Что такое разрешающая способность. Разрешающая способность оптической системы

Лившиц М. Разрешающая способность измерительных приборов //Квант. - 2002. - № 3. - С. 35-36.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Всем известно, что микроскоп нужен для того, например, чтобы пересчитать число микробов на предметном столике, телескоп - чтобы пересчитать звезды на небе, радиолокатор - чтобы установить число летательных аппаратов в небе и расстояния до них.

В этой статье речь пойдет о важнейшем свойстве физических приборов - их разрешающей способности, т.е. величине наименьших деталей объектов измерения, различаемых в процессе измерения. Именно разрешающая способность является главной характеристикой качества применяемого измерителя (даже более важной, чем точность измерений). Например, не только от увеличения микроскопа зависит его качество. Если устройство микроскопа не обеспечивает раздельное восприятие достаточно мелких деталей объекта, то получаемое изображение не улучшится даже при значительном росте увеличения. Мы получим только более крупную, но такую же нечеткую картинку рассматриваемого предмета. Кроме того, сами ошибки измерения могут быть определены только после разрешения, т.е. после выделения данной детали объекта из других.

Покажем, какие физические свойства дистанционных (неконтактных) измерителей непосредственно влияют на получающееся при их использовании разрешение и какими методами можно добиться улучшения разрешающей способности таких приборов.

Сначала дадим количественную оценку. Чем более мелкие детали объектов могут быть выделены данным прибором в процессе измерения, тем лучше (выше) его разрешающая способность. Для различных приборов существуют различные определения и разные формулы для количественной оценки разрешающей способности в зависимости от целей и методов: например, оценивается ли разрешение деталей предмета (микроскоп, бинокль, телескоп) или отдельных линий в спектре излучения (призма, дифракционная решетка и другие спектральные устройства), используется ли независимость наблюдения и измерения координат нескольких целей (радиолокатор, гидролокатор, эхолокатор животного) и т.п. Однако общепринятой основой количественной оценки разрешающей способности является критерий Рэлея, первоначально установленный для случая раздельного наблюдения двух точечных источников света (разрешение двойных звезд). Его обобщение, позволяющее использовать этот критерий в самых разных случаях, осуществляется следующим образом.

Пусть входное воздействие на измерительный прибор состоит из двух пиков, отстоящих на интервал Δx ; при этом на выходе прибора от каждого пика получается «отклик» в виде более размазанного по х всплеска конечной ширины, характеризующий свойства прибора и называемый аппаратной функцией (рис.1). Тогда разрешающей способностью по Рэлею называют минимальный интервал Δx min между воздействиями двух пиков, при котором суммарный отклик еще имеет вид двугорбой кривой (рис.2,а). Если уменьшить Δx , верхушка суммарного всплеска уплощается и всплески сливаются в один (рис.2,б).

Какие же параметры волн, используемых в дистанционных измерителях, определяют величину разрешающей способности? Оказывается, таким параметром является степень когерентности волн (латинское слово «когерентный» означает «находящийся в связи»).

Прежде вспомним о когерентности колебаний. Колебания называются когерентными, если разности фаз и отношения амплитуд колебаний остаются постоянными в течение всего времени наблюдения. В простейшем случае когерентными являются два синусоидальных колебания \(~A \cos (\omega t + \alpha)\) и \(~B \cos (\omega t + \beta)\), где А , В , α и β - постоянные величины. Поскольку волновые процессы определяются колебаниями во всех точках пространства, где эти волны существуют, необходимым условием когерентности волн является когерентность колебаний, происходящих в каждой данной точке волны в течение времени наблюдения.

Более общим и кратким является определение некогерентности волн: пучки света или других волн будут некогерентными, если разность фаз между колебаниями во всех точках пространства, где эти волны существуют совместно, многократно и нерегулярным образом изменяется в течение времени наблюдения.

Теперь постараемся установить связь разрешающей способности измерителя со степенью когерентности волн. Наиболее наглядно это можно сделать на примере радиолокации - способе определения местонахождения объектов с помощью радиоволн.

Кратко напомним принцип работы импульсной радиолокационной станции (РЛС). На рисунке 3 изображена блок-схема РЛС. Здесь 1 - передатчик, 2 - антенный переключатель, 3 - антенна, 4 - диаграмма направленности антенны, 5 - приемник, 6 - индикатор. Передатчик РЛС с помощью узконаправленной антенны производит периодическое облучение пространства кратковременными цугами радиоволн (так называемыми зондирующими, т.е. «ощупывающими», импульсами). Поворотом антенны (или другими способами) производится изменение направления излучения радиоволн и, тем самым, осуществляется последовательное зондирование большего или меньшего сектора пространства (или круговой обзор). Отраженные от различных целей импульсы поступают (обычно через ту же антенну) в приемник РЛС. При этом определение угловых координат целей основано на использовании диаграммы направленности антенны на излучение и прием. Измерение дальности D производится по измерению времени запаздывания t zap прихода отраженного от цели импульса относительно момента излучения зондирующего импульса:

\(~D = \frac{c t_{zap}}{2}\) ,

где c - скорость света. Двойка в знаменателе появляется из- за того, что время запаздывания складывается из времени прохождения зондирующего импульса до цели и такого же времени прохождения отраженного импульса до РЛС.

Разрешающей способностью РЛС по углу называется наименьшая разность углов Δα между направлениями на две цели, находящиеся на одной дальности, при которой отраженные импульсы от них наблюдаются раздельно. Легко видеть, что это соответствует простейшему случаю пространственной некогерентности: разрешаются (по углу) те цели, на которые не может одновременно попасть «освещающее» излучение РЛС, так как направления на них отличаются на ширину диаграммы направленности антенны (рис.4).

Разрешающей способностью РЛС по дальности называется наименьшее расстояние δr между двумя целями, находящимися в одном направлении, при котором они наблюдаются раздельно. В так называемых классических РЛС в качестве зондирующего импульса применялся синусоидальный цуг волн постоянной амплитуды. Это объясняется, в частности, тем, что такой цуг легко создать: достаточно на высокочастотный генератор (например, магнетрон) кратковременно подать постоянное по величине высокое напряжение. Однородность структуры цуга приводит к тому, что отраженные от различных целей волны будут иметь одинаковую частоту (если они движутся по направлению к РЛС с одинаковой скоростью или если можно пренебречь эффектом Доплера), в пределах взаимного перекрытия отраженных импульсов они будут когерентны, и разделить цели полностью не удастся. Отраженные от двух целей импульсы будут некогерентны только тогда, когда они не совпадают по времени прихода в приемник РЛС и поэтому не перекрываются на экране индикатора (рис.5).

Таким образом, разрешающая способность этих РЛС по дальности составляет

\(~\delta r = \frac{c \tau}{2}\) ,

где τ - длительность импульса. Можно сказать, что в рассматриваемой РЛС некогерентность приходящих от разных целей отраженных сигналов выступает в самом простом виде: как отсутствие их совпадения во времени.

Как видно из последней формулы, для повышения разрешающей способности по дальности необходимо уменьшать длительность импульса τ . Но это неизбежно приводит к соответствующему расширению полосы частот. Дело в том, что, с одной стороны, существует фундаментальное соотношение между длительностью τ сигнала (например, обрывка синусоиды) и шириной Δν его спектра (на шкале частот), в которой сосредоточена основная энергия импульса:

\(~\Delta \nu \approx \frac{1}{\tau}\) .

С другой стороны, вполне понятно, что дальность обнаружения цели определяется энергией зондирующего и, следовательно, вернувшегося назад импульса. Значит, при укорочении импульса приходится соответственно увеличивать мощность передатчика, что является непростой задачей.

В поисках выхода из этой ситуации в радиолокации пошли по пути увеличения ширины полосы частот импульса без изменения его длительности: путем перехода от синусоидальной к более усложненной внутренней структуре зондирующего импульса. Так появились РЛС с линейно-частотно-модулированными (ЛЧМ) зондирующими импульсами (рис.6). В этом случае оказывается, что соотношение между длительностью и шириной сигнала будет выполняться уже не для длительности импульса τ imp , а для времени когерентности τ kog:

\(~\tau_{kog} \approx \frac{1}{\Delta \nu}\) , где \(~\Delta \nu >> \frac{1}{\tau_{imp}}\).

Правда для этого в приемнике РЛС вводится дополнительный специальный фильтр, с помощью которого осуществляется сжатие принятого импульса до длительности τ s = τ kog . Теперь импульсы на экране РЛС будут разделяться при гораздо меньшем расстоянии между Целями, чем это было при использовании синусоидального импульса:

\(~\delta r = \frac{c \tau_s}{2} << \frac{c \tau_{imp}}{2}\) ,

Так подтверждается неразрывная связь разрешающей способности дистанционного измерителя со степенью когерентности волн: для повышения (улучшения) разрешающей способности измерителя необходимо ухудшать когерентность используемых волн.

Любопытно отметить, что в живой природе развитие в этом направлении пошло еще дальше. Например, наряду с летучими мышами, эхолокаторы которых также используют ЛЧМ зондирующие импульсы, существуют так называемые «шепчущие» летучие мыши, применяющие еще более широкополосные шумовые импульсы, т.е. высокочастотные импульсы, модулированные «белым» шумом. Они обнаруживают цели при значительно меньших мощностях излучения, при этом обеспечивается также лучшая защита их локаторов от помех, особенно от взаимных, возникающих при одновременной охоте на насекомых больших групп этих летучих мышей.

В рамках приближений геометрической оптики невозможно определить физический предел разрешения оптических систем. Эта задача решается при учете волновой природы излучения. Ограниченность разрешающей способности микроскопа обусловлена явлением дифракции, обусловленном волновой природой света.

Если на пути световой волны находится препятствие типа непрозрачного экрана, то часть волны, задерживаясь препятствием, перестает действовать, и образуется тень. Однако при этом возникает специфическое явление огибания препятствия волной, носящее название дифракции. В результате на краях отверстия возникает отклонение направления распространения светового луча от первоначального и связанное с ним угловое расширение пучка, что приводит к размазыванию границы тени (рис. 1) и, следовательно, к появлению несоответствия между объектом и его теневым изображением.

Рис.1 Картина дифракции на диафрагме (а) и распределение интенсивности света (б) на экране.

Теория Аббе

Сказанное выше справедливо для случая некогерентных источников, т.е. для самосветящихся объектов наблюдения. Однако для практики гораздо важнее ситуация освещенных объектов. Это означает, что отдельные точки объекта рассеивают волны, падающие на них из одного источника, т.е. сами являются источниками когерентного излучения.

Аббе (1873) указал весьма интересный прием определения разрешающей силы микроскопа для такого случая.

Рассмотрим для простоты случай, когда освещение производится параллельным пучком, а объект имеет простую форму дифракционной решетки, период которой d имеет размер (и смысл) мельчайшей различимой детали.

Рис.2

Свет перед попаданием на линзу микроскопа претерпевает дифракцию (рис.2), формируя в результате интерференции в фокальной плоскости FF ряд главных максимумов, угловые расстояния между которыми определяются периодом решетки - объекта наблюдения (по Аббе - первичное изображение или спектр).

В описанной ситуации положение дифракционных максимумов Ат задается условием:

где т - целое число.

Так как все дифракционные максимумы соответствуют когерентным лучам, то за фокальной плоскостью объектива эти лучи опять интерферируют между собой, давая в плоскости Р2Р2", сопряженной относительно объектива 00" с плоскостью Р1Р1", изображение самого объекта (т. н. вторичное изображение).

Только полная совокупность дифракционных максимумов определит вторичное изображение в полном соответствии с объектом.

Чем крупнее деталь изображения, тем меньший угол дифракции ей соответствует. Детали структуры меньше длины волны вообще не могут быть наблюдаемы, т.к. волны, дифрагировавшие на таких деталях, не доходят до экрана Р2Р2"

Если диафрагма, расположенная в фокальной плоскости обрезает дифрагировавшие пучки так, что в формировании изображения будет участвовать только центральный луч, то мы не увидим изображения объектов, дающих дифракцию от периодической структуры.

Правило Луммера гласит: если оптическая система формирует изображение без искажений и улавливает весь дифрагированный объектом свет, то изображение правильно передает распределение амплитуд и фаз излучения, рассеянного объектом.

При исследовании реальных объектов в ТЕМ следует иметь в виду, что дифракционная картина формируется не только атомами, но и зернами и дефектами решетки. Так как размер зерен гораздо больше межатомных расстояний, то углы дифракции на зернах гораздо меньше углов дифракции на атомной структуре. Поэтому при отсечении апертурной диафрагмой пучков, сформированных дифракцией на атомах, изображение в плоскости изображения микроскопа образуется лучами, дифрагировавшими на зернах. Поэтому на экране мы наблюдаем зерна, а не атомы. Для того, чтобы увидеть атомы, необходимо, чтобы лучи, дифрагировавшие на атомах, прошли через апертурную диафрагму и также принимали участие в формировании картины объекта в плоскости изображения. Для этого необходимо, чтобы углы дифракции на атомах, были весьма малыми. Этого можно достичь, уменьшив длину волны электронов, что аппаратно реализуется повышением ускоряющего напряжения в источнике электронов микросокпа до 200-400 кВ и выше. Так получают изображения дифрагирующих решеток в электронных микроскопах, работающих в режиме высокого разрешения (HR TEM - high resolution transmission electron microscopy).

Световая энергия в дифракционном изображении точки распределяется неравномерно. Впервые распределение освещенности в дифракционных кольцах было исследовано английским ученым Эйри (1811-1892), и центральный кружок дифракционного пятна получил название кружка Эйри. Большая часть световой энергии изображения сосредоточена в кружке Эйри (около 84%) и первых двух-трех кольцах.

Математически расчет распределения освещенности в дифракционных кольцах сводится к определению корней функции Бесселя J1 (u). Распределение интенсивности I при дифракции плоской волны на круглом отверстии задается функцией

Аргумент функции Бесселя

где а - радиус отверстия, . угол дифракции, Первый корень, соответствующий первому минимуму освещенности (т.е. границе центрального светлого пятна в дифракционной картине), получается при значении

Тогда радиус центрального, самого интенсивного кружка, называемого кружком Эйри или кружком рассеяния,

  • · л - длина волны;
  • · n - показатель преломления для пространства между объектом и объективом;
  • · М - увеличение объектива;
  • · ц - апертурный угол.

Появление на искаженном изображении кружка вместо точки равносильно изображению идеальной линзой объекта в виде кружка радиусом

r называют радиусом кружка рассеяния.

Таким образом, по мере уменьшения апертурного угла или диаметра диафрагмы, как показано на рис.3, размер возникающего изображения все в большей степени будет отличаться от идеального.

Предельное разрешаемое расстояние при учете только рассматриваемой здесь дифракционной ошибки равно радиусу кружка рассеяния, отнесенного к объекту, т.е.

Видимая часть спектра ограничена узкой областью длин волн от 0,4 до 0,8 мкм, поэтому повышение разрешающей способности (а с ним и полезного увеличения) в световой микроскопии осуществляется за счет применения специальной иммерсионной жидкости с показателем преломления n ? 1,5. Величина апертурного угла для высококачественных объективов составляет примерно 70° (sin 0 ? 0,9), так что для предельно разрешаемого расстояния получается величина, примерно равная половине длины волны используемого света, т.е.0,2 мкм.

Если лучи от точечного источника света проходят через реальную оптическую систему (объектив, линзу и т.п.), то в плоскости изображения системы образуется элементарная интерференционная картина в виде кружка Эйри.

Если применить - протяженный источник света, то при прохождении лучей через, систему каждая точка источника будет давать свой кружок, в результате чего в плоскости изображения системы образуется сложная интерференционная картина.

Рис. 4

a) положение дифракционных изображений точек А и B при условии их разрешения;,

b) график распределения интенсивности в дифракционном изображении двух светящихся точек

разрешающая способность оптическая система

В случае, когда две светящиеся точки, изображаемые оптической системой, находятся на очень малом расстоянии одна от другой, дифракционные фигуры рассеяния могут частично накладываться или сливаться в одну. Если в такой сложной картине оптическая система позволяет наблюдать две близко расположенные точки раздельно, то говорят, что система эти точки "разрешает".

Если расстояние между центрами дифракционных картин точек А и В обозначить r (рис.4, а), то эти точки будут видны раздельно при условии, что r>с, где с - радиус первого минимума (или кружка Эйри).

Обычно при оценке разрешающей способности систем применяют критерий Рэлея. По Рэлею, за предел разрешения принимается такое положение, при котором темное кольцо одного дифракционного кружка проходит через светлый центр соседнего (рис.4). В этом случае сумма ординат кривых интенсивности в точке С будет равна примерно 0.8 от ординаты в точке максимума. Разница в 20% считается достаточной для разделения изображений. Изложенное - суть т. н. критерия Рэлея для разрешения оптических систем.

Кардинальное улучшение разрешающей способности было достигнуто в электронной микроскопии, использующей для формирования изображения электронное излучение.

Согласно основному положению волновой механики, каждой частице с массой т, движущейся со скоростью v, соответствует волна длиной

Рабочая формула для вычисления длины волны электронов в ангстремах имеет вид

Где U - ускоряющее напряжение в киловольтах

В современных электронных микроскопах используются электроны со скоростями, которым соответствуют длины волн 0,003 - 0,007 нм,.

Практически достижимое разрешение электронных микроскопов превышает разрешение световых лишь в 1000 раз. Это расхождение связано с тем, что в электронно-оптических линзах по сравнению со световыми значительно больше ошибки изображения, так называемые аберрации. Для снижения влияния аберраций приходится уменьшать апертурные углы в 100-1000 раз по сравнению с апертурными углами светооптических микроскопов.

Оптические приборы - устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).

Отдавая дань исторической традиции,оптическими обычно называют приборы, работающие в видимом свете .

При первичной оценке качества прибора рассматриваются лишь основные его характеристики:

· светосила - способность концентрировать излучение;

· разрешающая сила - способность различать соседние детали изображения;

· увеличение - соотношение размеров предмета и его изображения.

· Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность) - характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта .

Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения .

Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:

m = h/H .

Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.

Важной характеристикой приборов для визуального наблюдения является видимое увеличение М . Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga , где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор.



Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.

Линза оптически прозрачное тело, ограниченное двумя сферическими поверхностями.

Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

Линзы бывают собирающими ирассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

Виды линз:

· выпуклые:

o двояковыпуклые (1)

o плосковыпуклые (2)

o вогнуто-выпуклые (3)

· вогнутые:

o двояковогнутые (4)

o плосковогнутые (5)

o выпукло-вогнутые (6)

Основные обозначения в линзе:

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы .

В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O. Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.

Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.

Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.

Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.

Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F", которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.

Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.

Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием . Оно обозначаетcя той же буквой F.

Преломление параллельного пучка лучей в собирающей линзе.

Преломление параллельного пучка лучей в рассеивающей линзе.

Точки O 1 и O 2 – центры сферических поверхностей, O 1 O 2 – главная оптическая ось, O – оптический центр, F – главный фокус, F" – побочный фокус, OF" – побочная оптическая ось, Ф – фокальная плоскость.

На чертежах тонкие линзы изображают в виде отрезка со стрелками:

собирающая: рассеивающая:

Основное свойство линз способность давать изображения предметов . Изображения бывают прямыми иперевернутыми , действительными и мнимыми , увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:

· Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.

· Луч, проходящий через оптический центр линзы не преломляется.

· Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию называют оптической силой линзы .

Единицей измерения оптической силы является диоптрия (дптр) . Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м –1

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации.

Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Используя даже идеальную оптическую систему (такую, для которой отсутствуют дефекты и аберрации), невозможно полу­чить стигматическое изображение точеч­ного источника, что объясняется волновой природой света. Изображение любой све­тящейся точки в монохроматическом свете представляет собой дифракционную кар­тину, т. е. точечный источник отображает­ся в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами.

Согласно критерию Рэлея, изображе­ния двух близлежащих одинаковых точеч­ных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источ­ника (линии) совпадает с первым миниму­мом дифракционной картины от другого (рис. 265, а). При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсив­ности в максимуме, что является достаточ­ным для разрешения линий  1 и  2 . Если критерий Рэлея нарушен, то наблюдается одна линия (рис. 265, б ).

1. Разрешающая способность объекти­ва. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием d, то вследствие дифракции световых волн на краях диафрагмы, огра­ничивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами (рис. 266).

Можно доказать, что две близлежащие звезды, наблюдаемые в объективе в моно­хроматическом свете, разрешимы, если уг­ловое расстояние между ними

>=l,22/D, (183.1)

где Я - длина волны света, D - диаметр объектива.

Разрешающей способностью (разре­шающей силой) объектива называется ве­личина

где d - наименьшее угловое расстоя­ние между двумя точками, при котором они еще оптическим прибором разрешаются.

Согласно критерию Рэлея, изображе­ния двух одинаковых точек разрешимы, когда центральный максимум дифракцион­ной картины для одной точки совпадает с первым минимумом дифракционной кар-

тины для другой (рис.266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние между точками d должно быть равно , т. е. с учетом (183.1)

d==1,22/D.

Следовательно, разрешающая способ­ность объектива

R=1/d=D/(l,22), (183.2)

т. е. зависит от диаметра и длины волны света.

Из формулы (183.2) видно, что для увеличения разрешающей способности оп­тических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а полученное изображение в данном случае наблю­дается с помощью флуоресцирующего эк­рана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рент­геновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломля­ясь; следовательно, в данном случае не­возможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излуче­ние. Поэтому электронный микроскоп име­ет очень высокую разрешающую способ­ность (см. § 169).

Разрешающей способностью спек­трального прибора называют безразмер­ную величину

R = / (L ), (183.3)

где  - абсолютное значение минималь­ной разности длин волн двух соседних спектральных линий, при которой эти ли­нии регистрируются раздельно.

2. Разрешающая способность дифрак­ционной решетки. Пусть максимум m-го порядка для длины волны  2 наблюдается под углом , т.е., согласно (180.3), d sin=m 2 . При переходе от максимума к соседнему минимуму разность хода ме­няется на /N (см. (180.4)), где N - число щелей решетки. Следовательно, минимум  1 , наблюдаемый под углом  min , удовлетворяет условию d sin min = m 1 + 1 /N. По критерию Рэлея, = т min , т.е. m2=m 1 + 1 /N, или  2 /( 2 - 1)=mN. Так как  1 и  2 близки между собой, т.е.  2 - 1 =, то, согласно (183.3),

R диф. реш =mN .

Таким образом, разрешающая способ­ность дифракционной решетки пропорцио­нальна порядку т спектров и числу N ще­лей, т. е. при заданном числе щелей увели­чивается при переходе к спектрам высших порядков. Современные дифракционные решетки обладают довольно высокой раз­решающей способностью (до 2 10 5).

Разрешающая способность оптических приборов, характеризует способность давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Всякая система имеет ограниченное отверстие, которое огибается сферической волной, исходящей из объекта, вызывая дифракцию. Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете, радужно окрашенными - в белом свете). Центральный максимум отделен абсолютным минимумом от других, менее интенсивных, максимумов. Эти максимумы более высоких порядков не оказывают существенного влияния на дифракционную картину. Качество изображения оптической системы зависит от ширины этого максимума, т. е. от расстояния, на котором находится первый абсолютный минимум от центра дифракционной фигуры. Чем меньше площадь максимума, тем лучше качество изображения. Ширина центрального максимума является функцией апертурного угла со стороны изображения и длины волны света. Чем меньше апертурный угол и чем больше длина волны, тем максимум шире.

Факторы разрешающей способности глаза можно разделить на «нервные», к которым относятся способы" переработки сигнала в сетчатке и лежащих выше отделах зрительного анализатора, и на «оптические». Это в первую очередь дифракция на радужке, собственные аберрации глаза, рассеяние света на поверхностях глазных сред, влияние неровностей роговицы, децентрированности оптической системы глаза, неправильной фокусировки, контрастность объектов. При разных условиях зрительной работы эти факторы влияют различно. Так, при дневном зрении вследствие малого размера зрачка увеличивается влияние дифракции, аберрации же сказываются меньше, и совсем не влияет на сетчаточное изображение отклонение периферической зоны роговицы от правильной формы. При ночном зрении, когда зрачок расширен и работает не только центральная, но и периферическая зона роговицы, основное снижение качества изображения и разрешающей способности обусловлено неправильной формой роговицы и рассеянием света на глазных средах.

Образование изображения на сетчатке с точки зрения волновой природы света.

В глазу, так же как в большинстве других оптических систем, падающая от объекта сферическая волна ограничивается круглой апертурной диафрагмой - зрачком глаза, от диаметра которой и зависит ширина центрального максимума. Дифракционная фигура от круглого отверстия представляет собой дифракционный кружок. Центральный максимум, который воспринимается как «изображение» точки, имеет в этом случае радиус:

Так как этот радиус зависит от длины волны, то величина центрального максимума и радиус бокового максимума неодинаковы для различных цветов. Поэтому изображение точки в белом свете бывает окрашенным. Наличие в оптической системе глаза довольно больших аберраций приводит к перераспределению освещенности в дифракционной фигуре - освещенность в центральном максимуме уменьшается, а в дифракционных кольцах возрастает. Диаметр центрального максимума при этом остается прежним, а в боковых в большей или меньшей степени изменяется. Человеческий глаз представляет собой биологическую оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм.

Оптический и электронный микроскопы. Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому.В оптическом микроскопе носителем информации о предметеявля­ется фотон, свет. Источником света обычно служит лампа накаливания. После взаимодействия с предметом (поглощение, рассеяние, дифракция) поток фотонов преобразуется и содержит информацию о предмете. Поток фотонов формируется с помощью оптических устройств, в основном линз: конденсора, объектива, окуляра, Изображение регистрируется глазом (или фотопластинкой, фотолюминесцирующим экраном и т.д.).

В электронном микроскопе носителем информации о предмете является электрон, а источником электронов - подогреваемый катод. Ускорение электронов и образование пучка осуществляют фокусирующим электродом и анодом - системой, называемой электронной пушкой. После взаимодействия с предметом (в основном рассеяние) поток электронов преобразуется и содержит информацию о предмете. Формирование потока электронов происходит под воздействием электрического поля (система электродов и конденсаторов) и магнитного (система катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (конденсорная; электронная, служащая объективом, проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране.

Главные максимумы попарно симметрично располагаются, отно­сительно центрального и в некоторой степени дублируют друг друга. Совокупность максимумов, расположенных с одной сторо­ны от центра, вместе с централь­ным достаточна, чтобы передать информацию о предмете. Следо­вательно, экранирование лучей, идущих от максимумов, распо­ложенных по другую сторону от центра, лишь уменьшит яркость изображения предмета.

Как видно из формулы (где А - числовая апертура; n - показатель преломления среды, находящейся между предметом и линзой объектива), один из способов уменьшения предела разрешения микроскопа - использование света с меньшей длиной волны. Числовая апертура может быть увеличена с помощью специаль­ной жидкой среды - иммерсии - в пространстве между объективом и покровным стеклом микроскопа. Окуляр совершенно не влияет на разрешающую способность микроскопа, он только создает увеличен­ное изображение объектива.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Поляризация света-явление особого видоизменения естественных световых лучей, исходящих от обыкновенного источника света, при котором лучи приобретают как бы различные свойства по различным направлениям, перпендикулярным к направлению луча; такое свойство лучей может быть вызвано в самом источнике света, если поставить последний в некоторые определенные условия, но оно может быть искусственно придано и лучам, вышедшим из источника света в естественном их состоянии.
Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора Е, то имеем дело с частично поляризованным светом. Свет, в котором вектор Е колеблется только в одном направлении, перпендикулярном лучу, называется плоско поляризованным.
Двойное лучепреломление, представляют собой волокнистые объекты, обладающие единственной оптической осью. Хотя это слишком упрощает положение вещей, при проведении очень многих биологических исследований удобно принять, что длинная ось волокна совпадает с оптической осью структуры.
В поляризационных устройствах - поляризаторах для получения полностью или частично поляризованного света используется одно из трёх физических явлений: поляризация при отражении света или преломлении света на границе раздела двух прозрачных сред; линейный дихроизм; двойное лучепреломление.

При построении изображений в геометрической оптике исходят из следующих приближений:1. Свет в однородной "среде распространяется прямолинейно (т. е. явлениями дифракции пренебрегают).2.Отдельные лучи распространяются независимо друг от друга (т. е. интерференцией лучей пренебрегают).3. При переходе луча из среды с показателем преломления п в среду с показателем преломления п" на границе раздела выполняется соотношение ti sin i = п" sin т между углом падения i и углом преломления г. Отражение рассматривается как частный случай преломления обратно в первую среду и ход лучей определяется простой подстановкой в полученные из валокна преломления. Частичное отражение лучей при преломлении и частичное поглощение их при от­ражении не учитываются.4. Для простоты расчет ведется лишь для лучей, падающих и отражающихся под столь малыми углами, что для них можно пользоваться приближенными соотношениями:sin а « tg а » а.
Центрированной оптической системой называется система, центры всех поверхностей которой располагаются на одной прямой. Эта прямая носит название оптической оси системы. Рассмотрим преломление параксиальных лучей (т. е. лучей, проходящих бесконечно близко около оптической оси) одной сферической поверхностью. В случае, когда имеется одна сферическая поверхность, оптической осью может быть любая прямая, проходящая.
Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону через центр поверхности.
Эндоско́п - группа оптических приборов различного назначения. Различают медицинские и технические эндоскопы. Технические эндоскопы используются для осмотра труднодоступных полостей машин и оборудования при техническом обслуживании и оценке работоспособности (лопатки турбин, цилиндры двигателей внутреннего сгорания, оценка состояния трубопроводов и так далее), кроме того, технические эндоскопы используются в системах безопасности для досмотра скрытых полостей (в том числе для досмотра бензобаков на таможне). Технические эндоскопы в СССР выпускались в Харькове.Медицинские эндоскопы используются в медицине для исследования и лечения полых внутренних органов человека (пищевод, желудок, бронхи, мочеиспускательный канал, мочевой пузырь, женские репродуктивные органы, почки, органы слуха), а также брюшной и других полостей тела.

Аберрации оптических систем (лат. - отклонение) - искажения, погрешности изображения, вызванные несовершенством оптической системы. Аберрациям, в разной степени, подвержены любые объективы, даже самые дорогие. Считается, что чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций.Сфери́ческая аберра́ция - аберрация оптических систем; нарушение гомоцентричности пучков лучей от точечного источника, прошедших через оптическую систему без нарушения симметрии строения этих пучков (в отличие от комы и астигматизма). Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

Где2h 1 - диаметр отверстия системы;a" - расстояние от системы до точки изображения;δs" - продольная аберрация.Для объектов расположенных в бесконечности ,где f" - заднее фокусное расстояние.Для наглядности сферическую аберрацию, как правило, представляют не только в виде таблиц, но и графически. Световые лучи, проходящие сквозь линзу вблизи оптической оси (ближе к центру), фокусируется в области В , дальше от линзы. Световые лучи, проходящие сквозь краевые зоны линзы, фокусируются в области А , ближе к линзе. Таким образом, получается, что края линзы имеют более короткое фокусное расстояние, чем це Хроматические аберрации (ХА) - явление вызванное дисперсией света проходящего через объектив, т.е. разложением луча света на составляющие. Лучи с разной длиной волны (разного цвета) преломляются под разными углами, поэтому из белого пучка образуется радуга.нтр. Хроматические аберрации приводят к снижению чёткости изображения и появлению цветной «бахромы», особенно на контрастных объектах. Астигматизм (от греч. а - отрицательная частица и stigme - точка), недостаток оптической системы, получающийся вследствие неодинаковой кривизны оптической поверхности в разных плоскостях сечения падающего на неё светового пучка. Сферическая волновая поверхность после прохождения оптической системы деформируется и перестаёт быть сферической.Астигмати́зм (медицина) - дефект зрения, связанный с нарушением формы хрусталика, роговицы или глаза в результате чего человек теряет способность к чёткому видению. Оптическими линзами сферической формы дефект компенсируется не полностью. Если астигматизм не лечить, он может привести к косоглазию и резкому падению зрения. Без коррекции астигматизм может вызвать головные боли и резь в глазах. Поэтому очень важно регулярно посещать врача-офтальмолога. Цилиндрические линзы по форме напоминают автомобильную шину, искривленную в одном направлении больше, чем в другомСветовая микроскопия основывается на законах геометрической оптики и волновой теории образования изображения, в качестве освещения используются естественный или искусственные источники света. Классический микроскоп представляет собой штатив с подвижным тубусодержателем, осветителем и предметным столиком. Прикрепленный к ним тубус (полая трубка) оснащен системой линз. К предметному столику снизу прикреплено зеркало. Изменяя положение осветителя, зеркала и рабочей поверхности предметного столика с помощью специальных вентилей, можно добиться точной фокусировки световых лучей на исследуемом объекте и появления отчетливого изображения в объективе. На нижнем конце тубуса имеются 2-3 подвижных объектива с разной степенью увеличения, на верхнем конце - окуляр. Световая микроскопия подразделяется на фазовоконтрастную, интерференционную, поляризационную, люминесцентную, инфракрасную, стереоскопическую и основана на использовании различных свойств света и изучаемого объекта

Со́лнечная излучение (радиа́ция) - электромагнитное и корпускулярное излучение Солнца. Спектральный диапазон электромагнитного излучения Солнца очень широк - от радиоволн до рентгеновских лучей - однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра. Солнечное излучение дошедшее до Земли проходит строжайшую чистку в слоях земной атмосферы. Атмосфера Земли начинает уничтожать жесткие ультрафиолетовые и рентгеновские лучи на высоте 350 км. На такой же высоте отражаются длинные радиоволны. Мягкое ультрафиолетовое излучение поглощается на высоте 30-35 км., где происходит образование озона. Остаточное излучение дошедшее до поверхности земельного покрова поглощается морями и океанами, а также сушей.Солнечная постоянная – это количество солнечной энергии, приходящейся на поверхность площадью в квадратный метр и развернутую перпендикулярно солнечным лучам на границе земной атмосферы.Инфракра́сное излуче́ние - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм). Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. Инфракрасные лучи применяются в физиотерапии. Проникновение инфракрасных волн в глубину тела (до 7 см) прогревает ткани, органы, мышцы, кости и суставы и ускоряет поток крови и лимфы. Инфракрасное излучение также позволяет ослабить действие ядохимикатов, g-излучения, способствуя повышению неспецифического иммунитета. ИК-лучи подсушивают кожу, а потому могут использоваться для лечения некоторых кожных заболеваний или ожогов. Ультрафиоле́товое излуче́ние - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 - 10 нм, 7,9·1014 - 3·1016 Герц). Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза. Применение ультрафиолетового излучения в медицине связано с тем, что оно обладает бактерицидным, мутагенным, терапевтическим (лечебным), антимитотическим и профилактическим действиями, дезинфекция; лазерная биомедицина. Дефицит ультрафиолетовых лучей ведет к авитаминозу, снижению иммунитета, слабой работе нервной системы, появлению психической неустойчивости.Ультрафиолетовое излучение оказывает существенное воздействие на фосфорно-кальциевый обмен, стимулирует образование витамина D и улучшает все метаболические процессы в организме.

Теплово́е излуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.Характеристики теплового излучения - энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м2с)] = [Вт/м2] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела (R) - мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФпад, то одна его часть отражается от поверхности тела - dФотр, другая часть проходит в тело и частично превращается в теплоту dФпогл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФпр: α = dФпогл/dФпад. Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела. - монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: αλ,T = f(λ,T)Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами. Для них α =1. Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.Закон Кирхгофа . Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.Закон Стефана-Больцмана. Общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

Закон Вина. длина волны λmax, на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т:

λmax = в/t, где в = 2,9*10-3 м·К- постоянная Вина.Формула Планка. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10-34 Дж·с постоянная Планка.

Природа рентгеновского излучени Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10 -5 нм . Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм ), называются мягкими . Длина волны 1 – 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.я Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым g-излучением. Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).
Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:mv 2 /2 = eU (1) где m, e – масса и заряд электрона, U – ускоряющее напряжение. Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны. Рентгеновские аппараты (синоним рентгеновские установки) - устройства для получения и использования рентгеновского излучения в технических и медицинских целях. Медицинские рентгеновские аппараты в зависимости от назначения разделяют на диагностические и терапевтические. Рентгеновский аппарат состоит из следующих основных узлов. 1. Высоковольтное устройство, включающее трансформатор высокого напряжения (так называемый главный трансформатор), трансформатор накала рентгеновской трубки, систему, выпрямляющую ток, подаваемый на рентгеновскую трубку (в маломощных аппаратах выпрямительное устройство может отсутствовать). 2. Генератор рентгеновых лучей - рентгеновская трубка. 3. Распределительное устройство - пульт управления, регулирующий режимы работы аппарата. 4. Штатив или группы штативов для крепления рентгеновской

Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей l min , называемой границей сплошного спектра, и линейчатого спектра - совокупности отдельных линий, появляющихся на фоне сплошного спектра Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром . Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, чточем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше l min . Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е. где U- разность потенциалов, за счет которой электрону сообщается энергия Е max , n max - частота, соответствующая границе сплошного спектра. Отсюда граничная дли­на волны что полностью соответствует экспериментальным данным. Измеряя границу рентгеновского сплошного спектра, по формуле (229.1) можно определить эксперименталь­ное значение постоянной Планка h , которое наиболее точно совпадает с современными данными.При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии - линейчатый спектр, опреде­ляемый материалом анода и называемый характеристическим рентгеновским спектром (излучением) .Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей (рентгенодиагностика).Рентгеноскопия . Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода – недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.Флюорография . Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии. . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотности образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения вдесятки и даже сотни раз. Это расширяет диагностические возможности метода. Компьютерная рентгеновская томография . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.Первое поколение компьютерных томографов (КT) включает специальную рентгеновскую трубку, которая прикреплена к цилиндрической раме. На пациента направляют тонкий пучок рентгеновских лучей. Два детектора рентгеновских лучей прикреплены к противоположной стороне рамы. Пациент находится в центре рамы, которая может вращаться на 180 0 вокруг его тела.Рентгеновский луч проходит через неподвижный объект. Детекторы получают и записывают показатели поглощения различных тканей. Записи делают 160 раз, пока рентгеновская трубка перемещается линейно вдоль сканируемой плоскости. Затем рама поворачивается на 1 0 , и процедура повторяется. Запись продолжается, пока рама не повернется на 180 0 . Каждый детектор записывает 28800 кадров (180x160) в течение исследования. Информация обрабатывается компьютером, и посредством специальной компьютерной программы формируется изображение выбранного слоя.Второе поколение КT использует несколько пучков рентгеновских лучей и до 30 их детекторов. Это дает возможность ускорить процесс исследования до 18 секунд.В третьем поколении КT используется новый принцип. Широкий пучок рентгеновских лучей в форме веера перекрывает исследуемый объект, и прошедшее сквозь тело рентгеновское излучение записывается несколькими сотнями детекторов. Время, необходимое для исследования, сокращается до 5-6 секунд.КТ имеет множество преимуществ по сравнению с более ранними методами рентгенодиагностики. Она характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами. При обработке изображений видеографы позволяют: Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.Повышать контраст и увеличивать интересующий фрагмент изображения.Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток. Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:1. Когерентное рассеяние . Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.2. Фотоэлектрический эффект (фотоэффект) . Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения. 3. Некогерентное рассеяние (эффект Комптона) . Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром. рентгеновские лучи способны «разбивать» сложные молекулы и атомы организма человека на заряженные частицы и активные молекулы. Как и в случае других видов радиации, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени. К эффектам, обусловленным действием рентгеновского излучения, а также других ионизирующих излучений относятся: 1) временные изменения в составе крови после относительно небольшого избыточного облучения; 2) необратимые изменения в составе крови (гемолитическая анемия) после длительного избыточного облучения; 3) возникновение катаракт; 4) рост заболеваемости раком (включая лейкемию); 5) более быстрое старение и ранняя смерть


Похожая информация.