессорной системы различают два основных типа архитектур.

Организация, при которой для хранения программ и данных используется одно пространство памяти, называется фон Неймановской архитектурой (по имени математика, предложившего кодирование программ в формате, соответствующем формату данных). Программы и данные хранятся в едином пространстве, и нет никаких признаков, указывающих на тип информации в ячейке памяти. Преимуществами такой архитектуры являются более простая внутренняя структура микропроцессора и меньшее количество управляющих сигналов.

Организация, при которой память программ CSEG (Code Segment) и память данных DSEG (Data Segment) разделены и имеют свои собственные адресные пространства и способы доступа к ним, называется Гарвардской архитектурой (по имени лаборатории Гарвардского Университета, предложившей ее). Такая архитектура является более сложной и требует дополнительных управляющих сигналов. Однако, она позволяет осуществлять более гибкие манипуляции информации, реализовывать компактно кодируемый набор машинных команд и, в ряде случаев, ускорять работу микропроцессора. Представителями такой архитектуры являются микроконтроллеры семейства MCS-51 фирмы Intel.

В настоящее время выпускаются микропроцессоры со смешанной архитектурой, в которых CSEG и DSEG имеют единое адресное пространство, однако различные механизмы доступа к ним. Конкретным примером являются микропроцессоры семейства 80х86 фирмы Intel.

На физическом уровне микропроцессор взаимодействует с памятью и системой ввода-вывода через единый набор системных шин - внутрисистемную магистраль . Она, в общем случае состоит из:

Шины данных DB (Data Bus), по которой производится обмен данными между ЦП, памятью и системой ВВ;

Шины адреса AB (Address Bus), используемой для передачи адресов ячеек памяти и портов ВВ, к которым осуществляется обращение;

Шины управления CB (Control Bus), по которой передаются управляющие сигналы, реализующие циклы обмена информацией и управляющие работой системы.

Этот же набор шин применяется для организации канала ПДП. Магистраль такого типа носит название демультиплексной или трехшинной с раздельными шинами адреса и данных .

В некоторых микропроцессорах с целью сокращения ширины физической магистрали вводят совмещенную шину адреса-данных AD (Address/Data Bus), по которой передаются как адреса так и данные. Этап передачи адресной информации отделен по времени от этапа передачи данных и стробируется специальным сигналом ALE (Address Latch Enable), который включен в состав CB. Данную магистраль обычно называют мультиплексной или двухшинной с совмещенными шинами адреса и данных .

Физический обмен данными через магистраль выполняется словами или байтами в виде следующих друг за другом обращений к каналу. За один цикл обращения к магистрали между ЦП, памятью и системой ВВ передается одно слово или байт. Существуют несколько типовых циклов обмена. Среди них чтение памяти изапись в память.

Цикл чтения памяти по демультиплексной магистрали.

Цикл записи в память по демультиплексной магистрали.

Цикл чтения из памяти по мультиплексной магистрали.

Цикл записи в память по мультиплексной магистрали.

При изолированном пространстве ВВ добавляются циклы чтения порта ВВ и записи порта ВВ.

Цикл чтения порта ВВ по демультиплексной магистрали

Цикл записи в порт ВВ по демультиплексной магистрали.

В случае архитектуры Гарвардского типа, когда память программ и память данных разделены, вводится также цикл чтения памяти программ .

Цикл чтения памяти программ по демультиплексной магистрали.

В некоторых случаях, когда на магистрали работают устройства, быстродействие которых уступает быстродействию ЦП, длительности стробов RD, WR и т.п. могут оказаться недостаточными для правильного выполнения операции обмена со стороны периферийного модуля. Тогда для организации надежного завершения магистральной операции в состав CB вводят специальный сигнал READY. В каждом цикле обращения к каналу перед окончанием строба RD или WR ЦП проверяет состояние сигнала READY. Если он к этому моменту еще не сброшен, то ЦП продлевает соответствующий строб, вставляя в него т.н. такты ожидания WS (Wait State). Максимальное количество WS может быть ограничено либо не ограничено в зависимости от конкретной модели микропроцессора и режима его работы.

Цикл чтения с циклами ожидания.

В обычном режиме работы на магистрали присутствует единственное активное устройство в лице ЦП, который инициирует все циклы обмена данных на магистрали. Однако возможны случаи, когда на одной и той же магистрали присутствуют несколько активных устройств, которые должны работать с одним и тем же блоком памяти и блоком ВВ. Для того, чтобы другое активное устройство могло передать данные по магистрали, необходимо дезактивировать на это время ЦП. Для этих целей большинство современных микропроцессоров поддерживают т.н. режим “прямого доступа к памяти” (ПДП) . Для осуществления этого режима в CB вводят дополнительные сигналы HOLD и HLDA. При поступлении активного уровня на вход HOLD микропроцессор прерывает выполнение своей программы, переводит выходы всех своих шин в высокоимпедансное состояние и выставляет активный уровень на выходе HLDA, что должно служить сигналом для другого активного устройства о том, что оно может начинать свои циклы обмена на магистрали. Когда это устройство заканчивает свои циклы обмена, оно сбрасывает сигнал HOLD, после чего ЦП переходит в свое обычное состояние и продолжает выполнять программу.

Другим режимом работы ЦП, требующим от него изменения нормального хода выполнения программы является т.н. режим “прерывания”. Практически все современные микропроцессоры имеют один или несколько т.н. входов внешних прерываний INT0, INT1, и т.д., на которые поступают сигналы, свидетельствующие о некоторых событиях в системе, на которые ЦП должен отреагировать определенным образом. При поступлении активного уровня сигнала на один из таких входов микропроцессор прерывает нормальное выполнение программы, запоминает адрес команды, на которой он прервал работу, и переходит к выполнению т.н. “подпрограммы обработки прерывания” (ПОП), записанной в CSEG по определенному адресу. Адрес этой подпрограммы записан в специальной ячейке памяти, называемой “вектором прерывания ”. Каждый отдельный источник прерывания имеет свой собственный вектор прерывания. После выполнения ПОП, по специальной команде, которой должна заканчиваться ПОП, процессор возвращается к выполнению прерванной программы по запомненному адресу. Источники прерываний могут быть как внешними (т.е. поступать на один из входов микросхемы, которые называются “входами запроса прерывания”), так и внутренними (т.е. генерироваться внутри процессора по определенным условиям). Т.к. одновременно могут придти несколько различных запросов прерываний, то существует определенная дисциплина, задающая последовательность обслуживания отдельных прерываний. Эту дисциплину обеспечивает система “приоритетного арбитража прерываний ”, реализованная либо внутри ЦП, либо с помощью специального контроллера. В соответствии с этой системой каждый источник прерывания имеет свой заданный приоритет (постоянный или переменный), определяющий очередность его обслуживания. При одновременном приходе нескольких запросов прерываний вначале обслуживается прерывание с более высоким приоритетом, а затем с более низким. Прерывание с более высоким приоритетом может прервать уже начавшуюся подпрограмму обработки прерывания, имеющего более низкий приоритет, точно так же, как оно прерывает основную программу. При этом образуются т.н. “вложенные прерывания”.

Кроме CSEG и DSEG практически все современные микропроцессоры имеют специально выделенное пространство данных небольшого объема, называемое набором программно-доступных регистров RSEG (Register Sgment). В отличие от CSEG и DSEG регистры RSEG располагаются внутри ЦП в непосредственной близости от его АЛУ, что обеспечивает быстрый физический доступ к информации, хранящейся в них. В них, как правило, хранятся промежуточные результаты вычислений, часто используемые ЦП. Область RSEG может быть полностью изолирована от пространства данных DSEG, может частично пересекаться с ней, и может полностью являться подчастью DSEG. Внутренняя логическая организация RSEG очень разнообразна и играет важную роль при классификации архитектур микропроцессоров.

Регистры микропроцессора функционально неоднородны: одни служат для хранения данных или адресной информации, другие - для управления работой ЦП. В соответствии с этим все регистры можно разделить на регистры данных , указатели и регистры специального назначения . Регистры данных участвуют в арифметических и логических операциях в качестве источников операндов и приемников результата, адресные регистры или указатели используются для вычисления адресов данных и команд, расположенных в основной памяти. Специальные регистры служат для индикации текущего состояния ЦП и управления работой его составных частей. Возможна архитектура, при которой одни и те же регистры используются для хранения как данных, так и адресной информации. Такие регистры называются регистрами общего назначения (РОН). Способы использования того или иного вида регистров определяют конкретные особенности архитектуры микропроцессора.

Среди регистров данных часто выделяют один регистр, называемый аккумулятором A (Accumulator), с которым связывают большинство команд арифметической и логической обработки данных. Это означает, что арифметические и логические команды используют в качестве одного из своих операндов содержимое аккумулятора и сохраняют в нем результат операции. Ссылка на него производится неявно с помощью кода операции. При этом нет необходимости в коде команды выделять специальную область для адресов операнда и результата. Такой тип архитектуры микропроцессора называется аккумуляторным . К недостаткам такой архитектуры можно отнести относительно низкое быстродействие, объясняемое тем, что аккумулятор является ”узким местом”, в которое каждый раз необходимо сначала занести операнд перед выполнением операции. Примером такой архитектуры могут служить микроконтроллеры семейства MCS-51 фирмы Intel.

Другим примером организации регистров данных являются т.н. “рабочие регистры” R0, R1, и т.д. В этом случае операнды и результаты арифметических и логических операций могут храниться не в одном, а в нескольких регистрах, что расширяет возможности по манипуляции данными. В отличие от аккумулятора рабочие регистры адресуются явно в коде команды. Такой тип архитектуры микропроцессора называется регистровым . Примером такой организации могут служить микропроцессоры семейства 80х86 фирмы Intel. В ряде микропроцессоров, предназначенных для работы в реальном масштабе времени, предусмотрены не один, а несколько наборов рабочих регистров. В каждый момент времени доступен лишь один из наборов регистров, выбор которого осуществляется записью соответствующей информации в определенный служебный регистр. Примером таких устройств могут служить микроконтроллеры семейства MCS-48 фирмы Intel.

Архитектура, при которой процессор способен использовать в качестве адресов операндов и результатов операции ячейки основной памяти, называется архитектурой типа “память - память”. При этом исключаются временные затраты на перепись содержимого рабочих регистров при переходе от одной процедуры к другой. Однако при этом теряется быстрый доступ к промежуточным данным, т.к. они хранятся не во внутренних регистрах, а в DSEG. Решением этой проблемы может служить размещение часть DSEG на одном кристалле с ЦП и использование в качестве рабочих областей этого внутреннего сегмента ОЗУ. Примером такой организации могут служить микроконтроллеры семейства MCS-96 фирмы Intel.

Практически во всех современных микропроцессорах выделяют отдельную область памяти под так называемый “стек”, используемый, в общем случае, для передачи параметров процедурам и сохранения адресов возврата из них. Стек может быть расположен внутри микропроцессора или вне его. Он может занимать часть адресного пространства DSEG или RSEG, а может быть расположен и отдельно от них. В последнем случае говорят о т.н. “аппаратном стеке”. Передача функций аккумулятора вершине стека приводит к т.н. “стековой архитектуре”. Стековая организация дает возможность использовать безадресные команды, код которых имеет наименьшую длину. Безадресные команды оперируют данными, находящимися на вершине стека и непосредственно под ней. При выполнении операции исходные операнды извлекаются из стека, а результат передается не вершину стека. Стековая архитектура обладает высокой вычислительной эффективностью. Существует специальный язык высокого уровня FORTH, построенный на основе безадресных команд. Такая архитектура используется в специализированных процессорах высокой производительности и, в частности в RISC-процессорах.

Служебные регистры, расположенные внутри микропроцессора, предназначены для различных функций управления его работой и индикации состояния его составных частей. Их состав и организация зависят от конкретной архитектуры процессора и различаются в каждом конкретном случае. Наиболее часто встречающимися регистрами специальных функций являются “программный счетчик” PC (Program Counter), “указатель стека” SP (Stack Pointer) и “слово состояния программы” PSW (Program Status Word). Программный счетчик PC в каждый конкретный момент времени содержит адрес команды, следующей в CSEG за той, которая в данный момент выполняется. Указатель стека SP хранит текущий адрес вершины стека. Слово состояния программы PSW содержит набор текущих признаков результата выполнения операции. С каждым признаком результата связывается одноразрядная переменная-флажок, соответствующая определенному биту PSW. К типовым флажкам-признакам относятся:

- CF (Carry Flag) - флажок переноса из старшего разряда АЛУ. Равен 1, если в результате выполнения арифметической операции или операции сдвига произошел перенос из старшего разряда результата;

- ZF (Zero Flag) - флажок признака нуля. Равен 1, если результат операции равен 0;

-SF (Sign Flag) - флажок знака результата. Дублирует знаковый разряд результата операции;

- AF (Auxilinary Carry Flag) - флажок дополнительного переноса. Равен 1, если в результате выполнения арифметической операции или операции сдвига произошел перенос из младшей тетрады результата в старшую. Часто используется в двоично-десятичной арифметике;

- OF (Owerfow Flag) - флажок переполнения. Равен 1, если в результате выполнения арифметической операции произошло переполнение разрядной сетки результата;

- PF (Parity Flag) - флажок четности. Равен 1, если число 1 в результате операции нечетно и наоборот.

- IF (Interrupt Flag) - флажок разрешения прерывания. Индицирует, разрешены ли прерывания в системе.

Конкретные флаги используются программой для анализа результата предшествующей команды и принятия решения о дальнейшем ходе выполнения программы. Специальные регистры могут занимать часть адресного пространства DSEG или RSEG, а могут быть расположены и отдельно от них.

Адресные регистры или указатели используются для реализации тех или иных методов адресации операндов, используемых в конкретных командах микропроцессора. Их конкретный набор и функции зависят от того, какие методы адресации реализованы в данной модели микропроцессора.

Под методом адресации понимается метод кодирования адреса операнда или результата операции в коде команды.

В общем случае код команды микропроцессора можно представить в следующем виде

КОП АОП1 АОП2 ... АР

КОП - код операции;

АОП1 - поле адреса первого операнда;

АОП2 - поле адреса второго операнда;

АР - поле адреса результата.

Наличие отдельных полей, кроме КОП, определяется конкретной командой и типом микропроцессора. Информация в полях АОП и АР определяется конкретным методом адресации, используемым в данной команде.

Наиболее распространенными методами адресации, используемыми в современных моделях микропроцессоров являются:

- Регистровая адресация . Операнд находится в регистре. Адрес регистра включен в код операции. Поле адреса в команде отсутствует;

- Прямая адресация . Физический адрес операнда расположен в соответствующем поле адреса.

- Непосредственная адресация . Непосредственное значение операнда расположено в соответствующем поле адреса.

- Косвенная регистровая адресация . Физический адрес операнда расположен в регистре косвенного адреса DP (Data Pointer). Адрес регистра включен в код операции. Поле адреса в команде отсутствует. В качестве DP может выступать РОН или специальный адресный регистр;

- Косвенная автоинкрементная/автодекрементная адресация . Физический адрес операнда расположен в регистре косвенного адреса DP. Адрес регистра включен в код операции. Поле адреса в команде отсутствует. После (либо до) выполнения операции содержимое DP автоматически инкрементируется/декрементируется, чтобы указывать на следующий элемент таблицы.

- Адресация по базе со смещением . Базовый адрес операнда расположен в регистре базы BP (Base Pointer). Адрес регистра включен в код операции. Смещение адреса операнда относительно базового адреса расположено в соответствующем поле адреса. В качестве BP может выступать РОН или специальный адресный регистр;

- Индексная адресация . Базовый адрес операнда расположен в соответствующем поле адреса. Смещение адреса операнда относительно базового адреса расположено в индексном регистре X (Index). В качестве X может выступать РОН или специальный адресный регистр;

- Адресация по базе с индексированием . Базовый адрес операнда расположен в регистре базы BP , смещение адреса операнда относительно базового адреса расположено в индексном регистре X . Адреса регистров включены в код операции. Поле адреса в команде отсутствует; В качестве X и BP могут выступать РОН или специальные адресные регистры;

- Сегментная адресация . Вся память разбита на сегменты определенного объема. Адрес сегмента хранится в сегментном регистре SR (Segment Register), смещение адреса относительно начала сегмента расположено в соответствующем поле адреса либо в индексном регистре X. В качестве X может выступать РОН или специальный адресный регистр;

В зависимости от того, какие методы адресации реализованы в конкретном процессоре, в нем имеются те или иные адресные регистры. Более сложные методы адресации требуют большего времени для вычисления адреса операнда. Одно из современных направлений развития архитектуры микропроцессоров основано на том, чтобы путем сокращения числа возможных команд и методов адресации добиться того, чтобы любая команда выполнялась за один машинный цикл. Такие процессоры называются RISC-процессорами (Reduced Instruction Set Computer). Конкретным примером такого устройства может служить микропроцессор PowerPC фирмы Motorola.

В составе системы ВВ также можно выделить ряд функционально законченных устройств, которые оформляются в виде модулей подключаемых непосредственно к единой магистрали системы. В простейшем случае это адресуемые ЦП буферные регистры -порты ВВ . Более сложные программно-управляемые подсистемы ВВ, содержащие блоки портов, получили название периферийных адаптеров . В случае, когда средства ВВ предназначаются для управления специальным внешним оборудованием и реализации специальных функций ВВ, их называют периферийными контроллерами . Наиболее сложными из современных средств обмена с внешними устройствами ВВ считают сопроцессоры ВВ , которые работают по собственным программам, хранящимся в собственной памяти, и по сути дела представляют собой отдельные микропроцессорные системы. Примером такой системы может служить векторный сопроцессор ADMC-200 фирмы Analog Devices, предназначенный для сопряжения микропроцессорной системы с вентильным преобразователем, управляющим приводом переменного тока. Он включает в себя несколько каналов АЦП, многоканальный ШИМ и вычислительный блок, реализующий векторные преобразования Парка-Кларка, необходимые для осуществления алгоритма векторного управления синхронным и асинхронным двигателем переменного тока. Однако, независимо от сложности конкретной подсистемы ВВ, со стороны ЦП все они представляются тем или иным набором адресуемых регистров, который, как правило, является частью DSEG.

Разрядностью микропроцессорной системы принято считать количество бит информации, которое ее ЦП может обработать с помощью одной команды. Разрядность микропроцессора определяется разрядностью его АЛУ, внутренних регистров данных и внешней шины данных. На сегодняшний день существуют 8-, 16-, 32- и 64-разрядные микропроцессоры. Для того, чтобы обрабатывать информацию с разрядностью большей, чем разрядность микропроцессора необходимо реализовывать специальные алгоритмы вычислений с повышенной разрядностью. Эти алгоритмы требуют дополнительного времени для своего выполнения. Поэтому повышение разрядности микропроцессора при заданной разрядности вычислений, напрямую связано с увеличением быстродействия системы.

В зависимости от того, в каком формате процессор способен воспринимать и обрабатывать данные, различают микропроцессоры с фиксированной точкой и микропроцессоры с плавающей точкой. При заданной точности вычислений и разрядности, диапазон чисел, представимых в формате с плавающей точкой значительно превышает диапазон чисел в формате с фиксированной точкой. Поэтому вычисления с плавающей точкой используются для обеспечения повышенной точности результата. Реализация подобных алгоритмов на процессорах с фиксированной точкой влечет за собой большое время вычислений и, следовательно, снижение быстродействия системы. Процессоры с плавающей точкой способны выполнять арифметические операции над числами с плавающей точкой с помощью одной команды. Поэтому они выполняют подобные вычисления значительно быстрее, чем процессоры с фиксированной точкой.

Существуют микропроцессоры, архитектура которых адаптирована для выполнения вычислений определенного рода. К числу таких процессоров относятся т.н. “процессоры цифровой обработки сигналов ” DSP (Digital Signal Procesor). Их архитектура имеет особенности, позволяющие им с наибольшей производительностью осуществлять алгоритмы рекуррентной обработки данных, которые используются во многих задачах, требующих их выполнения в масштабе “реального времени”, таких как аудио- и видео-кодирование, регулирование, цифровая фильтрация, цифровая связь и т.п. Все эти процессоры построены, как правило по Гарвардской архитектуре. Современные DSP имеют отдельные шины адреса/данных для CSEG и DSEG, что позволяет им с помощью одной команды осуществить доступ к различным видам памяти и произвести несколько операций над данными. Основной особенностью DSP является то, что кроме обыкновенного АЛУ, которое присутствует во всех процессорах, они имеют еще несколько вычислительных устройств. К числу таких устройств в первую очередь относится т.н. “умножитель-аккумулятор” MAU (Multiple-Accumulator Unit), способный с помощью одной команды умножить два многоразрядных числа и сложить результат удвоенной разрядности с результатом предыдущей команды. Подобная операция “умножения-сложения” используется во всех рекуррентных алгоритмах. Наличие MAU в сочетании с вышеуказанными особенностями организации шин процессора позволяет DSP за одну команду полностью выполнить один шаг рекуррентного алгоритма и подготовить исходные данные для следующего шага. Другим дополнительным вычислительным устройством является “многоразрядный регистр сдвига” S (Shifter), способный выполнять операции сдвига над числами, разрядность которых превышает разрядность АЛУ. Совместная работа этих вычислительных устройств позволяет достичь на выполнении рекуррентных алгоритмов вычислительной производительности, несравнимой с любыми другими процессорами. Примерами современных DSP могут служить:

Семейство ADSP-21XX фирмы Analog Devices - 16-разрядные DSP с фиксированной точкой, производительность до 30 MIPS;

Семейство TMS320C3X фирмы Texas Instruments - 32-разрядные DSP с плавающей точкой, производительность до 30 MIPS, 60 MFLOPS.

    • TMS320C240 фирмы Texas Instruments - 16-разрядный DSP с фиксированной точкой, адаптированный для задач управления приводом, производительность до 20 MIPS, 12-канальный встроенный ШИМ, два 8-канальных 10-разрядных АЦП.