Что такое интерфейс и для чего он служит? Что такое интерфейс

Слово интерфейс может иметь множество определений, однако основное определение действует в сфере компьютерной техники. Интерфейс здесь означает средство, которое помогает пользователю взаимодействовать с играми, программами или операционным системами. Это средство делает программы узнаваемыми и облегчает работу с ними. Для примера можно взять интерфейс программы Paint. Если человек умеет с ней работать, то ему под силу будет и работа с иными программами, имеющими подобный интерфейс.

Можно объяснить термин другими словами, как совокупность разных средств, с помощью которых человек управляет вычислительной техникой. Основные задачи интерфейса – это ввод и вывод информации. Помимо этого, он помогает управлять программным обеспечением, обмениваться данными и проводить командные операции. Данные операции проводятся с помощью внешних носителей информации.

Как интерфейс можно характеризовать заднюю панель компьютера. Это обусловлено возможностью подключать к нему разные устройства с помощью входов. Панели управления, которые находятся на стиральных машинах или в автомобилях, также являются интерфейсом.

Само слово «интерфейс» позаимствовано в английском языке. Его буквальный перевод означает взаимодействие между лицами, в таком же значении оно и используется. В современных технологиях, интерфейс – это уникальные системные связи, которые обеспечивают передачу информации между двумя объектами или более. Хотя данное понятие чаще всего используется в компьютерных технологиях, присутствует оно и в других областях науки и техники. К примеру, в инженерной психологии интерфейсом называют коммуникации машин с людьми.

Необходимость интерфейсов

Представим, что сложное оборудование составлено из связей, блоков и других различных узлов. Также оборудование связано и с самим пользователем. Последняя связь должна быть выражена в логической форме. Это система, которая предоставляет информацию, а также характеризует сигналы. Компьютерные интерфейсы логически можно представить себе как системы, созданные на основании математики. То есть, математически, это системы понятий Булевой алгебры. Физически же его можно представить как совокупность чипов, электронных деталей, проводков и других частей, которые между собой обмениваются импульсами тока.

С помощью интерфейса компьютер вообще может работать. Именно он обеспечивает связь процессора и оперативной памяти, устройствами печати, а также с видеокартой. Помимо этого с помощью интерфейса можно работать в Интернете, связываться с иными устройствами и с иными пользователями.

Проще сказать, без данного средства работа вычислительной техники не может быть выполнена. В компьютерных технологиях сегодня применяются разные типы интерфейсов, которые нужны, чтобы работать программисту, необходимы они и для обычных пользователей ПК.

Интерфейс программы

Интерфейсом программы именуют разные части, с использованием которых может производиться управление этой программой. В программе интерфейс выглядит как окошки, кнопочки, которые используются для того, чтобы программа могла совершить действия, которых вы от неё ждете.

Приведем простой пример в использовании компьютерных программ. Для того чтобы посмотреть фильм, необходимо воспользоваться такой программой, как видеоплеер. В программе запускается та строка, которая обозначает фильм, после чего он отображается на экране. Программа для просмотра фильмов также имеет свой интерфейс, который служит для того, чтобы управлять. Так, с помощью кнопок, присутствующих на плеере, можно сделать звук громче или тише, поставить фильм на паузу или выполнить другие необходимые действия.

Графический интерфейс

Графический интерфейс – это пользовательский интерфейс, в котором используются изображения вместо цифр. Изображения в нем заменяют также и буквы, это кнопки или иконки. Яркий пример интерфейса графического типа – это рабочий стол Виндоуз. Работа в этом интерфейсе заключается в том, чтобы обеспечивать работу программы с помощью кликов.

По сравнению с тем, что происходит ввод и вывод через командную строку, графический интерфейс простой и понятный. Не так часто для того, чтобы пользоваться графическим интерфейсом, необходимы специальные знания компьютера. Графический интерфейс часто интуитивно понятен, еще его называют дружелюбным.

Графический интерфейс имеет и свои недостатки, главный из которых – это большой объем памяти, который необходим для того, чтобы в графическом виде представлять себе программу. Но современные программы этот недостаток преодолели, поскольку память современных компьютеров увеличивается с каждым новым выпуском. Но вместе с этим усложняется и сам интерфейс, теперь он занимает больше памяти, но становиться удобнее и эффективнее.

Что касается игр, то в них также существует графический интерфейс, чтобы пользователь мог взаимодействовать с компьютером во время игры. Он обеспечивает также и общение пользователей друг с другом. Почти во всех играх интерфейс сложный, и он позволяет управлять игрой с помощью кнопок и мышкой.

Действия игровых персонажей обеспечиваются действиями пользователя, и способы реализации их стандартны для всех практически игр. Часто пользователю предоставляется возможность поменять настройки интерфейса для того, чтобы ему удобнее было играть. Сейчас появились и новые возможности управления, так, при создании сенсорных экранов, управлять игрой можно с помощью прикосновения пальцев руки.

Виды интерфейса

Помимо того, что интерфейс существует игровой, программный и графический, бывает также интерфейс следующих видов:

  • внешний;
  • внутренний.

Внутренний интерфейс представляет собой методы и свойства, к ним доступ осуществляется посредством иных средств данного объекта. Еще их именуют приватными.

Внешним интерфейсом именуют методы и свойства, которые снаружи доступны пользователям. Такие методы называют публичными. Данные виды можно рассмотреть наглядно, взяв за пример кофеварку. Внутри кофеварки спрятан кипятильник, элемент, который нагревает, тепловой предохранитель и так далее. Все это можно назвать внутренним интерфейсом. Детали, которые его составляют, обеспечивают работоспособность прибора. Для этого они взаимодействуют друг с другом. К примеру, для работы кофеварки её нагревательный элемент подключен к кипятильнику.

Ко внутреннему интерфейсу кофеварки подобраться тяжело, он закрыт от пользователя пластмассовым корпусом. Детали прибора скрыты, и пользователю доступен только внешний интерфейс. Когда приобретена кофеварка, то пользователю доступен только внешний интерфейс. Знать о внутреннем интерфейсе совсем не обязательно, для пользования прибором необходим только внешний его интерфейс.

Такие же примеры касаются и остальных бытовых приборов, к примеру, стиральная машинка, телевизор и прочее. Существует внутренний интерфейс и у компьютера, он не доступен пользователю, однако при поломке прибора, приходится взаимодействовать именно с ним.

Таким образом, интерфейс характеризуют как средства, с помощью которых удается взаимодействовать с вычислительными машинами, управлять бытовыми приборами и так далее. Он бывает внешним и внутренним. Пользователю доступен только внешний интерфейс приборов и машин.

Взаимодействие человека с вычислительной машиной - важнейшее звено процессов при решении прикладных задач различного характера. Итак, что такое интерфейс?

Интерфейс представляет собой комплекс физических и логических форм взаимодействия отдельных компонентов входящих в состав операционной системы. Другими словами, это совокупность определенных алгоритмов и соглашений по обмену информацией между компонентами (логический тип интерфейса), а также объединение механических, физических и функциональных характеристик, с помощью которых взаимодействие реализуется (физический тип интерфейса).

Также таким термином часто называют программные и технические средства, образующие связь устройств с узлами ВС. Распространение интерфейса приходится на все физические и логические средства, с помощью которых вычислительная система взаимодействует с внешней средой, к примеру, с операционной системой, пользователем и т.д.

Рассмотрев, что такое интерфейс, следует выделить его виды с присущими им особенностями. Так, интерфейсы различаются по структуре связей, способу подключения и методу передачи данных, принципам управления и синхронизации.

Виды интерфейсов

Внутримашинный интерфейс представляет собой систему связи и средств соединения блоков и узлов ЭВМ друг с другом. На деле он объединяет в себе электрические линии связи (провода), схему сопряжения с составляющими компьютера, а также протоколы (алгоритмы) передачи сигналов. Машинный интерфейс, в свою очередь, подразделяется на односвязный и многосвязный. В первом случае, связь всех блоков ПК друг с другом осуществляется с помощью локальных проводов, а во втором - с помощью общей или

Внешний интерфейс - это система связи компьютера с или с остальными ЭВМ. Они также подразделяются на несколько типов: интерфейс периферийных устройств и сетевой интерфейс. Первый подключается при помощи шин ввода-вывода, а второй - в рамках одноранговой сети или сети типа клиент-сервер.

Интерфейс «человек-машина». По-другому его называют пользовательским. Что такое интерфейс «человек-компьютер»? Это способ, с помощью которого выполняется какая-либо задача, то есть действия, которые вы совершаете, и то, что получается в результате. Такой интерфейс ориентирован, прежде всего, на человека, то есть он отвечает его потребностям и учитывает слабости.

Поскольку пользовательский интерфейс более всего интересен человеку, то его также классифицируют на несколько подвидов: командный, SILK и WIMP.

При командном интерфейсе взаимодействие человека с ПК осуществляется путем подачи определенных команд, которые она выполняет, для того чтобы дать пользователю необходимый результат. Его основой может быть пакетная технология или технология командной строки.

Последовательный интерфейс обеспечивает передачу информации (последовательности битов) по одной линии.

Что такое интерфейс SILK? Это вид который больше всего близок к обычному человеческому общению, то есть к обычному разговору. Так, компьютер анализирует речь человека и находит в ней нужные ключевые фразы, на основе которых выполняет определенные команды, выдавая человеку результат также в понятной для него форме. Такой вид интерфейса сопряжен со значительными финансовыми затратами, поэтому используется на данном этапе только в военных целях.

Характерной чертой интерфейса WIMP является то, что ведение диалога пользователя с компьютером осуществляется при помощи окон, курсора, графических образов и прочих элементов. К нему относят стандартный интерфейс ОС семейства Windows.

    • Понятие о программном обеспечении (Software).

      Программное обеспечение (ПО) - это совокупность программ, позволяющая организовать решение задач на ЭВМ. ПО и архитектура ЭВМ (аппаратное обеспечение) образуют комплекс взаимосвязанных и разнообразных функциональных средств ЭВМ, определяющих способность решения того или иного класса задач. Небходимо различать ПО и математическое обеспечение (МО). МО - это математические методы и алгоритмы, обеспечивающие решение поставленных задач. По мере развития поколений вычислительной техники одновременно совершенствовалось и программное обеспечение от простейших машинных команд до языков программирования высокого уровня и сложных операционных систем, от простейших текстовых редакторов до современных компьютерных технологий. Программное обеспечение делится на 3 класса: системное ПО, прикладное ПО и системы программирования (инструментальные системы). Резких граней между указанными тремя классами нет: иногда одни программы или пакеты программ из одного класса включают в себя программы из другого класса. Такие пакеты программ называются интегрированными системами. Пример: В состав MS-DOS 6.22 входит текстовый редактор MS-DOS Editor и среда программирования QBasic. Пример других интегрированных систем: MS Works, Windows 3.1, Windows-95/98/2000. 1. Системное ПО организует процесс обработки информации в ЭВМ. Главную часть системного ПО составляет Операционная система (ОС). К системному ПО также относятся программы для диагностики и контроля работы компьютера, архиваторы, антивирусы, программы для обслуживания дисков, программные оболочки, драйверы внешних устройств, сетевое ПО и телекоммуникационные программы. Примеры важнейших системных программ: MS-DOS, Norton Commander, Norton Utilities, Windows. 2. Прикладное ПО предназначено для решения определенного класса задач пользователей. Существуют пакеты прикладных программ (например, MS Works) и библиотеки стандартных программ (например, MathCad для вычисления функций, построения графиков и решения уравнений). Компьютеры широко используются для подготовки к печати различных документов. Подготовленный и оформленный документ затем распечатываеся на принтере. Программы, предназначенные для ввода и обработки текстов на ПК, называются текстовыми редакторами. Процесс подготовки текстов называется редактированием. Приме- ры важнейших текстовых редакторов: Лексикон, "Слово и Дело", Word. Современное прикладное ПО включает в себя основные офисные компьютерные технологии: текстовый процессор (технология обработки текста), табличный процессор (технология обработки численных данных), система управления базами данных (технология обработки данных различной природы), графический редактор (технология обработки графических изображений). Примером пакета программ, содержащим важнейшие офисные компьютерные технологии, является Microsoft Office-97 для Windows-95. К прикладному ПО относятся текстовые и графические редакторы, электронные таблицы, системы управления базами данных (СУБД), графические редакторы систем автоматизированного проектирования (САПР), автоматизированные рабочие места (АРМ) бухгалтера, секретаря и т.д., издательские, информационные и справочные системы, обучающие и тестирующие программы, игровые программы. Примеры важнейших прикладных программ: Word, Excel,Works, Лексикон, Paint Brush, AutoCad. 3. Важнейшей частью ПО являются Системы программирования (инструментальные системы), позволяющие разрабатывать новые программы на языках программирования. Примеры важнейших систем программирования: Turbo Pascal, QBasic, Borland C++, Visual Basic.

      Понятие об интерфейсе. Типы интерфейсов.

      1. Интерфейс - это способ общения пользователя с персональным компьютером, пользователя с прикладными программами и программ между собой. Интерфейс служит для удобства управления программным обеспечением компьютера. Интерфейсы бывают однозадачные и многозадачные, однопользовательские и многопользовательские. Интерфейсы отличаются между собой по удобству управления программным обеспечением, то есть по способу запуска программ. Существуют универсальные интерфейсы, допускающие все способы запуска программ, например Windows 3.1, Windows-95. Пример: Windows-95 имеет все способы запуска, в том числе позволяет запускать программы при помощи меню кнопки Пуск.
      Ряд важнейших программ, например все виды DOS, запускаются автоматически при включении компьютера, другие с помощью файлов autoexec.bat или config.sys (различные драйверы). Ряд программ могут при необходимости автоматически загружаться при запуске оболочек Windows 3.1, Windows-95.
      2. Типы интерфейсов.
      Интерфейсы отличаются по способу доступа к командным файлам программ.
      2.1. Команднострочный (текстовый) интерфейс.
      Для управления компьютером в командную строку пишется (вводится с клавиатуры) команда, например, имя командного файла программы или специально зарезервированные операционной системой служебные слова. Команда может быть при необходимости отредактирована. Затем для исполнения команды нажимается клавиша Enter. Данный тип интерфейса в качестве основного имеют все разновидности операционных систем, например MS-DOS 6.22. Как дополнительное средство данный тип интерфейса имеют все виды программных оболочек (Norton Commander, DOS Navigator и др.) и Windows 3.1, Windows-95/98. Команднострочный интерфейс неудобен, так как надо помнить имена многих команд, ошибка в написании даже одного символа недопустима. Он применяется редко в сеансе непосредственной работы с операционной системой или при сбоях, когда другие способы невозможны.
      2.2. Графический полноэкранный интерфейс.
      Он имеет, как правило, в верхней части экрана систему меню с подсказками. Меню часто бывает выпадающим (ниспадающим). Для управления компьютером курсор экрана или курсор мыши после поиска в дереве каталогов устанавливается на командные файлы программ (*.exe, *.com, *.bat) и для запуска программы нажимается клавиша Enter или правая кнопка мыши. Различные файлы могут выделяться разным цветом или иметь разный рисунок. Каталоги (папки) отделяются от файлов размером или рисунком.
      Данный интерфейс является основным для всех видов программных оболочек. Пример: Norton Commander и нортонообразные оболочки (DOS Navigator, Windows Commander, Disk Commander). Подобный интерфейс имеют инструменты Windows 3.1 (Диспетчер файлов) и Windows-95/98 (Мой компьютер и Проводник). Такой интерфейс весьма удобен, особенно при работе с файлами, поскольку обеспечивает высокую скорость выполнения операций. Позволяет создавать пользовательское меню, запускать приложения по расширению файлов, что повышает скорость работы с программами.
      2.3. Графический многооконный пиктографический интерфейс.
      Представляет собой рабочий стол (DeskTop) на котором лежат пиктограммы (значки или иконки программ). Все операции производятся, как правило, мышью. Для управления компьютером курсор мыши подводят к пиктограмме и запуск программы осуществляют щелчком левой кнопки мыши по пиктограмме. Это наиболее удобный и перспективный интерфейс, особенно при работе с программами. Пример: интерфейс компьютеров Apple Macintosh, Windows 3.1, Windows-95/98, OS/2.

Каким образом человек взаимодействует с компьютером, смартфоном и другой процессорной техникой? В этом обычным пользователям помогает интерфейс.

Нередко можно услышать или прочесть выражения: «понятный интерфейс», «сложный интерфейс» и т.д. Давайте разберемся в значении этого слова и поймем, в каких случаях оно используется.

Слово «интерфейс» заимствовано из английского языка, где буквально означает «между лицами» , т.е. используется в значениях: «взаимодействие, разделение, внешний вид». В современной IT-сфере интерфейсом называют унифицированные системы связи, обеспечивающие обмен информацией между различными объектами.

Это понятие наиболее часто используется в компьютерной технике, но нередко употребляется и в других технических областях, а также в инженерной психологии, где означает различные способы коммуникации между человеком и машиной.

Интерфейс представляет собой систему связи между различными узлами и блоками сложного оборудования, а также между техникой и пользователем. Он выражается в логической (системы представления информации) и физической (характеристики информационных сигналов) форме.

Так, логически компьютерные интерфейсы представляют собой сложные математические системы, основанные на понятиях Булевой алгебры, а физически – это совокупность чипов и других электронных деталей, медных проводов и импульсов электрического тока.


В целом компьютерный интерфейс обеспечивает функционирование компьютера – связь процессора с оперативной памятью, устройствами печати и т.д., а также обмен информации с другими компьютерами (в сети Интернет) и с человеком.

Грубо говоря, без интерфейса работа вычислительных устройств попросту невозможна. Сегодня в компьютерной технике используются различные виды интерфейсов, необходимые для профессиональной работы программиста и для пользования обычных людей компьютерами.

Графическим интерфейсом называют один из видов пользовательского компьютерного интерфейса, который вместо букв и цифр использует графические изображения – иконки, кнопки и т.д. Так, например, рабочий стол ОС Виндоуз представляет собой элементы графического интерфейса, который позволяет запускать программы простым кликом мышки.

По сравнению с вводом команд через командную строку графический интерфейс значительно более прост и понятен, причем нередко для пользования им не нужны специальные знания. Нередко его называют дружелюбным и интуитивно понятным.

Существенным недостатком графического интерфейса является большой объем памяти, который требуется для представления компьютерных команд в графическом виде. Во временных компьютерных системах этот недостаток успешно преодолевается, так как их объемы памяти каждые несколько лет увеличиваются на порядок.


Однако с каждым годом усложняется и графический интерфейс: он становится трехмерным, приобретает новые формы и способы выражения, становится все более удобным и эффектным внешне.

Совокупность управляющих элементов программы, с помощью которых пользователь выполняет различные действия, называется интерфейсом программы. Говоря простыми словами, интерфейс программы – это те кнопки и окошки, которые вы используете для того, чтобы программа совершала нужные вам действия.

Так, когда вы хотите посмотреть фильм, вы вызываете программу-медиаплеер, с помощью специальной строки указываете нужный файл и запускаете просмотр нажатием кнопки на экране. Если необходимо изменить громкость, приостановить показ или включить титры, вы пользуетесь для этого возможностями интерфейса медиаплеера – кнопками, движками и окнами, специально предназначенными для управления.

Игровой интерфейс – это возможности управления персонажем, взаимодействия персонажей друг с другом, общения игроков между собой и т.д. Практически все игры обладают сложным интерфейсом, позволяющим управлять персонажами с помощью различных способов – мышкой, виртуальными кнопками на экране и т.д.


Основные действия игровых персонажей реализуются стандартными способами, одинаковыми для всех игр. Нередко игрок может изменить настройки интерфейса так, чтобы ему было удобнее и привычнее. В то же время с использованием сенсорных экранов появились и новые способы управления с помощью движений пальцев.

Существует несколько стандартов RS-232, различающихся буквой в суффиксе: RS-232C. RS-232D. RS-232E и пр. Вдаваться в различия между ними нет никакого смысла- они являются лишь последовательным усовершенствованием и детализацией технических особенностей одного и того же устройства. Все современные порты поддерживают спецификации RS-232D или RS- 232Е. В состав любого порта с интерфейсом RS-232 (в том числе СОМ-порта PC) входит универсальный асинхронный приемопередатчик (Universal Asynchronous Receiver-Transmitter. UART), который потому и носит название "универсального", что одинаков для всех подобных интерфейсов (кроме RS-232, это RS-485 и RS-422 1). Также в RS-232 входит схема преобразования логических уровней UART (это обычные логические уровни 0^5 илн 0+3,3 В) в уровни RS-232, где биты передаются разпополярными уровнями напряжения, притом инвертированными относительно IJART. В UART действует положительная логика, где логическая 1 есть высокий уровень (+3 или +5 В), а у RS-232 наоборот, логическая I есть отрицательный уровень от -3 до -12 В, а логический 0 - положительный уровень от +3 до +12 В.

Сама идея передачи по этому интерфейсу заключается в передачи целого байта по одному проводу в аиде последовательных импульсов, каждый ич которых может быть 0 или 1. Если в определенные моменты времени считывать состояние линии, то можно восстановить то. что было послано. Однако эта простая идея натыкается на определенные трудности. Для приемника и передатчика, связанных между собой тремя проводами ("земля" и два сиг нальных провода "туда" и "обратно"), приходится задавать скорость передачи и приема, которая должна быть одинакова для устройств на обоих концах линии. Эти скорости стандартизированы, и выбираются из ряда 1200, 2400. 4800, 9600. 14 400, 19 200. 28 800, 38 400, 56 000, 57 600, 115 200, 128 000, 256 000 (более медленные скорости я опустил) 2 . Число это обозначает количество передаваемых/принимаемых бит в секунду (бод). Проблема состоит в том, что приемник и передатчик - это физически совершенно разные системы, и скорости эти для них не могут быть строго одинаковыми в принципе (из-за разброса параметров тактовых генераторов), и даже если их каким-то фантастическим образом синхронизировать в начале, то они в любом случае быстро "разъедутся". Поэтому такая передача всегда сопровождается начальным (стартовым) битом, который служит для синхронизации. После нею идут восемь (или девять - если используется проверка на четность) информационных битов, а затем стоповые биты, которых может быт ь один, два и более, но это уже не имеет принципиального значения - почему, мы сейчас увидим.

Общая диаграмма передачи таких последовательностей показана на рис. ГИЛ. Хитрость заключается в том, что состояния линии передачи, называемые стартовый и столовый биты, имеют разные уровни. В данном случае стартовый бит передается положительным уровнем напряжения (логическим нулем), а столовый- отрицательным уровнем (логической единицей) 3 , по-

Обычный формат данных, по которому работает львиная доля всех устройств, обозначается 8nl, что читается так: 8 информационных бит, no parity,

тому фронт стартового бита всегда однозначно распознается. В этот-то момент и происходит синхронизация. Приемник отсчитывает время от фронта стартового бита, равное Ъ А периода заданной частоты обмена (чтобы попасть примерно в середину следующего бита), и затем восемь (или девять, если это задано заранее) раз подряд с заданным периодом регистрирует состояние линии. После этого линия переходит в состояние стопового бита и может в нем пребывать сколь угодно долго, пока не придет следующий стартовый бит. Задание минимального количества стоповых битов, однако, производится тоже- для того чтобы приемник знал, сколько времени минимально ему нужно ожидать следующего стартового бита (как минимум, это может быть, естественно, один период частоты обмена, т. е. один стоповый бит). Если по истечении этого времени стартовый бит не придет, приемник может регистрировать так называемый Timeout, т. е. перерыв, по-русски, и заняться своими делами. Если же линия "зависнет" в состоянии логического 0 (высокого уровня напряжения), то это может восприниматься устройством, как состояние "обрыва" линии- не очень удобный механизм, и в микроконтроллерах он через UART не поддерживается. Это не мешает нам, естественно, для установки или определения такого состояния просто отключать UART и устанавливать состояние логического нуля на выводе TxD (что и есть имитация физического "обрыва"), или определять уровень логического 0 на выводе RxD, но серьезных причин для использования этой возможности, я, честно говоря, не вижу (см. на эту тему также замечание в главе 20).

Рис. П4.1. Диаграмма передачи данных по последовательному интерфейсу RS-232

в формате 8N2

1 столовый бит. "No parity" означает, что проверка на четность не производится. Это самая распространенная схема работы такого порта, причем, т. к. никакими тайм-аугами (Timeout) мы также себе голову заморачивать не будем, то нам в принципе все равно, сколько стоповых битов будет, но во избежание излишних сложностей следует их устанавливать всегда одинаково - у передатчика и у приемника. На диаграмме рис. П4.1 показана передача некоего кода, а также, для наглядности, передача байта, состоящего из всеч единиц и из всех нулей в формате, опять же для наглядности, 8п2.

Из описанного алгоритма работы понятно, что погрешность несовпадения скоростей обмена может быть такой, чтобы фронты не "разъезжались" за время передачи/приема всех десяти-двенадцати битов более, чем на полпериода, т. е. в принципе фактическая разница скоростей может достигать 4-5%, но на практике их стараются все же сделать как можно ближе к стандартным величинам.

Приемник RS-232 часто дополнительно снабжают схемой, которая фиксирует уровень не единожды за период действия бита, а трижды, при этом за окончательный результат принимается уровень двух одинаковых из трех полученных состояний линии, таким образом удается избежать случайных помех. Длина линии связи по стандарту не должна превышать 15 м. но на практике это могут быть много большие величины. Если скорость передачи не выбирать слишком высокой, то такая линия может надежно работать на десятки метров (автору этих строк удавалось без дополнительных ухищрений наладить обмен с компьютером на скорости 4800 по кабелю, правда, довольно толстому, длиной около полукилометра). В табл. П4.1 приведены ориентировочные эмпирические данные по длине неэкранированной линии связи для различных скоростей передвчи.

Таблица П4.1. Длина кабеля RS-232 для разных скоростей передачи данных

Эти данные ни в коем случае не могут считаться официальными - слишком много влияющих факторов (уровень помех, толщина проводов, их взаимное расположение в кабеле, фактические уровни напряжения, выходное/входное сопротивление портов и т. п.). В случае экранированного кабеля 4 эти величины можно увеличить примерно в полтора-два раза. Во всех случаях использования "несанкционированной" длины кабеля связи следует применять меры по дополнительной проверке целостности данных- контроль четности, и/или программные способы (вычисление контрольных сумм и т. п.), описанные в главе 20.

Для работы в обе стороны нужно две линии, которые у каждого приемопередатчика обозначаются RxD (приемная) и TxD (передающая). В каждый момент времени может работать только одна из линий, т. е. приемопередатчик либо передает, либо принимает данные, но не одновременно (так называемый "полудуплексный режим" - это сделано потому, что у UART-микросхем чаще всего один регистр и на прием и на передачу). Кроме линий RxD и TxD, в разъемах RS-232 присутствуют также и другие линии. Полный список всех контактов для обоих стандартных разъемов типа DB (9- и 25-контактного) приведен в табл. П4.2. Нумерация контактов DB-разъема обычно написана прямо на нем, она также есть на рис. 10.8 в главе 10 (на примере гнезда разъема для игрового порта DB-15F).

Таблица П4.2. Контакты для ОВ-разьемов

Обозначение

Направление

Детектор принимаемого сигнала с линии (Data Carrier Detect)

Принимаемые данные (Receive Data)

Передаваемые данные (Transmit Data)

Готовность выходных данных (Data Terminal Ready)

Общий (Ground)

Готовность данных (Data Set Ready)

Запрос для передачи данных (Request То Send)

Таблица П4.2 (окончание)

Для нормальной совместной работы приемника и передатчика выводы RxD н TxD, естественно, нужно соединять накрест - TxD одного устройства с RxD второго и наоборот (то же относится и к RTS-CTS и т. д.). Кабели RS-232, которые устроены именно таким образом, называются еще нуль-модемными (в отличие от простых удлинительных). Их стандартная конфигурация показана на рис. П4.2. В варианте "с" (справа на рисунке) дополнительные выводы соединены именно так, как описано ранее.

Рис. П4.2. Схемы нуль-модемных кабелей RS-232: a.b - различные полные варианты,

с - минимальный вариант

Выходные линии RTS и DTR иногда могут использовать и для "незаконных" целей - питания устройств, подсоединенных к СОМ-порту. Именно так устроены, например, компьютерные мыши, работающие через СОМ. Позже мы покажем пример устройства (преобразователя уровней), которое будет использовать питание от вывода RTS. А как при необходимости можно установить эти линии в нужное состояние?