Частотная и фазовая модуляции гармонической несущей. Индекс частотной модуляции

Балансная и однополосная модуляции

Для более эффективного использования мощности спектра AM сигнала возможно исключение из спектра AM сигнала несущего колебания. Такой АМ сигнал называют балансно-модулированным (БМ). Также из спектра можно исключить одну боковую полосу час­тот (верхнюю или нижнюю), поскольку каждая из них содержит полную информацию о модулирующем сигнале .При этом получается однополосную модуляцию(ОМ), т.е. модуляцию с одной боковой полосой - ОБП.

ЧАСТОТНАЯ МОДУЛЯЦИЯ

Угловая модуляция

Воздействие модулирующего сигнала на аргумент (текущую фазу) гармонической несущей , называется угловой модуляцией (УМ). Разновидностями УМ являются частотная и фазовая.

19.2 Частотная модуляция

Частотная модуляция (ЧМ) - процесс управления частотой гармонической несущей по закону модулирующего сигнала.

Угловая частота изменяется по закону:

где - частота несущей;

Отклонение частоты модулированного сигнала от значения ;

Модулирующий сигнал. Может быть гармоническим (используется для учебных или исследовательских целей) и негармоническим (реальный сигнал);

Размерный коэффициент пропорциональности, рад/(с∙В) или рад/(с∙А). Определяется схемотехникой модулятора.

Полная фаза в момент времени t находится путем интегрирования частоты:

где - набег фазы за время от начала отсчета до рассматриваемого момента ;

Постоянная интегрирования.

Математическая модель ЧМ сигнала:

ЧМ называют интегральным видом модуляции, т.к. входит в это выражение под знаком интеграла.

Рисунок 19.1 – Временные диаграммы модулирующего, несущего и

модулированного колебаний.

Гармоническая ЧМ

Рассмотрим гармоническую ЧМ (модулирующий сигнал является гармоническим ).

Частота изменяется по закону:

где - девиация частоты при ЧМ. Девиация частоты – наибольшее отклонение частоты модулированного сигнала от значения частоты несущей. При ЧМ может принимать значения от единиц герц до сотен мегагерц.

Фаза в момент времени :

где - индекс частотной модуляции. Является девиацией фазы при ЧМ. Девиация фазы - наибольшее отклонение фазы модулированного сигнала от линейной .

Математическая модель сигнала при гармонической ЧМ:

Воспользовавшись тригонометрической формулой: , - преобразуем выражение:

Проведем анализ отдельно для малых и больших индексов модуляции.

В первом случае () имеют место приближенные равенства:

Воспользовавшись тригонометрической формулой: , -

приходим к следующему выражению для ЧМ сигнала:

Рисунок 19.2 – Спектральная диаграмма ЧМ сигнала при М ЧМ <1.

При малом индексе модуляции – узкополосной ЧМ – амплитудная спектральная диаграмма ЧМ сигнала совпадает по составу (содержит центральную составляющую с частотой несущей , нижнюю и верхнюю боковые составляющие с частотами и ) и ширине полосы частот () с АМ сигналом. Отличие заключается в фазовой спектральной диаграмме: фаза нижней боковой составляющей сдвинута на 180 0 .

При малом значении индекса модуляции не будут проявляться преимущества ЧМ (высокая помехозащищенность). Ширина спектра такая же, как и при АМ.

Во втором случае () сложные периодические функции: и - можно разложить в ряд Фурье, а ЧМ сигнал представить в виде суммы гармонических колебаний:

где - функция Бесселя 1-го рода n-го порядка от вещественного аргумента . Табулированы;

n – номер гармонической составляющей: центральная составляющая имеет n=0, боковые – n=1, 2, 3, … .

Рисунок 19.3 – Спектр ЧМ сигнала при М ЧМ =2.

При большом индексе модуляции – широкополосной ЧМ – спектр ЧМ сигнала состоит из бесконечного числа гармоник: из составляющей с частотой несущей , нижней и верхней боковых полос частот, образованных группами составляющих с частотами и . На практике учитывают только те боковые составляющие, амплитуды которых не меньше 5% амплитуды несущей, т.е. для которых . Тогда ширина спектра ЧМ сигнала: .

Данный случай представляет основной практический интерес, поскольку при больших индексах модуляции помехоустойчивость передачи сигнала существенно выше, чем при АМ. Ширина спектра ЧМ сигнала также значительно больше, чем при АМ.

При сложном модулирующем сигнале спектр модулированного сигнала оказывается сложным, содержащим различные комбинационные частоты. Общая полоса частот, занимаемая таким сигналом: , где - максимальная частота спектра модулирующего сигнала; - индекс модуляции на этой частоте.

ФАЗОВАЯ МОДУЛЯЦИЯ

Фазовая модуляция

Фазовая модуляция (ФМ) – изменение фазы гармонической несущей по закону модулирующего сигнала.

Мгновенная фаза ФМ сигнала определяется выражением:

где - отклонение (сдвиг) фазы модулированного сигнала от линейно-изменяющейся фазы гармонической несущей ;

Размерный коэффициент пропорциональности, рад/В или рад/А.

Математическая модель ФМ сигнала:

Угловая частота – это скорость изменения (т.е. производная по времени) полной фазы колебания. Выражение для мгновенной частоты:

Таким образом, ФМ сигнал с модулирующим сигналом можно рассматривать как ЧМ сигнал с модулирующим сигналом .

Рисунок 20.1 – Модулирующий сигнал, несущее колебание, изменение фазы ФМ сигнала, изменение частоты ФМ сигнала и ФМ сигнал.

Гармоническая ФМ

Рассмотрим случай гармонического модулирующего сигнала:

Фаза сигнала с гармонической ФМ:

где - индекс фазовой модуляции или девиация фазы при ФМ. Может принимать значение от единиц до десятков тысяч радиан.

Математическая модель сигнала с гармонической ФМ:

Частота ФМ сигнала:

где - девиация частоты при ФМ.

Методология вычисления и структура спектра ФМ сигнала аналогичны ЧМ сигналу, но индекс частотной модуляции необходимо заменить индексом фазовой модуляции. Аналогичная тесная связь между спектрами ФМ и ЧМ сигналов имеет место и при негармонических модулирующих сигналах.

ФМ применяется в схемах косвенного метода получения ЧМ.

МАНИПУЛЯЦИЯ

Виды манипуляции

дискретная модуляция (манипуляция) - модуляция гармонического несущего колебания дискретным (цифровым) модулирующим сигналом. При этом модулируемые (информационные) параметры переносчика изменяются скачкообразно. Устройство, реализующее процесс манипуляции, называют манипулятором.



Дискретным модулирующим сигналом является первичный сигнал, отображающий символы кодовых комбинаций дискретных сообщений. Примеры дискретных первичных сигналов: телеграфный, передачи данных, ИКМ.

Различают следующие виды манипуляции:

В зависимости от изменяемых параметров переносчика:

Амплитудную (АМн; английский термин – amplitude shift keying, ASK),

Частотную (ЧМн; английский термин – frequency shift keying, FSK),

Фазовую (ФМн; английский термин – phase shift keying, PSK),

Амплитудно-фазовую (АФМн; английский термин – APK/PSK, или amplitude phase keying, APK).

При АМн каждому возможному значению передаваемого символа ставится в соответствие своя амплитуда гармонического несущего колебания, при ЧМн – частота, при ФМн – фаза, а при АФМн – комбинация амплитуды и начальной фазы;

В зависимости от используемых кодов:

Многопозиционную или -арную (по-английски – m-ary),

Двоичную (по-английски – binary).

Многопозиционная манипуляция используется для повышения скорости передачи информации при одной и той же скорости модуляции. - основание многопозиционного кода – число различных его символов. На практике обычно является ненулевой степенью двойки: , где - число двоичных цифр (битов), представляющих символы многопозиционного кода. Двоичная манипуляция ( , ) является частным случаем многопозиционной. Как правило, в системах передачи дискретных сообщений используются двоичные коды.

Двоичная АМн

При двоичном коде первичный сигнал принимает два значения, соответствующие кодовым символам 0 и 1:

- (-U m и, U m и) – двухполярный сигнал;

- (0, U m и) – однополярный сигнал.

При двоичной АМн (BASK) символу 1 соответствует отрезок гармонического несущего колебания (посылка), символу 0 – отсутствие колебания (пауза), поэтому часто АМн называют манипуляцией с пассивной паузой.

Примем в качестве модулирующего меандровый сигнал – сигнал, отображающий последовательность битов повторяющегося двоичного кода 1010.

Рисунок 21.1 – Временные диаграммы модулирующего и АМн сигналов.

АМн можно рассматривать как модуляцию сигналом со спектром, богатым гармониками: спектр меандрового сигнала содержит бесконечное количество нечетных гармоник. Спектр АМн сигнала содержит составляющую с частотой несущей и две боковые полосы, каждая из которых повторяет спектр первичного сигнала.

Рисунок 21.2 – Спектральные диаграммы модулирующего и АМн сигналов.

Теоретически спектр сигнала при АМн бесконечен. На практике бесконечный спектр ограничивается полосой пропускания фильтра. Соотношение для расчета ширины спектра АМн сигнала:

где - символьная скорость или скорость модуляции, Бод – число символов кода, передаваемых за единицу времени (1 с);

Символьный (тактовый) интервал – интервал времени, отведенный для передачи одного символа.

АМн была изобретена в начале 20 столетия для беспроводной телеграфии. В настоящее время АМн в системах цифровой связи уже не используется.

Двоичная ЧМн

При двоичной ЧМн (BFSK) символу 1 соответствует отрезок гармонического колебания с частотой , а символу 0 – с частотой , где - девиация частоты – изменение частоты при передаче 1 (0) относительно ее среднего значения . При ЧМн нет пассивной паузы, по этой причине ее называют манипуляцией с активной паузой.

Возможно два случая ЧМн: с разрывом фазы и без разрыва фазы (continuous-phase FSK – CPFSK).

При ЧМн с разрывом фазы назначение каждому двоичному символу своей частоты является произвольным. Полученный сигнал содержит скачки фазы.

t
t
Рисунок 21.3 – Временные сигналов: модулирующего и ЧМн с разрывом фазы.

Наличие разрывов фазы приводит к «размытию» спектра сигнала. Это снижает помехоустойчивость приема и создает помехи другим системам связи. Поэтому при выборе частот следует обеспечить условие плавного (без скачка фазы) перехода от сигнала с частотой к сигналу с частотой :

При двоичной ФМн (BPSK) передаче 1 соответствует отрезок гармонического колебания, совпадающего по фазе с несущей, а передаче 0 - отличающегося по фазе на 180°, т.е. фаза меняется на 180° при каждом переходе от 1 к 0 и наоборот.

t
Рисунок 21.6 – Временная диаграмма модулирующего и ФМн сигналов.

ФМн сигнал можно представить в виде суммы двух АМн сигналов, для получения первого из которых используется несущая , а второго - . Спектр амплитуд ФМн сигнала содержит те же составляющие, что и спектр АМн сигнала, кроме составляющей с частотой несущей (она исчезает, когда символы 1 и 0 появляются с равной вероятностью). Амплитуды боковых составляющих примерно в два раза больше. При передаче реальных кодовых слов амплитуда составляющей с частотой несущей не равна нулю, но будет значительно ослаблена.

Рисунок 21.6 – Спектр ФМн сигнала.

При ОФМн символ 0 передается отрезком гармонического колебания с начальной фазой предшествующего элемента сигнала, а символ 1 – таким же отрезком с начальной фазой, отличающейся от начальной фазы предшествующего элемента на 180° (фаза изменяется при передаче символов 1), или наоборот (фаза изменяется при передаче символов 0). При ОФМн передача начинается с посылки одного не несущего информации элемента, который служит опорным сигналом для сравнения фазы последующего элемента.

Рисунок 21.7 – Временная диаграмма модулирующего и ОФМн сигнала.

Спектр ОФМн сигнала подобен спектру ФМн сигнала.

ФМн сигнал имеет такую же полосу частот, как АМн сигнал:

.

ФМн была разработана в начале развития программы исследования дальнего космоса и сейчас широко используется в коммерческих и военных системах связи.

Анализ характеристик сигналов с угловой модуляцией мы начнём с рассмотрения однотональной частотной модуляции. Управляющий сигнал в этом случае представляет собой колебание единичной амплитуды (к этому виду всегда можно привести )

, (4.29)

а модулируемым параметром несущего колебания является мгновенная частота. Тогда, подставляя (4.29) в (4.24), получим:

Выполнив операцию интегрирования, приходим к следующему выражению сигнала однотональной частотной модуляции

Отношение

называется индексом частотной модуляции и имеет физический смысл части девиации частоты , приходящуюся на единицу частоты модулирующего сигнала. Так например, если девиация частоты несущего колебания МГц составляет , а частота управляющего сигнала кГц, то индекс частотной модуляции составит . В выражении (4.30) начальная фаза не учитывается как не имеющая принципиального значения.

Временная диаграмма сигнала при однотональной ЧМ представлена на рис. 4.7

Рассмотрение спектральных характеристик ЧМ-сигнала начнём с частного случая малого индекса частотной модуляции . Воспользовавшись соотношением

представим (4.30) в виде

Поскольку , то можно воспользоваться приближёнными представлениями

и выражение (4.31) приобретает вид

Воспользовавшись известным тригонометрическим соотношением

и полагая и , получим:

Это выражение напоминает выражение (4.6) для однотонального АМ – сигнала. Отличие состоит в том, что, если в однотональном АМ – сигнале начальные фазы боковых составляющих одинаковы , то в однотональном ЧМ сигнале при малых индексах частотной модуляции они отличаются на угол , т.е. находятся в противофазе.

Спектральная диаграмма такого сигнала показана на рис. 4.8

В скобках указаны значения начальной фазы боковых составляющих. Очевидно, ширина спектра ЧМ – сигнала при малых индексах частотной модуляции равна

.

Сигналы с частотной модуляцией с малым в практической радиотехнике применяются достаточно редко.

В реальных радиотехнических системах индекс частотной модуляции существенно превышает единицу.

Так например, в современных аналоговых системах мобильной связи, использующих для передачи речевых сообщений сигналы частотной модуляции при верхней частоте речевого сигнала кГц и девиации частоты кГц, индекс , как нетрудно убедиться, достигает значения ~3-4. В системах же радиовещания метрового диапазона индекс частотной модуляции может превышать значения, равного 10. Поэтому рассмотрим спектральные характеристики ЧМ сигналов при произвольных значениях величины .

Возвратимся к выражению (4.32). Известны следующие виды разложения

где – фунция Бесселя первого рода -го порядка.

Подставляя эти выражения в (4.32), после несложных, но довольно громоздких преобразований с использованием уже неоднократно упомянутых выше соотношений произведений косинусов и синусов, получим

(4.36)

где .

Полученное выражение представляет собой разложение однотонального ЧМ – сигнала на гармонические составляющие, т.е. амплитудный спектр. Первое слагаемое этого выражения является спектральной составляющей колебания несущей частоты с амплитудой . Первая сумма выражения (4.35) характеризует боковые составляющие с амплитудами и частотами , т.е. нижнюю боковую полосу, а вторая сумма – боковые составляющие с амплитудами и частотами , т.е. верхнюю боковую полосу спектра.

Спектральная диаграмма ЧМ – сигнала при произвольном представлена на рис. 4.9.

Проанализируем характер амплитудного спектра ЧМ – сигнала. В первую очередь отметим, что спектр является симметричным относительно частоты несущего колебания и теоретически является бесконечным.

Составляющие боковых боковых полос расположены на расстоянии Ω друг от друга, а их амплитуды зависят от индекса частотной модуляции. И наконец, у спектральных составляющих нижней и верхней боковых частот с чётными индексами начальные фазы совпадают, а у спектральных составляющих с нечётными индексами отличаются на угол .

В таблице 4.1 приведены значения функции Бесселя для различных i и . Обратим внимание на составляющую несущего колебания . Амплитуда этой составляющей равна . Из таблицы 4.1 следует, что при амплитуда , т.е. спектральная составляющая несущего колебания в спектре ЧМ – сигнала отсутствует. Но это не означает отсутствия несущего колебания в ЧМ – сигнале (4.30). Просто энергия несущего колебания перераспределяется между составляющими боковых полос.

Таблица 4.1

Как уже подчёркивалось выше спектр ЧМ – сигнала теоретически является бесконечным. На практике же полоса пропускания радиотехнических устройств всегда ограничена. Оценим практическую ширину спектра, при котором воспроизведение ЧМ – сигнала можно считать неискажённым.

Средняя мощность ЧМ – сигнала определяется как сумма средних мощностей спектральных составляющих

Проведённые расчёты показали, что около 99% энергии ЧМ – сигнала сосредоточено в частотных составляющих с номерами . А это означает, что частотными составляющими с номерами можно пренебречь. Тогда практическая ширина спектра при однотональной ЧМ с учётом его симметрии относительно

а при больших значения

Т.е. равна удвоенной девиации частоты.

Таким образом, ширина спектра ЧМ – сигнала приблизительно в раз больше ширины спектра АМ – сигнала. Вместе с тем, для передачи информации используется вся энергия сигнала. В этом состоит преимущества сигналов частотной модуляции над сигналами амплитудной модуляции.

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами.В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная - ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где U H - амплитуда несущей в отсутствие модуляции; ω 0 - угловая частота; φ 0 - начальная фаза; ψ(t) = ω 0 + φ 0 - полная (текущая или мгновенная) фаза несущей; k А - безразмерный коэффициент пропорциональности; e(t) - модулирующий сигнал. U H (t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал - гармоническое колебание (4)

где Е 0 - амплитуда; Ω = 2π/Т 1 = 2πF - угловая частота модуляции; F -

циклическая частота модуляции; Т 1 - период модуляции; θ 0 - начальная фаза.

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = k A E 0 - максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей U H и проведя несложные выкладки, получим (6)

Коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала . Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7)

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой U H и частотой с ω 0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и отражающие передаваемый сигнал. Колебания с частотами ω 0 + Ω и ω 0 - Ω называются соответственно верхней (upper sideband - USB) и нижней (lower sideband - LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала E i произвольны, а их частоты образуют упорядоченный спектр Ω 1 < Ω 2 < ...< Ω i < ...< Ω N . В отличие от ряда Фурье частоты Ω i не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции.Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а - модулирующего сигнала; б - АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала Ω N , т. е. (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь k Ч - размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

Рис. 3. Частотная однотональная модуляция:

а - несущее колебание; б - модулирующий сигнал; в - ЧМ-сигнал

Максимальное отклонение частоты от значения ω 0 , или девиация частоты (frequency deviation) при частотной модуляции;

Максимальное отклонение от текущей фазы ω 0 t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ 0 = 0 и φ 0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω 0 + Ω) и (ω 0 - Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m > 1 . Из математики известно (20) (21)

где J n (m) - функция Бесселя 1 -го рода n-го порядка.

В
теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω 0 + nΩ. и ω 0 -nΩ, расположенными попарно и симметрично относительно несущей частоты ω 0 .

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω 0 + nΩ. и ω 0 -nΩ совпадают, если m - четное число, и отличаются на 180°, если m - нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.

Как известно, источником электромагнитного поля является переменный электрический ток, текущий по проводнику. А устройство, создающее электромагнитное поле в пространстве, представляет собой генератор переменного тока, соединенный с антенной. Антенна излучает электромагнитные волны в окружающее пространство. Такое устройство принято называть радиопередающим.
Мы знаем, что в окружающем нас пространстве имеются электромагнитные волны, излучаемые этими устройствами, знаем частоту передачи, знаем, что волны несут для нас информацию. Поэтому нам важно получить техническое средство, с помощью которого мы сможем преобразовать информацию, содержащуюся в электромагнитной волне, к такому виду, который возможен для восприятия нашими органами чувств. В данном случае мы хотим преобразовать ее в звуковые колебания. Так вот, устройство, перехватывающее электромагнитную волну и преобразующее ее в удобный для восприятия вид, называется радиоприемным устройством.
Вопрос второй. Каким образом «насытить» электромагнитную волну необходимой информацией? Самый простой способ — поступить по принципу: есть волна — нет волны. Первые радиопередающие и радиоприемные устройства были спроектированы именно по такому принципу, а для передачи информации приняли азбуку Морзе. К слову сказать, столь примитивный способ передачи информации оказался настолько надежным и помехоустойчивым, что его используют до сих пор, называя «телеграфным» способом.
В начале XX века телеграфная радиосвязь изумила многих, но в дальнейшем, когда к ней привыкли, появилось желание передавать не только точки-тире, но еще и голос. Задача оказалась не слишком простой — ведь диапазон частот, слышимый человеческим ухом, лежит в низкочастотной области, а именно от 16 Гц до 10 кГц. В то же время для получения эффективного излучения электромагнитной энергии необходимы высокочастотные колебания. Как же быть?
Задачу решили наложением низкочастотного сигнала на высокочастотные колебания, а сам процесс наложения назвали модуляцией. Математически процесс модуляции иллюстрируется очень просто. К примеру, периодическое электрическое колебание можно записать так:

где U m -амплитуда колебания

ω 0 - частота колебания

φ 0 - фаза колебания

Процесс модуляции представляет собой изменения одного из параметров колебания высокой частоты по закону управляющего низкочастотного сигнала. В зависимости от того, какой параметр (амплитуда, частота, фаза) подвергается изменению, различают амплитудную, частотную и фазовую модуляции.
Колебания высокой частоты, используемые для передачи сигналов, носят название несущей частоты.
Исторически первой появилась амплитудная модуляция. Она до сих пор используется на радиовещательных диапазонах длинных, средних и коротких волн несмотря на то, что обладает низкой помехозащищенностью и крайне неэффективна. Причин тому несколько. Во-первых, коротковолновый диапазон — это единственный диапазон, в котором сравнительно просто обеспечивается радиовещание по всему миру. Для коротких волн не нужны ретрансляторы — они сами достигают нужных точек за счет отражения. Во-вторых, конструктивные особенности радиоприемников, имеющихся в эксплуатации, не позволяют перейти на более эффективные способы радиовещания.
Давайте кратко рассмотрим особенности амплитудной модуляции. Для простоты будем считать, что управляющим сигналом служит гармоническое (синусоидальное) колебание. Выражение для амплитудно-модулированной несущей запишется следующим образом:

где Ω- частота управляющего сигнала

Кривая, соединяющая точки, соответствующие амплитудным значениям несущей, называется огибающей. Базовый параметр, характеризующий AM колебание, — это коэффициент модуляции. В других источниках может встретиться понятие глубины модуляции, что по сути одно и то же.


Коэффициент модуляции не должен быть слишком маленьким, в противном случае мы не сможем различить полезную информацию на фоне несущей. Однако, если его значение будет больше 1, это вызовет перемодуляцию и, как следствие, искажение информации. Поэтому стандартное значение m в радиовещательной технике равно 0,3. В этом случае при наиболее громких звуках не наступает перемодуляция.
Здесь уместно рассказать о таком понятии, как спектр радиосигнала. Уже знакомая нам гармоническая функция изображается синусоидой во временной области, то есть в такой, где по горизонтальной оси графика откладывается время. Но существует еще одна широко используемая область — частотная, в которой гармоническое колебание выглядит так, как показано на рисунке, то есть вертикальной черточкой. Обратите внимание: по горизонтальной оси откладывается уже не время, а частота.

Важно отметить, что спектр периодического, но несинусоидального колебания представляет собой набор синусоидальных «дискрет», вертикальных черточек.

Французским математиком Ж. Фурье (1768—1830) было доказано, что любой несинусоидальный сигнал можно по определенному правилу составить из суммы гармонических функций. Как показала практика, производить расчеты в частотной области намного проще и нагляднее, чем заниматься тем же делом в области временной. Таким образом, анализ Фурье занял в радиотехнике одно из ведущих мест.
Следует также сказать, что непериодические сигналы, к которым относится речь человека и музыка, тоже подчиняются анализу Фурье, только их спектр уже не дискретный, а сплошной, что и отражено на рисунке.


Амплитудно-модулированное колебание это периодический сигнал, который уже не имеет гармонического характера. Спектральный состав AM сигнала легко оценить, если преобразовать его аналитическое выражение с помощью известной формулы произведения синусов. В результате получим

Хорошо видно, что спектр AM колебания содержит, кроме несущей, две боковые частоты: (ω 0 - Ω) и (ω 0 + Ω) .
Для передачи разборчивой речи необходимо, чтобы передатчик имел возможность модулировать несущую на любой из частот, лежащих в полосе от 250 Гц (Ω H) до 3 кГц (Ω В) . Спектр AM колебания в этом случае будет иметь, кроме несущей, две зеркально-симметричные боковые полосы, в точности повторяющие форму спектра низкочастотного сигнала.

В заключение краткого рассказа об AM сигналах предлагаю оценить эффективность такого вида радиовещания с точки зрения использования мощности передатчика. Действительно, как уже было сказано, коэффициент модуляции в стандартных условиях радиовещания не превосходит 0,3. Амплитуда каждой из боковых полос составляет m /2, то есть 0,15 амплитуды несущей. Мощность, квадратично зависящая от амплитуды сигнала, в данном случае составляет 0,0225 от мощности несущей. Представьте себе: менее 5% сигнала несет полезную информацию, которая содержится в боковых полосах и более нигде! Осознали этот факт достаточно поздно, когда радиовещание на основе классической AM модуляции стало стандартом.
Поиски более удачных, более эффективных и более помехозащищенных способов радиовещания привели к тому, что в 1935 году была предложена система с угловой модуляцией. Угловая модуляция — это модуляция посредством частоты несущей или ее фазы при постоянстве амплитуды. Данный вид модуляции лежит в основе радиовещания на УКВ. В начале рассказ о фазовой модуляции (ФМ). Предположим, что модуляцию несущей осуществляет гармоническое колебание. Тогда закон изменения фазы несущей

Где φ о — начальная фаза колебания.

Подставляя выражение для фазы в аналитическое выражение несущей, получаем

Важно заметить, что величина ΔφsinΩt характеризует опережение (отставание) по фазе модулированного сигнала от фазы, которую имел бы немодулированный сигнал.


Мгновенное значение фазового угла модулированного ФМ колебания определяется из выражения

Угловая частота колебания является производной фазового угла по времени:

Где ΔφΩ = Δω — амплитуда отклонения частоты ω от частоты Θ .

Физический смысл полученного соотношения таков: меняя фазу колебания, мы неизбежно меняем и его частоту, причем величина отклонения частоты зависит как от амплитуды модулирующего сигнала, так и от его частоты. Величина максимального фазового отклонения весьма просто связана с максимальным частотным отклонением — девиацией:

Где Δω — девиация частоты; β — индекс модуляции
На практике девиацию обычно выражают не в рад/с, а в Гц, что в 2π раз меньше.

Теперь настало время рассмотреть частотную модуляцию (ЧМ) при воздействии синусоидального управляющего сигнала. Обозначим амплитуду отклонения частоты через Δω :

После преобразований получим аналитическое выражение ЧМ
колебания:

Обозначим:

Хорошо видно, что при изменении частоты несущей меняется и ее фаза. Более того, мы пришли к выражению, которое было выведено в рассказе об ФМ. Может сложиться впечатление, что ЧМ и ФМ одно и то же. Действительно, рассматривая частный случай (модулирование синусоидальным сигналом), мы получим идентичные спектры и не заметим разницы. Однако разница проявится, как только управляющий сигнал перестанет быть гармоническим. Причина в индексе модуляции и его зависимости от входного воздействия.

Нетрудно заметить, что ФМ обеспечивает постоянный индекс модуляции при любой модулирующей частоте. Для ЧМ индекс модуляции понятие менее определенное, поскольку он меняется с изменением модулирующей частоты. Отсюда можно сделать заключение, что спектры колебаний ЧМ и ФМ вида будут несколько отличаться друг от друга. Но как быть с индексом модуляции для ЧМ, как определить его? В радиотехнике принято оценивать индекс модуляции для максимальной модулирующей частоты. Для более низких частот индекс модуляции становится больше.
Осталось оценить вид и ширину спектра сигнала с угловой модуляцией. При небольших индексах модуляции (β < 0,5 ) выражение для модулированного ЧМ и ФМ сигнала может быть приведено к виду:

He правда ли, знакомое выражение? Давайте взглянем на такое же точно выражение для AM сигнала, чтобы убедиться — память нас не подвела. При малых фазовых отклонениях амплитудные спектры АМ, ФМ и ЧМ сигналов идентичны. Различие наблюдается лишь в фазовых спектрах, но это более тонкий анализ, и мы не будем на нем заострять внимание.
Если индекс модуляции таков, что уже более нельзя пользоваться простыми соотношениями, на помощь приходит анализ Бесселя, позволяющий представить сигнал с угловой модуляцией более наглядно:

Видно, что в спектре сигнала появляются боковые частоты с индексами «к». При возрастании β амплитуды боковых частот высших порядков начинают быстро расти, а амплитуда несущей — уменьшаться. Возможен даже такой вариант, когда амплитуда несущей и боковых полос первого порядка станут равными нулю!
Угловая модуляция, при которой наблюдается заметное появление боковых полос высших порядков, называется широкополосной.

Точно определить ее спектр при воздействии непериодического сигнала - задача намного более трудоемкая, чем такая же задача исследования АМ. Приближенно считают, что ширина спектра радиовещательного широкополосного ЧМ сигнала

Где В - ширина спектра модулированного сигнала

Ω в - верхняя модулирующая частота сигнала.

Можно также определить ширину спектра и через девиацию частоты

Итак, чтобы принять радиопередачу без заметных на слух частотных искажений, необходимо учитывать наличие не только боковых полос первого порядка, но еще и полос высших порядков.

В то время как амплитудная модуляция изменяет огибающую сигнала в «вертикальной плоскости», частотная модуляция (ЧМ) происходит в «горизонтальной плоскости» сигнала. Амплитуда несущей поддерживается постоянной, а частота изменяется пропорционально амплитуде модулирующего сигнала.

Девиация частоты

Максимальная величина, на которую частота несущей возрастает или убывает под воздействием амплитуды модулирующего сигнала, называетсядевиацией частоты . Эта величина зависит исключительно от амплитуды (пикового значения) модулирующего напряжения. При спутниковом ТВ вещании сигнал, излучаемый на Землю, имеет номинальное значение девиации частоты около 16 МГц/В и ширину полосы частот, занимаемую информацией о передаваемом изображении, около 27 МГц.

Индекс модуляции

Индекс модуляции (т) - это отношение девиации частоты fd к высшей модулирующей частоте fm:

m = fd / fm.

В отличие от амплитудной модуляции при ЧМ нет необходимости ограничивать максимальную величину индекса модуляции единицей.

Шумы Джонсона

Шум - это любое нежелательное случайное электрическое возмущение. Он проникает повсюду и является главной проблемой при разработке электроники. Такой шум возникает в обычных электрических цепях(измерьте после окончания штукатурных работ), особенно в цепях с резистором, при любых значениях температуры выше нуля по Кельвину (0 К). Этот мельчайший, но не всегда незначительный тепловой шум, называемый шумом Джонсона, обнаруживается (и может быть измерен как ЭДС) на выходных концах цепи. Причина шума - хаотические колебания молекул внутри корпуса резистора, которые невозможно прекратить. Хотя приведенное ниже выражение не является особенно важным в данном случае, его стоит рассмотреть, чтобы обнаружить связь между шумами ЭДС и температурой.

RMS-значение шума Джонсона = (4k tBR)^1/2 , где

t - абсолютная температура по Кельвину (комнатная температура составляет около 290 К);
к - постоянная Больцмана т 1,38 х 10~23;
R - величина резистора в омах;
В - ширина полосы частот прибора для измерения величины ЭДС.

Расчет шума от резистора в один мегаом при комнатной температуре приводит к величине около 0,4 мВ. Она может показаться небольшой, но ее относительное значение более важно, чем абсолютное. Если полезный сигнал будет такого же порядка, как данная величина (а он может быть и намного меньше), то он потонет в шумах. Согласно рассматриваемому выражению, которое, кстати, распространяется не только на материалы искусственного происхождения, шум зависит от температуры и полосы частот прибора для измерения его величины. Таким прибором является станция приема телевещания. Боковые полосы частот при передаче сигнала высокого качества отличаются большой шириной, поэтому приемная аппаратура также должна иметь широкую полосу частот для обработки поступающей информации. В этих условиях попадание шумов на вход цепи может серьезно ограничить качество приема.



Отношение сигнал/шум

Отношение сигнал/шум (S/N) - это отношение уровня ЭДС полезного сигнала к уровню ЭДС любого существующего шума, которое должно быть как можно более высоким. Если величина этого отношения падает до единицы или ниже, то сигнал передавать практически бесполезно. (В некоторых случаях можно использовать довольно дорогостоящий метод воссоздания компьютером «сигнальной среды», но для национальной системы спутникового ТВ вещания это неприемлемо.)

Сравнение ЧМ и АМ

Существуют два свойства АМ, из-за которых ее использование в прошлом было достаточно популярным:

  • схема демодуляции в приемном устройстве, называемая выпрямителем, достаточно проста. Требуется только диод для отсечения одной полуволны от полного сигнала и фильтр нижних частот для удаления остатков несущей частоты;
  • ширина боковых полос относительно невелика, поэтому передача сигнала не занимает слишком много пространства в частотном спектре.

Самым серьезным недостатком АМ является шум (или, по крайней мере, большая его часть), который состоит из изменений амплитуды. Иными словами, любые существующие шумы ЭДС располагаются на вершине огибающей сигнала, как это показано на рисунке.

Шумы на АМ сигналах

Поэтому для уменьшения уровня шумов необходимо либо увеличить отношение сигнал/шум путем более тщательной разработки приемных устройств, либо использовать более грубые методы, ухудшающие качество сигнала, например ограничение полосы пропускания.

С другой стороны, ЧМ часто считают свободной от шумов, что в действительности неправильно. Передача ЧМ сигнала также подвержена воздействию шумов, как и передача АМ сигнала. Однако благодаря методу, которым происходит наложение информации на несущую частоту, большая часть шумов может быть устранена схемой приемного устройства. Поскольку шумы располагаются на внешней стороне ЧМ сигнала, можно срезать края верхней и нижней частей принимаемого сигнала, не нарушая информации, которая, скорее всего, находится внутри сигнала, а не на его краях. Такой процесс отсечки называется ограничением амплитуды.

Недостатком ЧМ является требование широкой полосы частот для передачи сигнала. По сути, передача ЧМ сигнала возможна только в том случае, когда частота несущего сигнала относительно высока. Так как спутниковое вещание осуществляется на частотах значительно выше 1 ГГц, этот недостаток можно считать несущественным.

Нельзя отрицать, что схемные решения, которые требуются для извлечения информации с ЧМ несущей, являются, мягко говоря, достаточно сложными. Схема, выполняющая такую функцию, называется ЧМ демодулятором. Существуют различные схемные решения для демодуляции ЧМ сигналов, такие как дискриминаторы, детекторы отношения и схемы фазовой автоподстройки частоты (ФАПЧ).

Децибелы

С помощью децибелов (дБ) отношение между двумя мощностями можно выразить и другим, часто более удобным способом. Вместо фактического отношения используется логарифм отношения по основанию 10:

дБ = 10 log Р1 / Р2.

Результат будет с положительным знаком, если Pt больше, чем Р2, и с отрицательным, если Р{ меньше, чем Р2. Чтобы исключить проблему, связанную с вычислением отрицательных логарифмов, большую из двух мощностей ставят в числитель, а знак определяют позже в соответствии с правилом, приведенным выше.

Пример
Если Р1, = 1000, а Р2 = 10, то дБ = 10 log 1000/10 = 10 log 100 = +20 дБ.
(Если Р1, = 10, а Р2 = 1000, абсолютное значение в децибелах будет тем же самым, но записывают его как -20 дБ.).

Использование децибелов вместо фактических величин отношений имеет следующие преимущества:

  • поскольку слух человека реагирует на изменения интенсивности звука логарифмически, использование децибелов является более естественным. Например, если выходная мощность усилителя звука возрастает с 10 до 100 Вт, на слух это не будет восприниматься как десятикратное увеличение;
  • децибелы удобно использовать для уменьшения размеров в обозначениях больших чисел. Например, коэффициент усиления в 10 000 000 раз будет равен всего лишь 70 дБ;
  • при прохождении от антенны через различные каскады в приемном устройстве сигнал подвергается усилению и потерям. При выражении каждого коэффициента усиления и потерь соответственно в положительных и отрицательных значениях децибелов общий коэффициент усиления легко рассчитать при помощи алгебраического сложения. Например, (+5) + (-2) + (+3) + (-0,5) = 5,5 дБ.

Ниже приведены некоторые из наиболее часто используемых значений децибелов.