Частотно-временное разделение каналов. Временное разделение каналов

Частотное разделение каналов, Мультиплексирование с разделением по частоте (англ. Frequency-Division Multiplexing, FDM)

Разделение каналов осуществляется по частотам. Так как радиоканал обладает определённым спектром, то в сумме всех передающих устройств и получается современная радио связь. Например: спектр сигнала для мобильного телефона 8 МГц. Если мобильный оператор даёт абоненту частоту 880 МГц, то следующий абонент может занимать частоту 880+8=888 МГц. Таким образом, если оператор мобильной связи имеет лицензионную частоту 800-900 МГц, то он способен обеспечить около 12 каналов, с частотным разделением.

Частотное разделение каналов применяется в технологии X-DSL. По телефонным проводам передаются сигналы различной частоты: телефонный разговор-0,3-3,4 кГц а для передачи данных используется полоса от 28 до 1300 кГц.

Очень важно фильтровать сигналы. Иначе будут происходить наложения сигналов, из-за чего связь может сильно ухудшиться.

Практика построения современных систем передачи информации показывает, что наиболее дорогостоящими звеньями каналов связи являются линии связи : кабельные, волноводные и световодные, радиорелейные и спутниковые и др. Поскольку экономически нецелесообразно использовать дорогостоящую линию связи для передачи информации между единственной парой абонентов, то возникает проблема построения многоканальных систем передачи, в которых одна общая линия связи уплотнятся большим числом индивидуальных каналов. Этим обеспечивается повышение эффективности использования пропускной способности линии связи. Сообщения А 1 (t), …, А N (t) от N источников ИС 1 , …, ИС N с помощью индивидуальных модуляторов М 1 , …, М N преобразуются в канальные сигналы U 1 (t), …, U N (t). Сумма этих сигналов образует групповой канальный сигнал U Л (t), который передается по линии связи (ЛС). Групповой приемник П преобразует полученный сигнал Z Л (t) в исходный групповой сигнал Z(t)=U(t). Индивидуальные приемники П 1 , …, П N выделяют из группового сигнала Z(t) соответствующие канальные сигналы Z 1 (t), …, Z N (t) и преобразуют их в сообщения . Блоки М 1 , …, М N и сумматор образуют аппаратуру уплотнения, блоки М, ЛС и П – групповой канал. Аппаратура уплотнения, групповой канал и индивидуальные приемники образуют систему многоканальной связи.

Чтобы разделяющие устройства могли различать сигналы отдельных каналов, должны быть определены соответствующие признаки, присущие только данному сигналу. Такими признаками в случае непрерывной модуляции могут быть частота, амплитуда, фаза, в случае дискретной модуляции еще и форма сигнала. В соответствии с используемыми для разделения признаками различаются и способы разделения: частотные, временные, фазовые и др.

23.Частотное разделение сигналов. Временное разделение сигналов. Разделение сигналов по форме (кодовое).

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

    Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

    Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

    Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

    Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

    Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.

Итак рассмотрим как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC -Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module), по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.

Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI -International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64 бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56 бит кодирование.


На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи. Максимальная мощность излучения подвижного аппарата в зависимости от его назначения (автомобильный постоянный или переносный, носимый или карманный) может изменяться в пределах 0.8-20 Вт (соответственно 29-43 dBm). В качестве примера в таблице 4.9. приводятся классы станций и абонентских устройств по применяемой мощности, принятые в системе GSM-900.

Системы передачи с временным разделением каналов.

Построение систем передачи с временным разделением каналов (ВРК).Сущность временного разделения каналов, структурная схема СП с ВРК. Теорема Котельникова. Виды импульсной модуляции. Сравнительный анализ видов импульсной модуляции и область их применения.

Идея временного разделения каналов заключается в том, что элементы первичного сигнала принадлежащему i-му каналу, передаются в неперекрывающихся интервалах времени свободных от сигналов других каналов по общей линии.

В большинстве своем первичные сигналы являются аналоговыми (непрерывными) и идея ВРК определяет необходимость проведения операции дискретизации.

Эта операция выполняется в соответствии с теоремой Котельникова. Она формулируется так: всякий непрерывный во времени сигнал со спектром ограниченным по частоте может быть представлен последовательностью его отсчетов (мгновенных значений), в взятых через интервал времени:

Т Д = 1/F Д , F Д ≥ 2F B .

Каждому сигналу предоставляется свой канальный интервал.

Операция дискретизации осуществляется с помощью канальных электронных ключей

Рис. 8.1. Структурная схема системы передачи с временным разделением каналов

Интервал времени между ближайшими импульсами группового сигнала Т K называется канальным интервалом или тайм-слотом (Time Slot). Из принципа временного объединения сигналов следует, что передача в таких системах осуществляется циклами, то есть периодически в виде групп изN гр = N + n импульсов, гдеN – количество информационных сигналов,n – количество служебных сигналов (импульсов синхронизации – ИС, служебной связи, управления и вызовов). Тогда величина канального интервала:

Δt K = Т Д /N гр .

Рис.8.2. К пояснению метода временного разделения каналов.

При временном разделении каналов возможны следующие виды модуляции:

1.АИМ -амплитудно-импульсная модуляция;

2.ШИМ - широтно-импульсная модуляция;

3.ФИМ –фазоимпульсная модуляция;

4.ЧИМ – частотно-импульсная модуляция.

При АИМ периодическая последовательность импульсов изменяется в соответствии с изменением модулирующего сигнала.Различают (АИМ -1) амплитудно-импульсную модуляцию первого рода (при ней вершины импульсов изменяются в соответствии с модулирующим сигналом) При (АИМ -2) амплитудной модуляции второго рода вершина импульсов плоская и равна амплитуде импульса в момнент дискритизации. При скаважности импульсов больше десяти различия между АИМ-1 и АИМ-2 исчезают. АИМ модуляция проста в реализации, но имеет низкую помехоустойчивость, так как любая помеха изменяет амплитуду импульса и искажает форму восстанавливаемого сигнала.АИМ обычно используется как промежуточный вид модуляции при реобразовании аналогового сигнала в цифровой.

При ШИМ спектр сигнала меняется взависимости от длительности сигнала.Минимальному уровню сигнала соответствует минимальная длительность импульса и, соответственно, максимальный спектр сигнала.

При этом амплитуда импульсов остается неизменной. При односторонней ШИМ (ОШИМ) изменение длительности происходит только за счет перемещения

одного из фронтов заднего или переднего. При двухсторонней ШИМ изменения длительности происходит относительно тактовой точки. Более помехоустойчивый способ передачи в сравнении с АИМ. Для избавления от амплитудных искажений применяется ограничитель амплитуд. ШИМ используется в МСП импульсной радиосвязи, а так же в некоторых радиотелеметрических системах, системах телеконтроля и телемеханики.

ФИМ представляет собой разновидность временной импульсной модуляции.

Существует несколько разновидностей ФИМ

ФИМ 1-го рода ПРИ ней временной сдвиг импульсов пропорционален значению модулирующего сигнала в момент появления импульса. ФИМ-2 импульсная модуляция при которой временной сдвиг пропорционален значению модулирующего сигнала в тактовых точках. Обычно применяется ФИМ-2 .При отрицательных значениях модулирующего сигнала импульсы смещаются влево, а при положительных вправо.

В аппаратуре с ВРК и аналоговыми методами модуляции наибольшее применение получила ФИМ, так как при её использовании можно уменьшить мешающее действие аддитивных шумов и помех путём двухстороннего ограничения импульсов по амплитуде, а также оптимальным образом согласовать неизменную длительность импульсов с полосой пропускания канала. Именно в системах передачи с ВРК используется, в основном, ФИМ.

При ЧИМ изменяется частота следования импульсов в зависимости от амплитуды модулирующего сигнала.

Вопросы для самоконтроля.

1.Как звучит теорема Котельникова?

2.Почемк теорема Котельникова применима только к непрерывным сигналам с ограниченным спектром?

3.Что такое АИМ-1 и АИМ-2, в чем их отличие?

4.ШИМ –модуляция,способы реализации преимущества и недостатки?

5.ФИМ- модуляция, способы реализации преимущества и недостатки?

6.Назначение фильтров нижних частот, включаемых на входе канальных амплитудно-импульсных модуляторов.

7.Назначение фильтров нижних частот, включаемых на выходе канальных селекторов.

8.Необходимость синхронной работы канальных амплитудно- импульсных модуляторов и канальных селекторов.

Принципы разделения измерительных каналов

Из большого числа различных принципов разделения каналов в измерительных информационных системах следует выделить наиболее часто применяемые на практике разделение каналов: многоканальное (кабельное оптоволоконное), частотные, временное, кодовое и ортогональное (в связи).

Частотное разделение каналов отличается тем, что каждому сигналу вы­деляется своя отдельная частота так, чтобы полосы частот каждого сигнала размещались в не перекрывающихся по частоте участках диапазона частотам.

Максимальная информационная емкость частотных устройствдля электрических контуров и фильтров ограничивается сравнительно небольшим числом, частотных избирателей размещаемых в рабочем диапазоне частот (например, в телефонном канале), что вызвано трудностями реализации узкополосных избирателей. Поэтому в ча­стотные устройствахс относительно большой ин­формационной емкостью каждому сигналу выделяется не индивидуальная частота, а комбинация нескольких частот при этом, частоты могут передаваться одновременно или поочередно.

При одновременной передаче частот суммарное число сигналов N для n возможных частот и m частот, участвующих в образовании одной кодовой комбинации,

Если в каждой кодовой комбинации участвуют две одновременно передаваемые частоты, то формула упрощается и число сигналов

При последовательной посылке частот в любой момент времени передается не более одной частоты. Это позволяет уменьшить требования к нелинейным искажениям в канале и к аппаратуре до легко достижимого значения. Поэтому более широкое применение получили устройства разделения измерительных каналов с последовательной передачей частот.

В этом случае

Для применяемого кода с избиранием каждого объекта двумя частотами формула упрощается:

Полоса частот, занимаемая в канале связи, ограничивается в основном селективными свойствами и стабиль­ностью частотных избирателей и генераторов. Широкое применение получили частотные избиратели с электриче­скими резонансными контурами и полосовыми фильтрами. Для увеличения добротности применяются катушки ин­дуктивности с ферромагнитными сердечниками. Сужение полосы частотных избирателей позволяет экономнее использовать полосу частот в канале связи и повысить помехоустойчивость ИИС. Поэтому для даль­нейшего развития частотных устройств, представляют интерес узкополосные электромеханические частотные изби­ратели и генераторы, а также – фильтры и генераторы с гибридной технологией производства.

Частотные методы разделения позволили создать простые частотные избиратели объектов не требующими местных источников питания, что очень важно, для массовых объектов управле­ния, рассредоточенных по каналу связи: на трубопроводах, в ирригации, на нефтепромыслах и т. п.

Временное разделение каналов отлича­ется тем, что каждому из N передаваемых сигналов, канал связи предоставляется поочеред­но (последовательно). В интервал времени T 1 передается первый сигнал, а в интервал времени T i I-й сигнал. Следовательно, каждый сигнал имеет присвоенный ему временной интервал, который недопустимо занимать другими сигналами. Разделение сигналов на передающей и приемной сторонах канала связи осуществляется синхронно и синфазно работающими коммутаторами (распределителями). Для всех систем с временным раз­делением сигналов обязательна синхронизация работы распределителей.

Бесконтактные элементы релейного действия с неограниченными или очень большими ресурсами срабатывания релейных элементов оказалось целесообразным воспользоваться циклическим режимом работы устройств со стабильной тактовой частотой и стабильным по частоте циклом работы коммутаторов, составляющим доли секунды. В качестве тактовой частоты во многих случаях использовалось общая на передающей и прямой сторонах силовая сеть 50 Гц. Это облегчало синхронизацию распределителей.

За время цикла распределителей в таких устройствах, еще применяемых в народном хозяйстве, передается только одна подготовительная команда для избирания выходных цепей объекта. В ответных импульсных сериях в каждом цикле многоканальным методом передается информация о всех ТИС. Оператор после подтверждения подготовительной команды передает исполнительную команду. Во всех устройствах с временным разделением используется ряд защит, резко повышающих достоверность передачи команд. Достоверность передачи сигналов ТИ и ТК возрастает при их циклическом повторении.

Кодовое разделение каналов устройства с временным кодовым разделением сигна­лов, называемые также цифровыми устройствами, обладают неоспоримыми преимуществами, такими, как более высокая помехоустойчивость, лучшее использование канала связи, большие возможности унификации массового производства и применения в самых разнообразных условиях, несмотря на несколько большее число компонентов (деталей) в системе на один сигнал.

Учитывая многообразие возможных и используемых принципов построения кодовых (цифровых) устройств, ог­раничимся изложением обобщенных, упрощенных принци­пов разделения и передачи кодовых сигналов в многофунк­циональных устройствах.

К кодовым (цифровым) устройствам относятся устройства с времен­ным разделением элементов сигнала, двухпозиционными кодами, адресными передачами сигналов или с преобладанием адресных передач над многоканальными.

Скорость передачи информации в устройст­вах может изменяться в широких пределах путем переклю­чения тактовой частоты и ограничивается главным образом полосой частот канала связи. Отметим, что возмож­ность изменения скорости передачи путем изменения такто­вой частоты характерна для широкого класса цифровых систем. Цифровые устройства ИИС могут работать по телеграфному и телефон­ному каналу со скоростью от 50 до 2000 – 3000 Бод и более.

Тема: Принцип кодового разделения каналов

Принцип кодового разделения каналовCDMA (англ. Code Division Multiple Access) - множественный доступ с кодовым разделением.Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладываeтся друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы.

Технология множественного доступа с кодовым разделением каналов известна давно. В СССР первая работа, посвященная этой теме, была опубликована еще в 1935 году ее автором Д.В. Агеевым.

После войны в течение долгого времени технология CDMA использовалась в военных системах связи, как в СССР, так и в США. Во второй половине 80-х годов военное ведомство США рассекретило данную технологию и началось ее использование в гражданских средствах связи. Способ применяется в сотовой связи (в России, например, оператором Skylink) и в спутниковой навигации (GPS).

Технология кодового разделения каналов CDMA, благодаря высокой спектральной эффективности, является радикальным решением дальнейшей эволюции сотовых систем связи.

Рисунок 42 Технология множественного доступа

с кодовым разделением каналов

CDMA2000 является стандартом 3G в эволюционном развитии сетей cdmaOne (основанных на IS-95). При сохранении основных принципов, заложенных версией IS-95A, технология стандарта CDMA непрерывно развивается и совершенствуется.

Последующее развитие технологии CDMA происходит в рамках технологии CDMA2000. При построении системы мобильной связи на основе технологии CDMA2000 1Х первая фаза обеспечивает передачу данных со скоростью до 153 кбит/с, что позволяет предоставлять услуги голосовой связи, передачу коротких сообщений, работу с электронной почтой, интернетом, базами данных, передачу данных и неподвижных изображений.

Рисунок 43 Построение системы мобильной связи

на основе технологии CDMA2000

Переход к следующей фазе CDMA2000 1xEV-DO происходит при использовании той же полосы частот 1,23 МГц, скорость передачи - до 2.4 Мбит/с в прямом канале и до 153 кбит/с в обратном, что делает эту систему связи отвечающей требованиям 3G и дает возможность предоставлять самый широкий спектр услуг, вплоть до передачи видео в режиме реального времени. Следующей фазой развития стандарта является 1ХEV-DO Rev A, что позволяет увеличить сетевую емкость и скорость передачи данных. На данном этапе обеспечивается передача данных со скоростью до 3.1 Мбит/с по направлению к абоненту и до 1.8 Мбит/с по направлению от абонента. Операторы смогут предоставлять те же услуги, что и на базе Rev. 0, а, кроме того, передавать голос, данные и осуществлять широковещание по IP сетям. В мире уже есть несколько таких дейсвующих сетей. Поскольку прогресс не стоит на месте, разработчики оборудования уже работают над реализацией следующей фазы - 1ХEV-DO Rev B, - что позволит достигнуть следующих скоростей на одном частотном канале: 4.9 Мбит/с к абоненту и 2.4 Мбит/с от абонента. К тому же будет обеспечиваться возможность объединения нескольких частотных каналов для увеличения скорости. Например, объединение 15-ти частотных каналов (максимально возможное количество) позволит достигать скоростей 73,5 Мбит/с к абоненту и 27 Мбит/с от абонента. Применение таких сетей - улучшенная работа чувствительных к временным задержкам приложений типа VoIP, Push to Talk, видеотелефония, параллельное использование голоса и мультимедиа, мультисессионные сетевые игры и др.



Основными компонентами коммерческого успеха системы CDMA2000 являются более широкая зона обслуживания, высокое качество речи (практически эквивалентное проводным системам), гибкость и дешевизна внедрения новых услуг. Данная технология обеспечивает высокую помехозащищенность, устойчивость канала связи от перехвата и прослушивания, что делает его привлекательным в использовании для всех категорий абонентов.

Также немаловажную роль играет низкая излучаемая мощность радиопередатчиков абонентских устройств. Так, для систем CDMA2000 максимальная излучаемая мощность составляет 250 мВт, в то время как для систем GSM-900 этот показатель равен 2 Вт (в импульсе), а для GSM-1800 1 Вт (в импульсе). Справедливости ради отметим, что мнение о вредном влиянии излучения мобильных телефонов на организм человека учеными так и не доказано, но и не опровергнуто.

Группа стандартов CDMA коренным образом отличается от своих собратьев по сотовой телефонии и эти стандарты по праву считаются стандартами 2.5 поколения. Если FDMA (NMT, AMPS, NAMPS) и его продолжение - TDMA (GSM, DAMPS) используют набор частотных диапазонов с разделением каждого канала на временные интервалы (для TDMA) для множественного доступа абонетов к услугам сотовой сети, то в CDMA всё по-другому.

CDMA использует технологию Direct Sequence (Pseudo Noise) Spread Spectrum (прямая последовательность (псевдошум) с широким спектром). Основа DSSS - использование шумоподобной несущей, и гораздо более широкой полосы, чем необходимо для обычных способов модуляции. Хотя DSSS была изобретена ещё в 1940-е, коммерческое применение началось только в 1995 году. Причиной тому - отсутствие технологий позволяющих создавать малогабаритные приёмопередатчики использующие DSSS.

Кратко о CDMA.

Представьте себе узкополосный сигнал промодулированный неким потоком данных со скоростью, например 9600 bps. Пусть есть уникальная, повторяющаяся, псевдослучайная цифровая последовательность со значительно большей скоростью, скажем 1.25 Mbps. Если менять фазу узкополосного сигнала в соответствии с псевдослучайной последовательностью, то мы получим шумоподобный сигнал с широким спектром, содержащий в себе информацию. Если рассмотреть, что происходит с точки зрения частоты - то получится что информационный сигнал "расплылся" (spread) по спектру шумоподобного сигнала (pseudonoise). Теперь осталось выдать этот широкополосный сигнал в эфир.

На пути от передатчика к приёмнику к сигналу добавятся помехи и сигналы других передатчиков. Принятый и демодулированный сигнал перемножим с точной копией шумоподобного сигнала, который использовался для модуляции (здесь необходима очень высокая степень синхронизации приёмника и передатчика) и получим узкополосную составляющую с высокой энергией на единицу частоты - переданный поток данных. Так как помехи и сигналы от других передатчиков не совпадают с использованным шумоподобным сигналом, то после перемножения они ещё больше расползутся по спектру и их энергия на единицу частоты уменьшится.

Таким образом, используя разные псевдослучайные последовательности (коды) можно организовать несколько независимых каналов передачи данных в одной и той же полосе частот.

Нужно сказать, что вышеприведенное описание технологии DSSS сильно упрощено, хотя, надеюсь, даёт представление о том, как это всё работает.

И чем CDMA лучше других?

В системах с частотным разделением каналов (как в FDMA, так и в TDMA) существует проблема так называемого "многократного использования" (reuse) частотных каналов. Чтобы не мешать друг другу, соседние базовые станции должны использовать разные каналы. Таким образом, если у БС 6 соседей (наиболее часто рассматриваемый случай, при этом зону каждой БС можно представить как шестиугольник, а всё вместе выглядит как пчелиные соты:)) то количество каналов, которые может использовать эта БС в семь раз меньше чем общее количество каналов в отведённом для сети диапазоне. Это приводит к уменьшению ёмкости сети и необходимости увеличивать плотность установки БС в густонаселённых районах. Для CDMA такой проблемы вообще нет. Все БС работают на одном и том же канале. Таким образом, частотный ресурс используется более полно. Ёмкость CDMA сети обычно в несколько раз выше, чем TDMA, и на порядок выше чем FDMA сетей.

Для того, чтобы телефоны находящиеся близко к БС не забивали своим сигналом более отдалённых абонентов, в CDMA предусмотрена плавная регулировка мощности, что приводит к значительному сокращению энергопотребления телефона вблизи БС и, соответственно, увеличению времени работы телефона без подзарядки.

Одной из приятных особенностей CDMA сетей является возможность "мягкого" перехода от одной БС к другой (soft handoff). При этом, возможна ситуация когда одного абонента "ведут" сразу несколько БС. Абонент просто не заметит, что его "передали" другой БС. Естественно, чтобы такое стало возможным, необходима прецизионная синхронизация БС. В коммерческих системах это достигается использованием сигналов времени от GPS (Global Positioning System) американской спутниковой системы определения координат.

CDMA это практически полностью цифровой стандарт. Обычно все преобразования информационного сигнала происходят в цифровой форме, и только радиочасть аппарата является аналоговой, причём гораздо более простой, чем для других групп стандартов. Это позволяет практически весь телефон выполнить в виде одной микросхемы с большой степенью интеграции, тем самым значительно снизив стоимость телефона.

Цифровая сущность CDMA весьма располагает к использованию этой технологии для безпроводной передачи данных. В рассмотренном выше примере мы задали не очень высокую скорость, однако существующие реализации CDMA позволяют многократно увеличивать скорость передачи данных, правда, за счет сокращения ёмкости сети.

Стандарты CDMA используют более современный кодек для оцифровки речи, что субъективно повышает качество передачи аналогового сигнала по сравнению с действующими TDMA стандартами.

Из минусов CDMA можно отметить необходимость использования достаточно широкой и неразрывной полосы, что не всегда возможно в современной обстановке дефицита частотного ресурса и большую сложность реализации данной технологии в "железе"

Перспективы CDMA

В мире, развитие CDMA идет нарастающими темпами. Наибольшее распространение получили стандарты IS-95 (800 MHz) и CDMA PCS (1900 MHz). На май 2000г в 43 странах использующих CDMA насчитывалось более 57 миллионов абонентов, причём с мая 1999 количество пользователей удвоилось. Исторически сложилось так, что CDMA наиболее распространён в Северной и Южной Америке и Юго-Восточной Азии. С принятием Китаем CDMA как федерального стандарта сомнений в том, что этот стандарт станет основным на нашей планете, практически не осталось.

Cтандарты CDMA изначально включали в себя функцию передачи данных и на сегодня, почти все современные CDMA телефоны способны предоставлять пользователю 14.4 Kbps цифровой канал. А сама сеть использует IP протокол для передачи данных. Таким образом, CDMA уже сейчас полностью Internet-совместима. Нет проблем и с более высокими скоростями. Некоторые операторы CDMA в US уже предоставляют услуги передачи данных со скоростями до 144 Kbps. Кроме того, система используемая этими операторами позволяет динамически изменять пропускную способность канала в зависимости от активности клиента и загрузки сети, тем самым оптимизируя использование ресурсов сети. По заявлениям CDMA Development Group уже сейчас достижима скорость 300 Kbps, что вплотную приближает существующие CDMA стандарты к 3-му поколению.

У CDMA гораздо меньше проблем с переходом к 3-му поколению по сравнению с TDMA системами. TIA/EIA (Telecommunication Industry Association / Electronic Industries Alliance) предолжила группу стандартов cdma2000 (IS-2000) которые являются развитием ныне действующего IS-95. Основные отличия cdma2000 от своего предшественника - большее количество диапазонов для использования в организации мобильной связи и увеличение скорости передачи данных до 1Mbps на физическом уровне. Также добавлены новые протоколы для обеспечения всевозможных сервисов. Особо следует подчеркнуть требование стандарта об обратной совместимости с IS-95. Все мобильные станции cdma2000 должны работать в сетях IS-95, и соответственно все базовые станции cdma2000 должны обслуживать мобильные станции IS-95. Более того, имеется требование обеспечения handoff"а (перехода от одной соты к другой) между cdma2000 и IS-95. Таким образом, возможна незаметная для пользователя миграция сети от IS-95 к cdma2000. Также примечателен факт, что стандартом предусмотрено использование некоторых диапазонов используемых ныне старыми аналоговыми стандартами (например Band Class 5 (NMT-450)) что даёт возможность операторам этих стандартов перейти от 1-го поколения сразу к 3-ему, постепенно отдавая участки своего диапазона под cdma2000, по мере увеличения количества абонентов пользующихся новым оборудованием. Однако даже в cdma2000 сохранена возможность работы мобильных и базовых станций в аналоговом режиме. Этот режим практически идентичен стандарту AMPS c A-Key идентификацией и предназначен для обеспечения связи там, где использование цифрового режима по тем или иным причинам невозможно.

Сdma2000 был принят в группу IMT-2000, которая определяет глобальное виденье организацией ITU (International Telecommunication Union) систем 3-го поколения, в качестве одного из основных радиоинтерфейсов, что позволяет предполагать его дальнейшее распространение. Причём из-за преимуществ перед TDMA технологиями (стандарт UWC-136 также предлагается в качестве одного из возможных радиоинтерфейсов в IMT-2000) вполне возможно распространение CDMA и в Европе, которая на данный момент является вотчиной TDMA стандарта GSM.