Что такое модуляция и разновидности модулированных сигналов? Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном

Вопрос 14, 16

При частотной модуляции (ЧМ) изменяется частота гармони­ческого сигнала соответственно значащей позиции сигнала данных. Единичные элементы, соответствующие символам данных 1 и 0, представляются в виде (рис.3.7):

где

Разность называют девиацией частоты, отношение -индексом модуляции, а и - характеристи­ческими частотами. Спектр ЧМ сигнала занимает значительно боль­шую полосу частот, чем при ДМ (естественно при одинаковой скорости передачи).

За счет ограничения спектра возникает переходный процесс как по амплитуде, так и по частоте. Длительность установления частоты от до зависит от отношения где - необходимая полоса частот, устанавливаемая для пере­дачи двоичного ЧМ сигнала. Компромисс между допустимыми иска­жениями и необходимой полосой частот достигается при значени­ях .

Таким образом, необходимая полоса частот для передачи двоичного ЧМ сигнала с допустимыми искажениями определяется выражением

Удельная скорость передачи при m>1 близка к значение 0,5 бит/с*Гц

Установлено, что при m <1 основная энергия сигнала сосредоточена вблизи несущей частоты , поэтому можно достичь удельной скорости передачи 1бит/с*Гц. Например, при

Тогда

Для формирования ЧМ сигнала используются управляемый генератор (УГ), частота которого может изменяться без скачков фазы и со скачками фазы. Реализация ЧМ без разрыва фазы осуществляется непосредственным воздействием первичного сигнала А(t) на частоту генератора несущего колебания. ЧМ с разрывом фазы получается использованием независимых генераторов, наст­роенных на требуемые частоты, и спектр амплитуд модулирован­ного сигнала занимает более широкую полосу частот, чем при формировании без разрыва фазы.

Демодуляция ЧМ сигналов может осуществляться когерентным и некогерентным методом. Последний широко используется при передаче данных с низкой удельной скоростью. Общим принципом демодуляции является частотное детектирование (ЧД) с помощью дискриминаторов, которые преобразуют изменение частоты в из­менение амплитуды.

Так как изменяемым параметром сигнала является частота, то для уменьшения влияния помех применяют ограничители ампли­туд Огр, что существенно повышает помехозащищенность ЧМ по сравнению с АМ. На рис.3.8 представлена структурная схема модема с ЧМ.

Сигнал данных управляет частотой генератора УГ несущего колебания. Подавление побочных продуктов модуляции на передаче и помех на приеме производят соответственно фильтры передачи Ф пер и приема Ф пр. Ограничитель Огр снижает амплитудные иска­жения. Дискриминатор Д преобразует изменения частоты сигнала в изменение амплитуды. Фильтр нижних частот ФНЧ подавляет составляющие преобразованного сигнала частотами и др. Решение о принимаемом сигнале принимается решающим уст­ройством РУ.



Модемы с ЧМ благодаря несложной технической реализации и сравнительно высокой помехозащищенности рекомендованы МККТТ для передачи данных по стандартным каналам ТЧ со скоростью до 1200 бит/с.

Частотной модуляции присущ недостаток - высокая чувстви­тельность к изменению частоты сигнала при передаче по каналу ТЧ

Тая как в дискриминаторе происходит преобразование ЧМ сигнала в AM сигнал, то при неизменном пороге регистрации сдвиг по частоте переходит в сдвиг по длительности, т.е. появляются так называемые искажения типа преобладания «когда длительность посылок одной полярности превосходит длительность посылок дру­гой полярности. На рис.3.9 показана пунктиром передача двухполюсной последовательности сигналов данных ("точек") по кана­лу без изменения частоты сигнала, и сплошной линией - по кана­лу с изменением частоты сигнала на . На рисунке -длительность единичного элемента сигнала данных характеристические частоты.

Для устранения подобного рода искажений в процессе настройки дискретного канала с ЧМ всегда производится регулировка на нейтральность.

Фазовая модуляция

При фазовой модуляции переносчиком информации является изменение фазы гармонического колебания. Единичные элементы представляются в виде:

где - индекс фазовой модуляции;

Начальная фаза.

Соответствие ФМ сигнала символам и сигналам данных пока­зано на рис.3.10.

Как видно на рис.3.10, изменение фазы происходит при каж­дом изменении полярности сигнала данных.

Отметим, что при ФМ принципиальным является жесткое соответствие начальных фаз приемника и передатчика. Однако при похождении ФМ сигнала по каналу ТЧ за счёт изменения фазы передаваемого сигнала (переключения генераторного оборудова­ния каналообразующей аппаратуры) возникает так называемая "обратная работа", когда вместо передаваемого символа 1 при­нимается символ 0. Поэтому на практике ФМ не используется, а применяют ее видоизменение. Советский ученый К.Т.Петрович предложил относительную фазовую модуляцию (ОФМ).

При ОФМ представляющим параметром сигнала, несущим информацию, является изменение фазы при передаче каждого единичного интервала только одной полярности, например, как показано на рис.3.11, положительной. Так, при длительной передаче только положительных посылок частота изменения фазы будет соответство­вать скорости передачи единичных элементов.

Для осуществления ОФМ необходимо единое соответствие между значениями полярности посылок и значениями разности фаз для передатчика и приемника.

Если символу данных 1 соответствует положительная посылка, а символу 0 - отрицательная, то алгоритм модуляции при ОФМ формулируется так: при передаче i-й посылки, соответствующей 1, фаза несущего колебания скачком изменяется на 180° по отношению к фазе предыдущей (i-1)-й посылки, а при передаче по­сылки, соответствующей 0, она остается такой же, что у (i-1)-й посылки.

На рис.3.12 приведены схемы передатчика и приемника, поясняющие принцип формирования и обработки ОФМ - сигналов.

В качестве кодера используется триггер с управляющим на его входе транзистором. При каждой положительной посылке (Rтранз. - высокое) срабатывает триггер и переключает диоды фазового модулятора (т.е. изменяется фаза несущего колебания).

Прием ОФМ - сигнала возможен двумя методами:

  • сравнением фаз;
  • сравнением полярностей,

Чаще применяется первый метод, так как при этом искаже­ние одного единичного элемента приводит к одной ошибке, а при методе сравнения полярностей, если искажена середина единично­го элемента, то возможны и две ошибки.

При методе сравнения фаз в фазовом детекторе (ФД) сравни­ваются на несущей частоте фазы i-го и (i-1)-го единичных элементов. Указанное сравнение осуществляется с помощью элемента памяти линии задержки (ЛЗ), создающего задержку, равную длительности элемента. Такой метод не требует знания начальной фазы сигнала.

Спектр ОФМ сигнала занимает полосу частот такую же, как и при АМ-ДБП (рис.3.6), но отличается значениями амплитудонесущей частоты и боковых частот. Поэтому максимальная удельная скорость передачи равна 1 бит/с Гц.

При ОФМ также можно воспользоваться ограничением одной из боковых полос частот и тем самым получить ОФМ с одной боковой полосой частот ОФМ-ОБП с максимальной удельной скоростью передачи 2 бит/с*Гц.

Модемы с OФM по сравнению с AM и ЧМ реализуются технически более сложно, но зато обладают более высокой помехозащищенностью при одинаковой скорости передачи.

Однако самым важным достоинством ОФМ, обусловившим ее широкое применение, является возможность использования многих значений (крат) фаз и получения многократных ОФМ, например, двукратной - ДОФМ, трехкратной - ТОФМ, и тем самым увеличение скорости передачи в число крат раз.

Вопрос № 14

Баскаков стр. 100 – 101

Вопрос № 16

Вопрос № 17

Устройства, генерирующие автоколебания, называются автоколебательными системами или автогенераторами.

амплитуды, частоты или фазы колебания, может служить причиной возникновения помех в канале радиосвязи. Требование монохроматичности включает в себя также и требование стабильности частоты автоколебания.

Вопрос №18

Баскаков стр. 374-376.

Гоноровский 1986г:

Вопрос № 19

Баскаков стр. 122 – 124

Вопрос №20

Случайные процессы, основные определения.

Случайными сигналами (процессами) называются сигналы, математическим описанием которых являются случайные функции времени. Случайный процесс представляет собой изменения во времени какой-либо физической величины, которые заранее предсказать невозможно.

Случайной называется функция , значения которой при каждом значении аргумента являются случайными величинами. Случайная функция времени , описывающая случайный процесс, в результате опыта может принять ту или иную конкретную форму , неизвестную заранее (рис.1). Эти возможные формы случайной функции называются реализациями случайного процесса.В фиксированный момент времени значения случайного процесса являются случайной величиной с определенным распределением вероятностей. Случайные процессы могут быть непрерывными и дискретными. Реализации первых являются непрерывными функциями времени

Вероятностные характеристики.

Если рассматривать не каждую реализацию в отдельности, а совокупность их большого числа, то окажется, что некоторые средние результаты обладают статистической устойчивостью, т.е. могут быть оценены количественно. Устойчивость средних результатов носит вероятностный характер.

Пусть имеется случайный процесс , который задан совокупностью N реализации (рис. 2). Произведем сечение случайного процесса в некоторый фиксированный момент времени t . Выделим из общего числа N те реализаций, значения которых в момент времени меньше некоторого уровня . При достаточно большом N относительная доля реализации, находящихся в момент времени ниже уровня , будет обладать статистической устойчивостью, т.е. будет оставаться приблизительно постоянной, колеблясь при изменении N и вокруг некоторого среднего значения. Это среднее значение определяет вероятность пребывания значений случайного процесса ниже уровня . Функция ,определяющая вероятность нахождения значений случайного процесса момент времени ниже уровня , называется одномерной интегральной функцией распределения вероятностей случайного процесса. Ее производная, если она существует, называется одномерной плотностью вероятности или дифференциальной функцией распределения случайного процесса.

Введенные функции , и дают представление о процессе лишь для изолированных друг от друга моментов времени . Для более полной характеристики процесса необходимо учитывать статистическую связь между значениями случайного процесса в различные моменты времени. Эту связь для двух моментов времени учитывает двумерная интегральная функция распределения вероятностей определяющая вероятность того, что значения случайного процесса в момент времени , будут находиться ниже уровня , а в момент времени - ниже уровня . Частная производная второго порядка

называется двумерной плотностью вероятностей случайного процесса. Эти функции зависят уже от четырех аргументов.

Аналогично определяются многомерные интегральная и дифференциальная функции распределения случайного процесса

которые зависят от 2n -аргументов.

Если значения случайного процесса при любых значениях t зависимы, то многомерная функция распределения равна произведению одномерных

1. Числовые характеристики случайных сигналов.

Простейшей характеристикой случайного процесса является его среднее значение или математическое ожидание

Дисперсией случайного процесса называется неслучайная функция, значения которой для каждого момента времени t равны, т.е. математическому ожиданию квадрата отклонения случайного процесса от его среднего значения:

Следовательно, дисперсия определяет степень разброса значений случайного процесса около среднего значения. Среднее значение и дисперсия характеризуют поведение случайного процесса в отдельные моменты времени. В качестве характеристики, учитывающей статистическую зависимость между значениями случайного процесса в различные моменты времени, используется корреляционная (иначе - автокорреляционная) функция случайного процесса

определяемая как математическое ожидание от произведения значений процесса в два различных момента времени. Корреляционная функция определяет степень линейной зависимости между значениями случайного процесса в различные моменты времени. На рис. 3.5 и 3.6 показаны соответственно два случайных процесса с сильной и слабой статистической зависимостью их значений в моменты времени и .

Из определения корреляционной функции следует

т.е. она является симметричной относительно начала отсчета времени.

Для совокупности двух случайных и статистическая зависимость между их значениями в различные моменты времени определяется функцией взаимной корреляции

В некоторых случаях вместо корреляционной функции вводится нормированная корреляционная функция или кратко коэффициент корреляции

Свойства плотности вероятности и функции распределения.

Баскаков стр. 144

Вопрос 21

Энергетический спектр случайного процесса, теорема Хинчина-Винера.

Баскаков стр. 164-166

Эффективная ширина спектра, её связь с интервалом корреляции.

Баскаков стр. 169-170

Широкополосные и узкополосные случайные процессы.

Узкополосный случайный процесс – это такой процесс непрерывный спектр, которого сосредоточен около некоторой фиксированной частоты ω 0 .

Δω<< ω 0 Если данное условие не выполняется, то спектр называется широкополосным.

Функции корреляции таких спектров будут существенно отличаться друг от друга.

Белый шум, его функция корреляции.

Баскаков стр. 170.

Вопрос № 22

Прохождение случайных сигналов через линейные инерционные цепи

Рассмотрим линейную инерционную систему с известной передаточной функцией или импульсной реакцией . Пусть на вход такой системы поступает стационарный случайный процесс с заданными характеристиками: плотностью вероятности , корреляционной функцией или энергетическим спектром . Определим характеристики процесса на выходе системы: , и .

Наиболее просто можно найти энергетический спектр процесса на выходе системы. Действительно, отдельные реализации процесса на входе являются детерминированными

функциями, и к ним применим аппарат Фурье. Пусть - усеченная реализация длительности Т случайного процесса на входе, а

(3.4.1)

Ее спектральная плотность. Спектральная плотность реализации на выходе линейной системы будет равна

Энергетический спектр процесса на выходе согласно (3.3.3) будет определиться выражением

(3.4.3)

т.е. будет равен энергетическому спектру процесса на входе, умноженному на квадрат амплитудно-частотной характеристики системы, и не будет зависеть от фазочастотной характеристики.

Корреляционная функция процесса на выходе линейной системы может быть определена как преобразование Фурье от энергетического спектра:

(3.4.4)

Следовательно, при воздействии случайного стационарного процесса на линейную систему на выходе получается также стационарный случайный процесс с энергетическим спектром и корреляционной функцией, определяемыми выражениями (3.4.3) и (3.4.4). Мощность процесса на выходе системы будет равна

(3.4.5)

Плотность распределения вероятности и числовые характеристики сигнала на выходе безынерционной нелинейной цепи.

Баскаков стр. 300 – 302

Прохождение случайных сигналов через нелинейные безинерционные цепи.

Рассмотрим теперь задачу о прохождении случайного процесса через нелинейную систему. В общем случае эта задача весьма сложная, но она значительно упрощается, когда нелинейная система является безынерционной. В безынерционных нелинейных системах значения выходного процесса в данный момент времени определяются значениями входного процесса в тот же самый момент времени. Для нелинейных безынерционных преобразований более простой задачей является определение функций распределения на выходе в гораздо более сложной – определение корреляционной функции или энергетического спектра.

Как отмечалось выше, n - мерная функция распределения случайного процесса по сути дела является функцией распределения n случайных величин, представляющих собой значения случайного процесса в n различных моментов времени, Определение законов распределения функционально преобразованных случайных величин является сравнительно простой задачей.

Обратимся к модулированным сигналам, полученным путем изменения по закону передаваемого сообщения в несущем колебании частоты w 0 , или начальной фазы j 0 . Поскольку в обоих случаях аргумент гармонического колебания y(t ) = w 0 t + j 0 определяет мгновенное значение фазового угла, такие радиосигналы получили название сигналов с угловой модуляцией. Если в несущем колебании изменяется частота w 0 , то имеем дело с частотной модуляцией (ЧМ), если же изменяется фаза j 0 – фазовой модуляцией (ФМ).

Частотная модуляция. При частотной модуляции несущая частота w(t ) связана с модулирующим сигналом e (t ) зависимостью:

w(t ) = w 0 + k ч e (t ) (5.1)

здесь k ч - размерный коэффициент пропорциональности между частотой и напряжением, рад.

Рассмотрим однотональную частотную модуляцию, когда модулирующим сигналом является гармоническое колебание e (t ) = E 0 cosWt , у которого для упрощения начальная фаза q 0 = 0. Пусть также начальная фаза несущего колебания j 0 = 0. При необходимости начальные фазы q 0 и j 0 легко могут быть введены в окончательные соотношения. Полную фазу ЧМ – сигнала в любой момент времени t определим путем интегрирования частоты, выраженной через формулу (5.1):

где w дч = - максимальное отклонение частоты от значения w 0 , или девиация частоты при частотной модуляции.

Отношение m ч = w дч /W = k ч E 0 /W, (5.3)

являющееся девиацией фазы несущего колебания, называют индексом частотной модуляции.

С учетом (5.2) и (5.3) ЧМ – сигнал запишется в следующем виде:

На рис. 5.1 представлены временные диаграммы соответственно несущего колебания u н (t ) и модулирующего сигнала e (t ) с начальными фазами j 0 = q 0 = 90 o , и полученный в результате процесса частотной модуляции ЧМ – сигнал u чм (t ) . Нетрудно заметить, что по формуле ЧМ-сигнал напоминает сжатые и растянутые меха русской гармошки.

Фазовая модуляция. В ФМ – сигнале полная фаза несущего колебания изменяется пропорционально модулирующему напряжению

y (t ) = w 0 t + k ф e (t ), (5.5)

где k ф - размерный коэффициент пропорциональности, рад/В.

Рис. 5.1 Частотная однотональная модуляция:

а – несущее колебание; б – модулирующий сигнал; в – ЧМ – сигнал

При однотональной модуляции фаза несущего колебания:

y (t ) = w 0 t + k ф E 0 cosWt , (5.6)

Из (5.6) следует, что, как и в случае частотной модуляции, полная фаза несущего колебания изменяется по гармоническому закону. Максимальное отклонение фазы несущего колебания от начальной фазы характеризует индекс фазовой модуляции

m ф = k ф E 0 . (5.7)

Подставляя формулы (5.5) и (5.6) в (4.1), запишем ФМ - сигнал

Дифференцирование формулы (5.6) дает частоту ФМ – сигнала

w(t ) = w 0 - m ф W sinWt = w 0 - w дф sinWt , (5.9)

где w дф = m ф W = k ф E 0 W - максимальное отклонение частоты от значения несущей w 0 , т. е. девиация частоты при фазовой модуляции.

Выражения (5.4), (5.8) показывают, что при однотональной угловой модуляции нельзя определить, является ли сигнал частотно или фазо-модулированным. Различия между этими видами однотональной модуляции проявляется только при изменении амплитуды Е 0 или частоты W моду-лирующего сигнала e (t ).

В случае частотной модуляции девиации частоты w дч пропорциональна амплитуде Е 0 и не зависит от частоты W модулирующего сигнала e (t ) = E 0 cosWt . Индекс же модуляции m ч прямо пропорционален амплитуде Е 0 и обратно пропорционален частоте W модулирующего сигнала. При фазовой модуляции девиации частоты w дф изменяется пропорционально амплитуде Е 0 и частоте модулирующего сигнала. Индекс модуляции m ф пропорционален амплитуде Е 0 и нее зависит от частоты W модулирующего сигнала.

Спектр ЧМ – сигнала при однотональной модуляции. Используя тригонометрические преобразования, запишем соотношение (5.4) следующим образом:

= U н cos(m sinWt )cosw 0 t - U н sin(m sinWt )sinw 0 t . (5.10)

Проанализируем выражение (5.10) отдельно для малых (m << 1) и больших (m >1) индексов модуляции.

Спектр ЧМ – сигнала при m << 1. В этом случае имеют место приближенные равенства

cos(m sinWt ) » 1; sin(m sinWt ) » m sinWt . (5.11)

Подставив (5.11) в (5.10), получим

u ЧМ (t ) = U н cosw 0 t - U н m sinW sinw 0 t =

+ U н cosw 0 t + (mU н /2)cos(w 0 + W)t - (mU н /2) cos(w 0 - W)t . (5.12)

Рис.5.2. Диаграммы ЧМ – сигнала при m << 1:

а – спектральная; б - векторная

Сравнение соотношений (5.12) и (4.6) показывает, что спектр ЧМ – сигнала аналогичен спектру АМП – сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (w 0 + W) и (w 0 - W). Индекс модуляции m играет здесь ту же роль, что и коэффициент амплитудной модуляции М . Единственное и принципиальное отличие - знак минус перед нижней боковой составляющей в формуле для ЧМ – сигнала, который характеризирует поворот ее фазы на 180 0 , что аналитически приводит к превращению АМП – сигнала в ЧМ – сигнал.

На рис.5.2,а представлена спектральная диаграмма для ЧМ – сигнала при индексе модуляции m << 1. Отметим, что ширина спектра в данном случае равна 2W, как и при амплитудной модуляции.

На векторной диаграмме рис.5.2, б показано, как изменение фазы нижней боковой составляющей на 180 0 (вектор АД) влияет на вектор результирующего колебания ОВ. Направление вектора АД нижней боковой составляющей при АМ – сигнале обозначено штриховой линией. Изменение направления этого вектора на 180 0 не влияет на вектор модуляции АВ, который всегда перпендикулярен вектору несущей ОА. Вектор результирующего колебания ОВ изменяется как по фазе, так и по амплитуде, т.е. с течением времени «качается» вокруг центрального положения. Однако при m<< 1 изменения амплитуды настолько малы, что ими можно пренебречь и модуляцию рассматривать как чисто фазовую.

Теоретический спектр ЧМ – сигнала (аналогично и ФМ – сигнала) бесконечен по полосе частот, однако в реальных случаях он ограничен. Дело в том, что начиная с номера порядка n > m+1 , значения функций Бесселя становится весьма малыми. Поэтому считается, что практическая ширина спектра радиосигналов с угловой модуляцией

Dw ум = 2(m +1)W.

Рис. 5.3. Спектр ЧМ – сигнала.

ЧМ – и ФМ – сигналы, применяемые на практике, имеют индекс модуляции m >>1, поэтому

Dw ум = 2m W = 2w д.

Таким образом, полоса частот, занимаемая сигналами с однотональной частоты модуляцией, равна удвоенной величине девиации частоты и не зависит от частоты модуляции. Спектр сигналов с угловой модуляцией при негармоническом модулирующем сигнале определить достаточно трудно. Но он всегда сложнее, чем спектр АМ – сигнала при том же модулирующем сигнале. Ширина его спектра также значительно больше, чем при амплитудной модуляции.

Примерная структура спектра ЧМ– сигнала при индексе модуляции m =3 показана на рис. 5.3.

Следует отметить, что радиосигналы с частотой и фазовой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1.Поскольку при угловой модуляции амплитуда модулированных колебании не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитуды модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к искажению передаваемого сообщения.

2.Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает в этом случае при неизменной колебательной мощности.

Литература: 1, 2; 6[ 46-61].

Контрольные вопросы:

1.Как осуществляется частотная модуляция?

2.Покажите индекс частотной модуляции.

3.Что такое девиация частоты?

4. Покажите индекс фазавой модуляции.

5. Нарисуйте вид колебания однотональной частотной модуляции.

6. Как изменяется индекс модуляции с ростом частоты?

7. Покажите спектр частотной модуляции.

При ЧМ в соответствии с модулирующим сигналом (t) меняется частота синусоидального несущего сигнала, что иллюстрирует рис.11.

Заметим,что
, а соответственно и частота может меняться не только резко, но и плавно.

Для ЧМ существует два параметра, характеризующие интенсивность воздействия модулирующего сигнала на несущий сигнал.

    Девиация частоты

f = f max – f 0

или f = f 0 - f min

f - отклонение частоты от центрального значения.

    Индекс частотной модуляции .

Это отношение девиации частоты к частоте модулирующего сигнала.

0    несколько десятков или сотен.

Частотный спектр при ЧМ.

Его можно получить на основе ЧС при АМ.

Пусть модулирующий сигнал является последовательностью прямоугольных импульсов, т.е. имеет два уровня.

В модулированном ЧМ – сигнале соответственно будет две частоты
и
- рис.24,б. Его можно представить в виде суммы двух АМ – сигналов рис.24,в,г.

U ЧМ = U АМ1 + U АМ2

Соответственно, спектр этого ЧМ - сигнала S ЧМ можно представить в виде суммы двух спекторов АМ: S ЧМ = S АМ1 + S АМ2

Это показано на рисунке 25.

Рис.25

Спектры двух слагаемых S АМ1 и S АМ2 отличаются разными несущими частотами f 01 и f 02 . Это объяснение приводит к выводам:

    Спектры ЧМ шире, чем спектр АМ - сигнала.

    Спектр получается «горбатый».

    Линии одного спектра S АМ1 могут перекрываться линиями другого спектра S АМ2 .

    Из рисунка получаем, что ширина спектра при ЧМ:

В этом выражении – спектр модулирующего сигнала.

f 02 – f 01 = 2f

- девиация частоты, связанная с f 02 и f 01 .

Если также учесть, что:

, то в результате получаем: F ЧМ = 2 F  (1 + )

Вывод: ширина ЧС при ЧМ больше чем ширина ЧС при АМ в (1 + ) раз.

12. Способы импульсной модуляции (им).

При ИМ переносчиком является последовательность импульсов.

Параметры импульсного сигнала - амплитуда (U m), период или частота (Т или f = 1/T), длительность импульса (t u), фаза импульсов ().

В соответствии с этими параметрами различают способы ИМ:

    Амплитудно – импульсная модуляция (АИМ) – Um.

    Частотно – импульсная мод-ия (ЧИМ)- f.

    Широтно–импульсная мод-ия (ШИМ) - t u .

4. Фазо – импульсная модуляция (ФИМ) - .

При АИМ амплитуда является функцией модулирующего сигнала. При ЧИМ функцией модулирующего сигнала является средняя частота (или период) следования импульсов.

При ШИМ функцией модулирующего сигнала является

длительность импульса. При ФИМ функцией модулирующего сигнала является время паузы между соседними импульсами.

Кодо-Импульсная модуляция (КИМ).

Отличие: какому-то одному значению модулирующего сигнала  соответствует несколько импульсов (последовательный код). Последовательный код – двоичное число:

1 – есть импульс,

0 – нет импульса

КИМ – один из ключевых способов передачи информации, применяется для связи между компьютерами (Интернет, модемы и т.д.)

При КИМ увеличивается время передачи сигнала, но обеспечивается высокая достоверность и высокая помехозащищенность.

Комбинированные способы модуляции (км).

Комбинируют, например, непрерывные способы модуляции с импульсными способами модуляции.

При КМ вначале, например, используется импульсный передатчик, а получаемый модулированный сигнал модулирует непрерывный передатчик (в синусоиду).ШИМ – 1 этап модуляции.

Это пример ШИМ-АМ.

Комбинируя разные способы импульсной и непрерывной модуляции можно получить большое количество комбинированных способов. Например, ФИМ-АМ, ШИМ-ЧМ, ЧИМ-ЧМ, и т.д. Применение КМ связано с тем, что требуется приспособить передаваемый сигнал к характеристикам канала связи.

Сравним указанные виды модуляции по их двум основным характеристикам: средней за период высокой частоты мощности и ширине спектра.

Для АМ-сигналов средняя за период высокой частоты мощность изменяется, так как изменяется амплитуда сигнала. Эта мощность в максимальном режиме в (1+m АМ ) 2 раз больше мощности молчания. Ширина спектра АМ сигнала зависит от величины максимальной частоты модуляции и равна 2 max .

Для ЧМ-сигналов средняя за период высокой частоты мощность постоянна, так как амплитуда колебаний неизменна (U ω 1 =const ). Ширина спектра ЧМ-сигнала, равна2 ω g , зависит только от амплитуды модулирующего сигнала и не зависит от его частоты.

Для ФМ-колебаний средняя за период высокой частоты мощность также неизменна, ибо U ω 1 =const . Ширина спектра равна2m =2 ω g , и зависит как от амплитуды модулирующего сигнала, так и от его частоты.

Таким образом, практическая ширина спектра колебаний с угловой модуляцией в m раз больше ширины спектра АМ-колебаний.

2.6 Одновременная модуляция по амплитуде и по частоте

В ряде случаев возникает необходимость в передаче двух сообщений с помощью одного носителя. Тогда одним сообщением носитель модулируют по частоте, а другим – по амплитуде. Наиболее простой по составу спектр сигнала с двойной модуляцией получится при гармоническом законе изменения, как частоты, так и амплитуды. Пусть по частоте носитель модулируется сообщением с частотой  1 , а по амплитуде – с частотой 2 . Тогда частота и амплитуда носителя будут изменяться в соответствии с выражениями

Модулированное по частоте напряжение было получено выше при постоянной амплитуде U ω 1 (2.32). При изменении амплитуды в этом выражении следует заменить постоянную амплитудуU ω1 изменяющейся в соответствии с (2.39). Тогда получим:

По сравнению с напряжением, модулированным только по частоте, здесь появляются дополнительные составляющие двух видов:

Чтобы яснее выявить спектральный состав сигнала, предположим сначала, что  1 >> 2 , т.е. изменение амплитуды происходит значительно медленнее, чем изменение частоты. Тогда можно считать, что в спектре частотно-модулированного сигнала около несущего колебания с частотойω 1 и боковых составляющих с частотамиω 1 n  1 появилось дополнительно по два спутника с частотами, отличающимися на 2 . Спектр такого сигнала показан на рисунке 2.14.

Рисунок 2.14 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 >> 2

Для систем телемеханики интерес представляет второй случай, а именно спектр сигнала при  1 << 2 . Тогда можно считать, что у каждой из трех спектральных линий АМ сигнала (несущей с частотойω 1 , нижней (ω 1 - 2) и верхней (ω 1 + 2) боковых составляющих) появились дополнительно по две боковые дискретные полосы: верхняя с частотами +n 1 и нижняя с частотами -n 1 . Спектр сигнала для этого случая двойной модуляции показан на рисунке 2.15.

Рисунок 2.15 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 << 2

Практически необходимая ширина спектра сигнала примерно равна сумме необходимых спектров только при амплитудной модуляции ω АМ и только при частотной модуляцииω ЧМ (рисунки 2.14, 2.15). При малом индексе частотной модуляции (m ЧМ <1) необходимая ширина спектра сигнала лишь немногим больше, чем при амплитудной модуляции.

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.