Четырехпозиционная фазовая модуляция (QPSK). Цифровая фазовая модуляция: BPSK, QPSK, DQPSK

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

Квадратурная фазовая модуляция QPSK (Quadrate Phase Shift Keying) является четырехуровневой фазовой модуляцией (M = 4 ), при которой фаза ВЧ колебания может принимать четыре различных значения с шагом, равным

π / 2 . Каждое

значение фазы

модулированного сигнала

содержит два бита информации. Поскольку

абсолютные

значения фаз

не имеют значения, выберем

± π 4, ±3 π4 .

Соответствие

значениями

модулированного сигнала ± π 4, ± 3 π 4

и передаваемыми

дибитами информационной последовательности 00, 01, 10, 11 устанавливается кодом Грея (см. рис.3.13) или какимлибо иным алгоритмом. Очевидно, что значения модулирующего сигнала при QPSK модуляции изменяются в два раза реже, чем при BPSK модуляции (при одинаковой скорости передачи информации).

Комплексная огибающая g (t ) при QPSK модуляции

представляет собой псевдослучайный полярный baseband сигнал, квадратурные компоненты которого, согласно

(3.41), принимают численные значения ± 1 2 . При этом

длительность каждого символа комплексной огибающей в два раза больше, чем символов в исходном цифровом модулирующем сигнале. Как известно, спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при

M = 4 и, следовательно,T s = 2T b . Соответственно спектральная плотность мощности QPSK сигнала (для

положительных частот) на основании уравнения (3.28) определяется выражением:

P(f) = K× {

sin2

p×(f -f

) ×2 ×T

Из уравнения (3.51) следует, что расстояние между первыми нулями в спектральной плотности мощности QPSK сигнала равно D f = 1 T b , что в два раза меньше, чем

для модуляции BPSK. Другими словами, спектральная эффективность квадратурной QPSK модуляции в два раза выше, чем бинарной фазовой модуляции BPSK.

cos(ωc t )

Формирующий

w(t)

Формирователь

квадратурных

Сумматор

компонент

I(t)

sin(ωc t )

Формирующий

Рис .3.15 . Квадратурный модулятор QPSK сигнала

Функциональная схема квадратурного QPSK модулятора показана на рис.3.15. На преобразователь кода поступает цифровой сигнал со скоростью R . Преобразователь кода формирует квадратурные компоненты комплексной

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

огибающей в соответствии с табл.3.2 со скоростью, в два раза меньшей по сравнению с исходной. Формирующие фильтры обеспечивают заданную полосу частот модулирующего (и соответственно модулированного) сигнала. Квадратурные компоненты несущей частоты поступают на ВЧ перемножители от схемы синтезатора частоты. На выходе сумматора имеет место результирующий модулированный QPSK сигнал s (t ) в

соответствии с (3.40).

Таблица 3.2

Формирование QPSK сигнала

cos[θk ]

sin[θk ]

компонента

I -компонента

Сигнал QPSK, так же как и сигнал BPSK, не содержит в своем спектре несущей частоты и может быть принят только с помощью когерентного детектора, который является зеркальным отражением схемы модулятора и

s(t)

cos(ωc t )

восстановления

цифрового

sin(ωc t )

I(t)

Рис .3.16 . Квадратурный демодулятор QPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

показан на рис.3.16.

3.3.4. Дифференциальная бинарная фазовая модуляция DBPSK

Принципиальное отсутствие несущей частоты в спектре модулированного сигнала в некоторых случаях приводит к неоправданному усложнению демодулятора в приемнике. QPSK и BPSK сигналы могут быть приняты только когерентным детектором, для реализации которого необходимо либо передавать наравне с сигналом еще и опорную частоту, либо реализовать в приемнике специальную схему восстановления несущей. Существенное упрощение схемы детектора достигается в том случае, когда фазовая модуляция реализуется в дифференциальной форме DBPSK (Differential Binary Phase Shift Keying).

Идея дифференциального кодирования состоит в том, чтобы передавать не абсолютное значение информационного символа, а его изменение (или не изменение) относительно предыдущего значения. Другими словами, каждый последующий передаваемый символ содержит в себе информацию о предыдущем символе. Тем самым для извлечения исходной информации при демодуляции в качестве опорного сигнала можно использовать не абсолютное, а относительное значение модулируемого параметра несущей частоты. Алгоритм дифференциального бинарного кодирования описывается следующей формулой:

d k=

m kÅ d k−1

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

где { m k } - исходная бинарная последовательность; {d k }-

результирующая бинарная последовательность; Å - символ сложения по модулю 2.

Пример дифференциального кодирования показан в табл.3.3.

Таблица 3.3

Дифференциальное кодирование бинарного

цифрового сигнала

{d k

{d k

Аппаратно дифференциальное кодирование реализуется в виде схемы задержки сигнала на временной интервал, равный длительности одного символа в бинарной информационной последовательности и схемы сложения по модулю 2 (рис.3.17).

Логическая схема

d k=

m kÅ d k−1

Линия задержки

Рис .3.17. Дифференциальный кодер DBPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Дифференциальный некогерентный детектор DBPSK сигнала на промежуточной частоте показан на рис.3.18.

Детектор осуществляет задержку принятого импульса на один символьный интервал, а затем перемножение полученного и задержанного символов:

s k × s k −1 = d k sin(w c t )d k −1 × sin(w c t )= 1 2 d k × d k −1 × .

После фильтрации с помощью ФНЧ или согласованного

Очевидно, что ни временная форма комплексной огибающей, ни спектральный состав дифференциального DВPSK сигнала не будут отличаться от обычного BPSK сигнала.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

3.3.5. Дифференциальная квадратурная фазовая модуляция π/4 DQPSK

Модуляция π/4 DQPSK (Differential Quadrate Phase Shift Keying) является формой дифференциальной фазовой модуляции, специально разработанной для четырехуровневых QPSK сигналов. Сигнал этого вида модуляции может быть демодулирован некогерентным детектором, как это свойственно сигналам DBPSK модуляции.

Отличие дифференциального кодирования в π/4 DQPSK модуляции от дифференциального кодирования в DBPSK модуляции состоит в том, что передается относительное изменение не модулирующего цифрового символа, а модулируемого параметра, в данном случае фазы. Алгоритм формирования модулированного сигнала поясняется табл.3.4.

Таблица 3.4

Алгоритм формирования сигнала π/4 DQPSK

Информацион

ный дибит

Приращение

ϕ = π 4

ϕ = 3 π4

ϕ = −3 π4

ϕ = − π 4

фазового угла

Q -компонента

Q =sin (θk ) =sin (θk − 1 +

I -компонента

I = cos(θ k )= cos(θ k − 1 +

Каждому дибиту исходной информационной последовательности ставится в соответствие приращение фазы несущей частоты. Величина приращения фазового угла кратна π/4. Следовательно, абсолютный фазовый угол θ k может принимать восемь различных значений с шагом

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

π/4, а каждая квадратурная компонента комплексной огибающей - одно из пяти возможных значений:

0, ±1 2 , ±1 . Переход от одной фазы несущей частоты к другой можно описать с помощью диаграммы состояний на рис.3.13 дляM = 8 поочередным выбором абсолютного значения фазы несущей частоты из четырехпозиционных

Блок-схема π/4 DQPSK модулятора показана на рис.3.19. Исходный бинарный цифровой модулирующий сигнал поступает в преобразователь код-фаза. В преобразователе после задержки сигнала на один символьный интервал определяется текущее значение дибита и соответствующее ему приращение фазыφ k несущей частоты. Это

приращение фазы поступает на вычислители квадратурных I Q компонент комплексной огибающей (табл.3.3). Выход

I Q вычислителей представляет собой пятиуровневый

цифровой сигнал с длительностью импульсов, в два раза

Q = cos(θk –1 + Δφ)

Формирующий фильтр

cos(ωc t )

Δφk

wk (t)

Преобразователь

Δφk

sin(ωc t )

I = sin(θk –1 + Δφ)

Формирующий фильтр

Рис .3.19 . Функциональная схема π/4 DQPSK модулятора

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

превышающей длительность импульсов исходного бинарного цифрового сигнала. Далее квадратурные I (t ), Q (t ) компоненты комплексной огибающей проходят

формирующий фильтр и поступают на высокочастотные перемножители для формирования квадратурных компонент высокочастотного сигнала. На выходе высокочастотного сумматора имеет место полностью сформированный

π/4 DQPSK сигнал.

Демодулятор π/4 DQPSK сигнала (рис.3.20) предназначен для детектирования квадратурных компонент модулирующего сигнала и имеет структуру, похожую на структуру демодулятора DBPSK сигнала. Входной ВЧ сигнал r (t ) = cos(ω c t + θ k ) на промежуточной частоте

rI (t)

r(t)

Задержка τ = T s

Решающее w(t) устройство

Сдвиг фазы Δφ = π/2

rQ (t)

Рис .3.20 . Демодулятор π/4 DQPSK сигнала на промежуточной частоте

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

поступает на вход схемы задержки и ВЧ перемножители. Сигнал на выходе каждого перемножителя (после удаления высокочастотных компонент) имеет вид:

r I (t )= cos(w c t + q k )× cos(w c t + q k −1 )= cos(Df k );

r Q (t )= cos(w c t + q k )× sin(w c t + q k −1 )= sin(Df k ).

Решающее устройство анализирует baseband сигналы на выходе каждого ФНЧ. Определяется знак и величина приращения фазового угла, а, следовательно, и значение принятого дибита. Аппаратурная реализация демодулятора на промежуточной частоте (см. рис.3.20) является не простой задачей из-за высоких требований к точности и стабильности высокочастотной схемы задержки. Более распространен вариант схемы демодулятора π/4 DQPSK сигнала с непосредственным переносом модулированного сигнала в baseband диапазон, как это показано на рис.3.21.

r(t)

r11 (t)

rQ (t)

τ = T s

cos(ωc t + γ)

r1 (t)

r12 (t)

rI (t)

r21 (t)

sin(ωc t + γ)

r2 (t)

r22 (t)

τ = T s

Рис .3.21 . Демодулятор π/4 QPSK сигнала в baseband диапазоне

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Непосредственный перенос модулированного сигнала в baseband диапазон позволяет реализовать полностью

переноса спектра модулированного колебания в baseband диапазон. Опорные сигналы, также поступающие на входы ВЧ перемножителей, не синхронизированы по фазе с несущей частотой модулированного колебания. В результате baseband сигналы на выходе фильтров низкой частоты имеют произвольный фазовый сдвиг, который считается постоянным в течение символьного интервала:

(t )= cos(w c t + q k )× cos(w c t + g )= cos(q k - g );

r 2 (t )= cos(w c t + q k )× sin(w c t + g )= sin(q k - g ),

где γ - сдвиг фазы между принимаемым и опорным сигналами.

Демодулированные baseband сигналы поступают на две схемы задержки и четыре baseband перемножителя, на выходах которых имеют место следующие сигналы:

r 11 (t )= cos(q k - g )× cos(q k −1 - g );

r 22 (t )= sin(q k - g )× sin(q k −1 - g );

r 12 (t )= cos(q k - g )× sin(q k −1 - g );

r 21 (t )= sin(q k - g )× cos(q k −1 - g ).

В результате суммирования выходных сигналов перемножителей исключается произвольный фазовый сдвиг γ, остается только информация о приращении фазового угла несущей частоты Δφ:

k );

r I (t )= r 12 (t )+ r 21 (t )=

R 12 (t )= cos(q k - g )× sin(q k −1 - g )+ r 21 (t )=

Sin(q k - g )× cos(q k −1 - g )= sin(q k - q k −1 )= sin(Dj k ).

Реализация схемы задержки в baseband диапазоне и

последующая цифровая обработка демодулированного сигнала существенно повышают стабильность работы схемы и достоверность приема информации.

3.3.6. Квадратурная сдвиговая фазовая модуляция

Квадратурная сдвиговая фазовая модуляция OQPS (Offset Quadrate Phase Shift Keying) является частным случаем квадратурной модуляции QPSK. Огибающая несущей частоты QPSK сигнала теоретически постоянна. Однако при ограничении полосы частот модулирующего сигнала свойство постоянства амплитуды фазомодулированного сигнала утрачивается. При передаче сигналов с BPSK или QPSK модуляцией изменение фазы на символьном интервале может быть величиной π илиp 2 . Интуитивно

понятно, что чем больше мгновенный скачок фазы несущей, тем больше сопутствующая АМ, возникающая при ограничении спектра сигнала. В самом деле, чем больше величина мгновенного изменения амплитуды сигнала при изменении его фазы, тем большую величину имеют гармоники спектра, соответствующего этому временному скачку. Другими словами, при ограничении спектра сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

величина возникающей внутренней АМ будет пропорциональна величине мгновенного скачка фазы несущей частоты.

В QPSK сигнале можно ограничить максимальный скачок фазы несущей, если использовать временной сдвиг величиной T b междуQ иI каналами, т.е. ввести элемент

задержки величиной T b в каналQ илиI . Использование

временного сдвига приведет к тому, что полное необходимое изменение фазы будет происходить в два этапа: сначала изменяется (или не изменяется) состояние одного канала, затем другого. На рис.3.22 показана последовательность модулирующих импульсов Q (t ) иI (t ) в

квадратурных каналах для обычной QPSK модуляции.

Q(t)

I(t)

I(t– Tb )

2T s

Рис .3.22 . Модулирующие сигналы вI/Q каналах при QPSK

и OQPSK модуляции

Длительность каждого импульса равна T s = 2 T b . Изменение фазы несущей при изменении любого символа вI илиQ

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Цифровая фазовая модуляция - это универсальный и широко используемый метод беспроводной передачи цифровых данных.

В предыдущей статье мы видели, что мы можем использовать дискретные изменения амплитуды или частоты несущей как способ представления единиц и нулей. Неудивительно, что мы также можем представлять цифровые данные с помощью фазы; этот метод называется фазовой манипуляцией (PSK, phase shift keying).

Двоичная фазовая манипуляция

Наиболее простой тип PSK называется двоичной фазовой манипуляцией (BPSK, binary phase shift keying), где «двоичный» относится к использованию двух фазовых смещений (одно для логической единицы и одно для логического нуля).

Мы интуитивно можем признать, что система будет более надежной, если разделение между этими двумя фазами будет большим - конечно, приемнику будет сложно различать символ со смещением фазы 90° от символа со смещением фазы 91°. Для работы у нас есть диапазон фаз 360°, поэтому максимальная разница между фазами логической единицы и логического нуля составляет 180°. Но мы знаем, что переключение синусоиды на 180° - это то же самое, что ее инвертирование; таким образом, мы можем думать о BPSK как о простом инвертировании сигнала несущей в ответ на одно логическое состояние и оставление ее в исходном состоянии в ответ на другое логическое состояние.

Чтобы сделать следующий шаг, мы вспомним, что умножение синусоиды на отрицательную единицу - это то же самое, что ее инвертирование. Это приводит к возможности внедрения BPSK с использованием следующей базовой аппаратной конфигурации:

Базовая схема получения BPSK сигнала

Однако эта схема легко может привести к переходам с высоким наклоном в форме сигнала несущей частоты: если переход между логическими состояниями происходит, когда сигнал несущей находится в своем максимальном значении, напряжение сигнала несущей должно быстро перейти к минимальному значению.

Высокий наклон в форме BPSK сигнала при изменении логического состояния модулирующего сигнала

Такие события с высоким наклоном нежелательны, потому что они создают энергию на высокочастотных составляющих, которые могут помешать другим радиочастотным сигналам. Кроме того, усилители имеют ограниченную способность производить резкие изменения в выходном напряжении.

Если мы усовершенствуем вышеприведенную реализацию двумя дополнительными функциями, то сможем обеспечить плавные переходы между символами. Во-первых, нам необходимо убедиться, что период цифрового бита равен одному или нескольким полным периодам сигнала несущей. Во-вторых, нам необходимо синхронизировать цифровые переходы с сигналом несущей. Благодаря этим усовершенствованиям мы могли бы разработать систему таким образом, чтобы изменение фазы на 180° происходило, когда сигнал несущей частоты находится в пересечении нуля (или близко к нему).

QPSK

BPSK передает один бит на символ, к чему мы и привыкли. Всё, что мы обсуждали в отношении цифровой модуляции, предполагало, что сигнал несущей изменяется в зависимости от того, находится ли цифровое напряжение на низком или высоком логическом уровне, и приемник воссоздает цифровые данные, интерпретируя каждый символ как 0 или 1.

Прежде чем обсуждать квадратурную фазовую манипуляцию (QPSK, quadrature phase shift keying), нам необходимо ввести следующую важную концепцию: нет причин, по которым один символ может передавать только один бит. Это правда, что мир цифровой электроники строится вокруг схем, в которых напряжение находится на одном или другом экстремальном уровне, так что напряжение всегда представляет собой один цифровой бит. Но радиосигнал не является цифровым; скорее, мы используем аналоговые сигналы для передачи цифровых данных, и вполне приемлемо разработать систему, в которой аналоговые сигналы кодируются и интерпретируются таким образом, чтобы один символ представлял два (или более) бита.

Преимущество QPSK заключается в более высокой скорости передачи данных: если мы сохраняем одну и ту же длительность символа, то можем удвоить скорость передачи данных от передатчика к приемнику. Недостатком является сложность системы. (Вы можете подумать, что QPSK более восприимчив к битовым ошибкам, чем BPSK, поскольку разделение между возможными значениями в нем меньше. Это разумное предположение, но если вы рассмотрите их математику, то оказывается, что вероятности ошибок на самом деле очень похожи.)

Варианты

QPSK модуляция, конечно, является эффективным методом модуляции. Но ее можно улучшить.

Скачки фазы

Стандартная QPSK модуляция гарантирует, что переходы между символами будут происходить с высоким наклоном; поскольку скачки фазы могут составлять ±90°, мы не можем использовать подход, описанный для скачков фазы на 180°, создаваемых BPSK модуляцией.

Эту проблему можно смягчить, используя один из двух вариантов QPSK. Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK, Offset QPSK), которая включает в себя добавление задержки к одному из двух потоков цифровых данных, используемых в процессе модуляции, уменьшает максимальный скачок фазы до 90°. Другим вариантом является π/4-QPSK, которая уменьшает максимальный скачок фазы до 135°. Таким образом, OQPSK обладает преимуществом в уменьшении разрывов фазы, но π/4-QPSK выигрывает, поскольку она совместима с дифференциальном кодированием (обсуждается ниже).

Другим способом решения проблем с разрывами между символами является реализация дополнительной обработки сигналов, которая создает более плавные переходы между символами. Этот подход включен в схему модуляции, называемую частотной модуляцией минимального фазового сдвига (MSK, minimum shift keying), а также улучшение MSK, известное как Гауссовская MSK (GMSK, Gaussian MSK).

Дифференциальное кодирование

Еще одна сложность заключается в том, что демодуляция PSK сигналов сложнее, чем FSK сигналов. Частота является «абсолютной» в том смысле, что изменения частоты всегда можно интерпретировать, анализируя изменения сигнала во времени. Фаза, однако, относительна в том смысле, что она не имеет универсальной опорной точки - передатчик генерирует изменения фазы относительно одного момента времени, а приемник может интерпретировать изменения фазы относительно другого момента времени.

Практическое проявление этого заключается в следующем: если между фазами (или частотами) генераторов, используемых для модуляции и демодуляции, существуют различия, PSK становится ненадежной. И мы должны предположить, что будут разности фаз (если приемник не включает в себя схему восстановления несущей).

Дифференциальная QPSK (DQPSK, differential QPSK) - это вариант, который совместим с некогерентными приемниками (т.е. приемниками, которые не синхронизируют генератор демодуляции с генератором модуляции). Дифференциальная QPSK кодирует данные, создавая определенный сдвиг фазы относительно предыдущего символа таким образом, чтобы схема демодуляции анализировала фазу символа, используя опорную точку, которая является общей и для приемника, и для передатчика.

Резюме

  • Двоичная фазовая манипуляция (BPSK) - это простой способ модуляции, который может передавать один бит на символ.
  • Квадратурная фазовая манипуляция (QPSK) более сложна, но она удваивает скорость передачи данных (или достигает той же скорости передачи данных при вдвое меньшей ширине полосы частот).
  • Квадратурная фазовая манипуляция со сдвигом квадратур (OQPSK), π/4-QPSK, частотная модуляция минимального фазового сдвига (MSK) - это схемы модуляции, которые смягчают эффекты изменения напряжения сигнала несущей с высоким наклоном при переходе между символами.
  • Дифференциальная QPSK (DQPSK) использует разность фаз между соседними символами, чтобы избежать проблем, связанных с отсутствием фазовой синхронизации между передатчиком и приемником.

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.

модуляция используется не только в радиоканалах. Современные цифровые методы передачи также немыслимы без применения модуляции.

Человек - аналоговое устройство с точки зрения средств коммуникаций, которыми он располагает. Элементы цифровой техники можно обнаружить лишь на глазном дне .

Существует множество различных видов модуляции. Исторически первыми появились аналоговые способы модуляции: амплитудная, частотная, фазовая и различные их комбинации. Это было связано с технологической простотой их реализации. Цифровые методы стали использоваться лишь около 50 лет назад.

Для преобразования частот используется перемножение сигналов. Пусть мы имеем два синусоидальных сигнала: и . Из тригонометрии известно, что

(1.3)

Это означает, что в результате перемножения вместо двух частот и мы имеем две новые частоты и с амплитудой . Если входной сигнал имеет полосу , то после перемножения с сигналом, имеющим частоту (несущая частота), получим сигнал с полосой в интервале от до . Это преобразование проиллюстрировано на рис. 1.3 ( по вертикальной оси отложена спектральная плотность сигнала ). На практике это преобразование выполняется с помощью смесителей или гетеродинов, частота называется сигналом гетеродина или несущей.


Рис. 1.3.

Получение исходного сигнала из преобразованного достигается путем обратного преобразования, которое сводится к умножению полученного сигнала на , где . При таком обратном преобразовании мы получим сигнал с исходным частотным диапазоном. Помимо этого будет получен сигнал с полосой от до . Так как обычно много больше , серьезных проблем это не вызывает - достаточно воспользоваться соответствующим фильтром. Этому методу обратного преобразования присущи некоторые недостатки. Если сигнал имеет фазовый сдвиг по отношению к тому, что имел сигнал, использованный при прямом преобразовании, то амплитуда выходного сигнала будет пропорциональна . Понятно, что при вариации фазы амплитуда будет меняться, а при станет нулевой. По этой причине должны быть предприняты специальные меры для синхронизации этих сигналов ( передатчика и приемника).

Синхронизация передатчика и приемника в каналах коммуникаций является одной из важнейших задач .

Соотношение (1.1) используется при реализации амплитудной, частотной или фазовой модуляции. Так, в случае амплитудной модуляции, при временной вариации будет изменяться и амплитуда выходного сигнала ( - амплитуда несущей частоты при этом остается постоянной; при этом может также варьироваться). Форма сигнала на выходе такого преобразователя имеет вид . Для получения формы исходного сигнала на принимающей стороне используется схема детектора, на выходе которого получается сигнал, пропорциональный модулю огибающей функции входного сигнала. Существуют и другие методы демодуляции амплитудно-модулированного сигнала. Главным недостатком метода амплитудной модуляции является возможность нелинейных искажений из-за перемодуляции (когда амплитуда модулирующего сигнала слишком велика).

При частотной и фазовой модуляции амплитуда передаваемого сигнала остается почти постоянной, что исключает нелинейные искажения, связанные с широким динамическим амплитудным диапазоном. Выходной сигнал для этого вида модуляции имеет вид , где зависит от формы преобразуемого входного сигнала. Часто используется комбинация амплитудной и фазовой модуляции, которая носит название квадратурной модуляции.

Системы передачи данных с амплитудной или частотной модуляцией являются аналоговыми системами и по этой причине весьма чувствительны к шумам на входе приемника.

Применение цифровых методов пересылки информации увеличивает вероятность корректной доставки. Если для аналоговой передачи требуется отношение "сигнал/шум" на уровне 40-60 дБ, то при цифровой передаче достаточно 10-12 дБ.

Выбор типа модуляции зависит от стоящей задачи и от характеристик канала (полосы пропускания, ослабления сигнала и т.д.). Частотная модуляция менее чувствительна к амплитудным флуктуациям сигнала. Ослабление сигнала может варьироваться во времени из-за изменений в транспортной среде, что довольно типично для коммутируемых телефонных сетей. В любом случае на передающей стороне необходим модулятор, а на принимающей - демодулятор. Так как обмен обычно двунаправлен, эти устройства объединяются в одном приборе, который называется модемом .

В модемах применимы несколько видов модуляции (Таблица 1.1).

В QAM -модуляции используется 8/16 комбинаций "амплитуда-фаза" (см. рис. 1.4). Понятно, что такой тип модуляции более уязвим для шумов .

Если имеется субъектов, которые хотят осуществлять обмен информацией в одном и том же частотном диапазоне, они должны осуществлять обмен по очереди (метод мультиплексирования по времени - TDM ) или передаваемые ими сигналы должны отличаться каким-то еще параметром помимо частоты (например, амплитудой или направлением излучения). Если это условие не выполнено, весьма вероятно искажение данных при доставке. Вы наверняка сталкивались с этим, когда за праздничным столом пытаются говорить сразу несколько человек.

Таблица 1.1.
FSK (Frequency Shift Keying) - ступенчатое переключение частоты синусоидального сигнала от к при неизменной амплитуде; частоте ставится в соответствие логический нуль, а - логическая единица
BPSK (Binary Phase-Shift Keying) - скачкообразное переключение фазы синусоидального сигнала на при неизменной амплитуде; при этом фазе 0 ставится в соответствие логический нуль, а - логическая единица
DPSK (Differential Phase Shift Keying) - метод, при котором изменяется фаза несущей частоты при постоянной амплитуде и частоте. Разновидность PSK , при которой кодируется лишь изменение сигнала
QAM ( Quadrature Amplitude Modulation ) - комбинация амплитудной и фазовой модуляции, позволяет осуществить кодирование 8 бит на бод
QPSK ( Quadrature Phase-Shift Keying) - квадратурная фазовая модуляция. Использует 4 фиксированных значения фазы 0, , и , требует в два раза более узкую полосу, чем PSK , и по этой причине весьма популярна
TCM (Trellis mathd Modulation) - метод предполагает использование избыточности, каждый бод несет дополнительный бит, который позволяет более точно восстановить информационную битовую последовательность. При кодировании сигнала используется метод QAM . Метод реализован в современных высокоскоростных модемах и позволяет снизить требования к отношению "сигнал/ шум " на 4-5 дБ


Рис. 1.4.

Передаваемый сигнал характеризуется большим числом параметров - частотой, фазой, амплитудой, параметрами, определяющими его пространственное распространение, уровнем шума и т.д. В случае использования широкополосного сигнала, который представляет собой суперпозицию определенного числа синусоидальных составляющих, число параметров пропорционально возрастает. Чем больше таких параметров анализируется принимающей стороной одновременно, тем большее отношение "сигнал- шум " может быть достигнуто.

Будущее за системами, анализирующими всю совокупность параметров входного сигнала. Современные мощные и относительно дешевые сигнальные процессоры создают технологическую базу для этого .

Впервые импульсно-кодовая модуляция (ИКМ) была применена для голосового сигнала в 1937 году Алеком Ривсом. Это было сделано для преодоления проблемы накопления искажений и шумов в процессе ретрансляции аналоговых сигналов. Тогда впервые было использовано стробирование с частотой 8кГц при 8-битовом аналого-цифровом преобразовании ( АЦП ). В то время еще не существовало эффективных технологических средств для реализации такой схемы.

Цифровая связь берет свое начало в 1970-х годах. Именно в это время начинается разработка больших интегральных схем оптоэлектроники. В процессе разработки ISDN -системы решались следующие проблемы.

  • Требовалось создать систему, способную предоставить клиенту канал с пропускной способностью 64 Кбит/с (8 бит*8 КГц). При этом предполагалось использовать существующую проводную сеть с полосой пропускания 4 КГц. Данное ограничение не является абсолютным, но расширение полосы канала и спектра сигнала в сторону высоких частот неизбежно приводит к увеличению ослабления этой части спектра из-за омического сопротивления проводов и к увеличению перекрестных наводок между соседними скрученными парами. Замена проводов оптическим волокном, безусловно, решает проблему, но заметно удорожает систему (да и нельзя не учитывать, что провода уже существуют). Кроме того провода позволяли подвести питание к терминальному оборудованию, например к телефонному аппарату.
  • Интерфейс клиента должен был предоставлять определенный спектр услуг. В частности, такой интерфейс должен позволять подключение нескольких независимых телефонных аппаратов, факсов или ЭВМ, использующих общую телефонную линию. Решение не должно было ограничивать клиенту возможность использования нескольких каналов, например двух 64 Кбит/с (В-каналы) и одного сигнального с полосой 16 Кбит/с (D-канал ISDN).

В 1984 году CCITT опубликовало рекомендации для стандартов интерфейсов и услуг ISDN ( Integrated System Digital Network ). Впервые услуги ISDN стали доступны благодаря усилиям British Telecom в июне 1985 года. В 1986 году принят стандарт Х.21. К 1988 году такие услуги стали доступны в 60 городах Великобритании. С этого времени система ISDN стала признанным международным стандартом цифровой телефонной и факсимильной связи. При этом пользователи продолжали пользоваться двухпроводными аналоговыми телефонными аппаратами.

С 1985 года Международный телекоммуникационный союз (ITU ) начал обсуждать возможность создания широкополосной версии ISDN . Сначала речь шла о полосе 45-53 Мбит/c (вместо 1,544 Мбит/с). Такой стандарт был создан в июне 1989 года. Базовыми частотами передачи, помимо упомянутых выше, были признаны 155 Мбит/с (