Частотные преобразователи для асинхронных двигателей. Частотник своими руками — любительская схема преобразователя

Содержание:

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко . Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее - от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе , в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

Впервые асинхронный двигатель был использован в конце 19-го века. Его успешное применение позволило внедрить данное оборудование практически на любой завод, фабрику, в любую отрасль промышленности. Однако управлять данным устройством оказалось довольно проблемно, особенно пуском и остановкой. Основной целью эксплуатации частотного преобразователя, а также целью его создания как раз и стала необходимость в устройстве, управляющем асинхронным двигателем.

Общая информация

Целесообразнее всего снабжать преобразователем частоты (ЧП) те устройства, которые обладают довольно высоким показателем мощности. Основная цель, для которой используется такое оборудование, - это изменение пускового тока. ЧП дает возможность задавать величину для этого параметра, что и обеспечивает более плавную остановку и запуск двигателя.

Также можно отметить, что эти два устройства, работающие в паре, позволяют заменить такие устройства, как электроприводы постоянного тока. С одной стороны, регулировать скорость у такой системы очень просто, однако есть и слабое место в такой сети - сам электродвигатель. В электроприводах постоянного тока именно это устройство является наиболее дорогим и ненадежным. А если сравнивать асинхронное оборудование с прибором постоянного тока, то тут можно выделить явные преимущества: более простое и надежное устройство; масса, стоимость и габариты асинхронного приспособления будут гораздо ниже, чем у аппарата постоянного тока с той же мощностью.

Что такое частотный преобразователь

Стоит сказать о том, что регулировать числовое значение тока можно и вручную. Однако на это будет уходить определенное количество времени, так как человек не способен моментально среагировать на любое изменение, как машина. А это приведет к тому, что некоторое количество энергии будет уходить впустую, а энергетический ресурс двигателя выработается быстрее.

Частотный преобразователь для электродвигателя - это практически необходимая деталь, так как те устройства, которые не имели его, обладали значением тока, превышающим номинальное значение напряжение в 5-7 раз. Такая разница не позволит создавать приемлемые условия для эксплуатации двигателя.

Принцип работы частотного преобразователя кроется в том, что в нем используется специальный электронный механизм, который и управляет работой асинхронного двигателя. Также важно отметить, что ЧП позволяет не только настроить плавный запуск, но и выбрать оптимальный показатель между напряжением и частотой. Эта характеристика рассчитывается по определенной формуле.

Основное преимущество применения частотного преобразователя для двигателя - это экономия электрической энергии, значение которой доходит до 50 %. Еще одно важное преимущество ЧП - это возможность настроить его работу так, чтобы она максимально подходила под каждую отрасль производства. Применение такого устройства основывается на принципе работы двойного преобразования напряжения.

Первый этап - это регулировка напряжения, поступающего из сети. Оно выпрямляется и фильтруется. Эти операции осуществляются посредством системы конденсаторов.

Второй этап - включение в работу электронного управления системой. Этот элемент выставляет значение тока, которое будет соответствовать частоте, а также ранее выбранному режиму работы.

Как можно заметить, принцип работы частотного преобразователя довольно прост.

Материалы для сборки

На сегодняшний день распространение и улучшение технологий и оборудования привело к тому, что, имея некоторые знания в электронике и умения, можно собрать ЧП для однофазного двигателя собственноручно.

Для того чтобы собрать это устройство, понадобятся такие материалы, как:

  • драйвер трехфазного моста модели IR2135 или 2133;
  • понадобится микроконтроллер, который будет использоваться как генератор PWM, модели AT90SPWM3B;
  • еще одна важная деталь - программатор;
  • три пары транзисторов;
  • жидкокристаллический индикатор;
  • шесть кнопок для управления системой.

Сборка устройства

Для начала работы необходимо иметь схему частотного преобразователя. Осуществлять сборку будет намного удобнее и быстрее, имея этот документ.

Первый шаг сборки - соединение обмоток двигателя. Для этого нужно использовать вариант подключения, который в электротехнике называется треугольник.

В сборке частотного преобразователя своими руками основой будут выступать две платы. Одна из них (первая) будет являться основой для размещения таких элементов, как блок питания, драйвер, транзисторы. Силовые клеммы также будут подключаться к этой плате. Вторая же плата необходима для крепления микроконтроллера и индикатора. Для того чтобы соединить эти два элемента между собой, нужно использовать гибкий шлейф. Чтобы изготовить импульсный блок, можно использовать самую простую схему.

Для того чтобы осуществлять контроль над работой двигателя, нет необходимости в добавлении внешних устройств. Однако если такое желание все же есть, то можно добавить схему IL300 в конструкцию.

Следующим важным элементом в сборке частотного преобразователя своими руками станет общий радиатор. В схеме этих устройств данный элемент используется для того, чтобы разместить на нем транзисторы и диодный мост. Один из обязательных шагов - это установка оптронов ОС2-4. Основное предназначение этих элементов - дублирование кнопок управления.

При изготовлении частотного преобразователя своими руками для двигателя с мощностью до 400 Вт можно обойтись без термодатчика. Для того чтобы измерять напряжение, можно использовать обычный усилитель (DA-1-2). Необходимо также защитить все кнопки управления. Для этого используются пластиковые толкатели. Управление устройством осуществляется при помощи опторазвязки.

Последнее, что необходимо сделать при изготовлении частотного преобразователя своими руками, - это позаботиться о подавлении помех. Это необходимо делать лишь в том случае, если в системе используются слишком длинные провода. Когда ротор двигателя уже запущен, то можно выбрать любою скорость вращения, которая лежит в пределах частоты от 1 до 40.

Подключение

Собрать ЧП - это лишь половина дела. Вторая половина - это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения - это треугольник. Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %.

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления.

Обслуживание устройства

Как уже говорилось ранее, просто собрать ЧП и подключить его - мало. Еще одна важная часть, которая гарантирует длительный срок службы устройства, - это обслуживание прибора. Частотный преобразователь для насоса, двигателя или любого другого устройства, должен подвергаться тщательному уходу:

  1. Наиболее страшный враг электронного оборудования - это пыль. Важно следить, чтобы на внутренних контактах она не скапливалась. Для удаления этих частиц мусора можно использовать компрессор с невысокой мощностью. Пылесос использовать нежелательно, так как он не сможет убрать плотный слой пыли.
  2. Необходимо регулярно проверять работоспособность всех узлов. При возникновении неполадок сразу их менять. Нормальный срок эксплуатации электролитического конденсатора - 5 лет, для предохранителя - 10 лет. Вентиляторы, работающие внутри устройства, нужно менять каждые 2-3 года, внутренние шлейфы - каждые 6 лет.
  3. Очень важно следить за такими параметрами, как температура внутренних элементов, а также напряжение на шине постоянного тока. Если температура повысится слишком сильно, то термопаста с большой долей вероятности высохнет, что приведет к выходу из строя конденсаторов. Чтобы избежать этой проблемы, рекомендуется менять термопасту каждые три года.
  4. Важно соблюдать следующие правила эксплуатации: температура окружающего воздуха не выше +40 градусов; помещение должно быть сухим, повышенная влажность недопустима; повышенная запыленность также отрицательно скажется на приборе.

Структурное устройство ЧП

Для того чтобы точно ответить на вопрос, как сделать частотный преобразователь, необходимо разобраться еще в одном пункте. Это - структурное устройство данного прибора.

Так как ориентироваться при изготовлении нужно на покупные модели, то и схема должна быть соответствующей. А это значит, что работать он должен на структуре двойного преобразования. У этой схемы имеются основные части: звено постоянного тока, силовой импульсный инвертор и система управления.

Если рассматривать более детально, то часть с постоянным током состоит из двух соединений: неуправляемый выпрямитель и фильтр. Именно в этом элементе переменное напряжение, которое действует в сети, будет преобразовываться в постоянное.

Второй элемент - силовой импульсный инвертор. Он является трехфазным, а состоит из шести транзисторных ключей. Они предназначены для подключения соответствующей обмотки двигателя к каждому из ключей как положительному, так и отрицательному. Этот элемент отвечает за преобразование поступающего постоянного напряжения в трехфазное и переменное. Также это устройство задает нужную частоту и амплитуду.

Последний элемент - это система управления. Здесь используются силовые IGBT-транзисторы. Если сравнивать с обычными тиристорами, то частота переключения у транзисторов выше. Это позволяет вырабатывать выходной сигнал в форме синусоиды с минимальным искажением.

Частотные преобразователи на микроконтроллере

Принцип работы таких устройств является следующим. Изначально характеристики всех микроконтроллеров (МК) настраиваются так, чтобы работать в паре с напряжением в 200 В, а также частотой поля в 50 Гц. Другими словами, они настроены по умолчанию для работы в паре с наиболее примитивными асинхронными двигателями 220 В/50 Гц. Также имеется такой показатель, как скорость набора частоты. По умолчанию это значение устанавливается как 15 Гц/сек. Это означает, что разгон МК до 50 Гц будет занимать чуть более чем 3 секунды, а, к примеру, до 150 Гц за 10 секунд ровно. Также важно отметить, что изначально ЧП является скалярным. Другими словами, чем выше будет выходная частота двигателя, тем выше будет его напряжение.

Ремонт и наладка прибора

Ремонт частотных преобразователей - неотъемлемая часть работы с этими устройствами. Довольно часто случается такая проблема, как выход из строя тормозного резистора. Если это происходит, то ЧП не сможет работать на полную мощность. Для того чтобы установить, вышел ли из строя тормозной элемент или нет, имеется таблица, в которой приведены все номинальные значения для всех типов элементов. Если после сверки с этим документом выяснилось, что какой-либо параметр не совпадает, то резистор нужно менять.

Также могут быть сбои в том случае, если ЧП оказался слишком мощным или же сеть слишком слабая для этой модели. Тут дело заключается в принципе работы элементов ЧП. Он рассчитан на эксплуатацию при постоянном высоком напряжении. Если параметры сети не дотягивают до минимальных показателей, требуемых для работы, то и выполнять свои функции он не сможет. Как таковой ремонт частотного преобразователя тут не требуется, необходимо купить менее мощный прибор.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей - от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип - это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор - это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети. Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Добавить тег

Частотный преобразователь

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

Увеличенный пусковой момент и плавный пуск без большого пускового тока

Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

Возможность легко регулировать скорость и направление, если необходимо.

Вот какая схемка собралась:

3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде:

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

Есть внешний вид этой платы, когда уже спаивал:

С другой стороны

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Его схема:

Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости.

Теперь о самом главном...о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор... Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела "экспериментальная установка":

Первые эксперименты показали, что у этого проекта точно есть будущее.

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала...а тут снизу та самая простая версия которая работает на пиле уже около года.

Её характеристики:

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) - 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод "готовность" сигнализирует о готовности к запуску привода.

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.



Как вам эта статья?

Экология познания.Наука и техника: Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной.

Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной. В каждом конкретном случае режим работы асинхронного двигателя свой, и особенности этих режимов отличаются, в связи с этим полезно оптимизировать параметры питания двигателей, чему и способствует применение частотных преобразователей.

При выборе частотного преобразователя для конкретной цели, необходимо учесть ряд рабочих параметров: мощность электродвигателя, его тип, диапазон регулировки скорости и точность этой регулировки, точность поддержания момента на валу. Это первостепенные параметры для выбора. Дополнительно стоит обратить внимание на габариты и форму устройства, а также на расположение элементов управления, будет ли оно удобным в вашей ситуации.

Частотные преобразователи бывают однофазными или трехфазными. И даже если на вход подается всего одна фаза, на выходе может быть как одна, так и три фазы. Обязательно обратите на это внимание при выборе частотного преобразователя.

Что касается мощности асинхронного двигателя, то она связана с максимальным потребляемым током, на который и следует ориентироваться. Если при старте двигателя требуется получить значительный пусковой момент на валу, то в этом случае и ток нужен больший, значит, имеет смысл выбрать частотный преобразователь на большее значение тока. Быстрый разгон и резкое торможение напрямую связано с током, если преобразователь в состоянии дать необходимый ток, значит, по этому параметру он вам подходит.

Для специальных двигателей, как то: погружные насосы, синхронные двигатели, с втяжным ротором, высокоскоростные, - максимальный ток частотного преобразователь должен быть лишь немного выше номинального тока двигателя.


Когда параметры нагрузки заранее известны и не меняются при постоянной частоте (например это могут быть вентиляторы, насосы, компрессоры, то есть те механизмы, которые отвечают за поддержание определенного состояния технологического процесса), то есть момент зависит непосредственно от частоты, применяют скалярный метод частотного регулирования с диапазоном от 5 до 50 Гц и выше.

К примеру, компрессор должен поддерживать определенное давление, и датчик давления, отслеживая текущее состояние в текущем режиме, дает сигнал на изменение оборотов, - обороты компрессора меняются, следовательно, меняется и нагрузка, эту возможность дает опция обратной связи.

Для более точного управления, когда требуется поддерживать постоянный момент или скорость даже на низких частотах, применяют частотные преобразователи с векторным регулированием. Они могут поддерживать скорость постоянной даже при резко меняющейся нагрузке, и это уже более сложное управление.


В основном частотные преобразователи с векторным управлением подходят для приведения в действие конвейеров, лифтов, транспортеров, строительной техники, прессов, станков, и другого оборудования, требующего постоянной скорости при переменной нагрузке. Могут такие преобразователи поддерживать и постоянный момент при меняющейся скорости.

Преобразователь с векторным управлением требует настройки, то есть ввода паспортных данных подключенного двигателя. В процессе работы происходит автоматическое регулирование на основе текущей информации о токе, напряжении и частоте. Векторный метод регулирования позволяет снизить реактивный ток двигателя до оптимального путем соответствующего понижения или повышения напряжения на двигателе.

Частотные преобразователи с обратной связью по скорости позволяют прецизионно регулировать скорость, когда нагрузка при одной и той же частоте может меняться, и момент вообще не связан напрямую со скоростью. У таких преобразователей возможна и регулировка скорости в широком диапазоне при моментах близких к номиналу.

К дополнительным опциям частотных преобразователей можно отнести возможность подключения по протоколам MODBUS, PROFIBUS, CANOPEN, а также управление посредством Bluetooth. Встречаются частотные преобразователи с выносным потенциометром, с возможностью управления с компьютера, и с функцией сохранения настроек.опубликовано

Асинхронные двигатели используются в промышленности для обеспечения работы различных механизмов. Но они имеют один существенный недостаток - при запуске происходит кратковременный скачок тока в пять–семь раз. Кроме потерь электроэнергии, промышленные механизмы терпят ударные нагрузки, что приводит к их преждевременному изнашиванию. Поэтому было разработан частотный преобразователь или инвертор, обеспечивающий плавный пуск и останов асинхронных двигателей.

Основы работы преобразователя

Преобразователь частоты не только обеспечивает плавный пуск-остановка двигателя , но и изменяет частоту вращения ротора , регулируя частоту напряжения на входе двигателя. При этом инверторы изменяют частоту в широком диапазоне от значения частоты питающей сети. В величина напряжения питания определяет частоту вращения магнитного поля, создаваемого статором. Обозначим частоту напряжения , тогда угловая скорость магнитного поля двигателя определяется следующей формулой:

где -число пар полюсов статора. Закон пропорциональности зависит от момента нагрузки. Если момент нагрузки постоянный, то напряжение на статоре регулируется по закону

Для вентиляторов применяется следующая зависимость:

.

Если момент нагрузки обратно пропорционален скорости, то напряжение и частота связаны формулой:

По принципу управления преобразователи можно разделить на типы:

  • со скалярным управлением;
  • с векторным управлением.

Принцип скалярного управления заключается в управлении частотой питающего тока и силы этого тока . Скалярное управление предусматривает поддержание заданного соотношения частоты и напряжения при неизменном крутящемся моменте. Инвертор с управлением по скалярному принципу применяется для вентиляторов, компрессоров, насосов . Допускается подключение к одному преобразователю несколько двигателей.

Скалярный режим позволяет осуществлять регулировку скорости двигателя в узком диапазоне и в среднем колеблется от 1Гц до 100Гц. Это означает, что инвертор преобразует частоту вращения электрического тока сети 50Гц на входе в частоту вращения электрического тока на выходе в диапазоне 1:100Гц .

Важной характеристикой частотных преобразователей является диапазон сохранения скорости с сохранением крутящего момента вала двигателя.

Принцип действия инвертора с векторным управлением заключается в управление характеристиками частоту, силы тока и фазы питающего тока. Так как вращение ротора отстает от вращения магнитного поля статора на 3-5% при максимальном КПД и соответственно максимальной мощности и крутящем моменте, то инвертор с векторным управлением регулирует вращение фазы магнитного поля статора по отношению к вращению ротора, так, чтобы оно было всегда впереди на 3-5%.

При использовании частотного преобразователя реализованного по векторному принципу необходимы датчики обратной связи , которые отслеживают положение ротора электродвигателя. С использованием датчиков диапазон регулирования скорости увеличивается и может достигать показаний выходного тока от 1Гц до 800Гц, что составляет диапазон 1:800Гц . Что актуально для регулирования скорости в лифтовых механизмах, станках.

Название «векторное управление» возникло из-за математического представления тока, создаваемого магнитным полем статора в виде вектора, величина которого равна величине тока, а координаты зависят от фазы тока. Кратко можно сказать, что при векторном режиме управления двигатель развивает максимальный момент тогда, когда вектор магнитного поля находится под углом 103 0 — 105 0 к электрическому току в обмотке ротора. Векторный режим обеспечивает постоянный момент вращения на малых скоростях, высокую точность управления и возможность быстро регулировать скорость изменением частоты.

В инверторе используется принцип преобразования напряжения сети в два этапа. На первом этапе переменное напряжение сети (220 В/380 В) выпрямляется, сглаживается с помощью диодов и конденсаторов. В итоге на первом этапе получается напряжение постоянного тока. На втором этапе формируются прямоугольные импульсы заданной частоты. Через транзисторы инвертора они поступают на обмотки статора, где под воздействием магнитного поля превращаются в синусоидальные, соответствующие переменному току.

Преобразователи с методом широтно-импульсной модуляции напряжения (ШИМ) формируют синусоидальную кривую, параметры которой определяют амплитуду и частоту напряжения.

Виды частотных преобразователей

По назначению преобразователи выпускаются для однофазного и трехфазного напряжения. По типу управления - со скалярным или векторным управлением, о чем рассказывали выше. По типу преобразования делятся на два вида:

  • с автономным инвертором напряжения (АИН);
  • автономным инвертором тока (АИТ).

Современная промышленность выпускает частотные преобразователи в широком ассортименте, разной мощности и с разными функциями.

Виды входной и выходной информации

Частотные преобразователи различаются по количеству входов и выходов. Входные(выходные) сигналы делятся на следующие типы, которые приведены в таблице 1.

Таблица 1

Дискретные сигналы Аналоговые сигналы Цифровые сигналы
Входные Выходные Входные Выходные Входные Выходные
Пуск Готов Задание частоты от систем управления или получение сигналов от датчиков Для подключения к устройствам отображения информации Передают информацию от датчиков положения и скорости. Для передачи данных АСУ
Стоп Работа
Блокировка пуска Отказ
Торможение
Реверс
Выбор скорости

Преобразователи частоты по способу подключения к сети делятся на однофазные и трехфазные. Однофазные частотники подключаются к бытовой сети 220 В , а на выходе формируют трехфазное напряжение. К двигателю они подключаются по схеме «треугольник» . При этом необходимо, чтобы выходной ток составлял не больше половины номинального.

Трехфазные инверторы подключаются к сети 380 В , подключение проводится по принципу «звезда» .

Частотный преобразователь на корпусе имеет ряд клемм для подключения с соответствующей маркировкой. Рассмотрим их обозначения и функции.

Отдельно имеются цифровые выходы для подключения к управляющей аппаратуре (АСУ). Количество выходов определяется производителем инверторов, подробнее они описаны в инструкции по эксплуатации на конкретную модель.

Основные правила выбора преобразователя

В зависимости от требований по мощности и типу управляемых механизмов подбирается частотный преобразователь.

  • Мощность инвертора , указанная в документации, должна быть равной или больше механической мощности электродвигателя . Но при этом необходимо дополнительно ориентироваться на тип подключаемых механизмов. Для подъемных устройств выбирается преобразователь, имеющий величину мощности выше паспортного значения мощности двигателя. А для центробежного насоса допускается мощность инвертора ниже.
  • Если подключаемая нагрузка отличается большой инерционностью , то в зависимости от требуемого времени разгона подбирается мощность преобразователя. Для быстрого разгона потребуется преобразователь с мощностью, больше номинальной мощности двигателя на 10-15% .
  • При выборе частотника номинальный рабочий ток должен превышать значение номинального тока электродвигателя на 10% , чтобы не допустить блокировку по превышению тока.

Основным критерием выбора частотного преобразователя при невозможности одновременно удовлетворить требования по току и напряжению является выбор по полной номинальной мощности, которая должна превышать номинальную мощность двигателя.

При выборе инвертора нельзя обойти вниманием и количество входных (выходных) сигналов и их тип, что позволяет осуществлять автоматизацию производственным процессом и ее модернизацию. При этом желательно ориентироваться принципом - «входов много не бывает».

Как уже обсуждали, в первую очередь выбирается метод управления: скалярный или векторный. Скалярный способ используется для простых механизмов , где требуется обеспечение заданной скорости вращения (вентиляторы, компрессоры и т. д.), где не требуются датчики обратной связи . Векторное управление подразделяется на управление по напряжению и по току. При высоких требованиях к регулировке скорости (от 1:800) дополнительно предусмотрены специальные приводы. И есть необходимость ставить датчики обратной связи на вал

На использовании сигнала обратной связи основана работа ПИД — регулятора . ПИД — регулятор расшифровывается как пропорционально – интегрально — дифференциальный регулятор. Измеряется отклонение величины (скорости, напряжения) от уставки (заранее заданного отклонения) и управляющей системой формируется сигнал по корректировке с учетом статистической ошибки. Такая система используется при работе насосов, станков.

Использование преобразователя частоты позволяет обеспечить защиту двигателя от перегрузки (холостого хода), возникающих при сбое в работе присоединенных механизмов. При обнаружении перегрузки преобразователь формирует аварийный сигнал и выдает команду «Останов».

Дополнительная функция «Летящий пуск» позволяет осуществлять задержку пуска двигателя в зависимости от условий вращения, при перезапуске двигателя. Особенно это актуально для механизмов, допускающих вращение в одну или другую сторону.

Фильтр ЕМС уменьшает электромагнитные помехи , обеспечивая защиту преобразователя и машин, чувствительных к помехам.

Среди функций защиты системы преобразователь - двигатель перечислим основные, которые осуществляются с помощью частотника:

  • от перегрузки по току;
  • от перегрева;
  • от замыкания выходных фаз;
  • от перенапряжения;
  • от неисправностей в системе питания.

Разные производители оснащают инверторы различными дополнительными функциями по согласованию с заказчиком. Поэтому выбор частотного преобразователя определяется подключаемым оборудованием и задачами, выполнение которых должна обеспечивать система преобразователь - двигатель.