Цифровой канал передачи данных проводного вещания. Каналы передачи данных сети интернет

Не следует путать линию связи и канал связи. Они очень похожи, но эти термины нельзя использовать как синонимы. Линию связи образует физическая среда, в которой происходит информационный обмен. Например, для речевого общения линией связи является окружающий воздух, потому что передачу звука обеспечивают упругие колебания воздушной массы. Соответственно, для телефонного общения линией связи является пара медных проводов, по которым передаются электрические сигналы.

Канал связи – понятие не только физическое, но и логическое. Он подразумевает не только наличие физической линии связи, но и наличие логической договорённости о её использовании (такие договорённости называются протоколами).

    Например, при голосовом общении действуют следующие соглашения:
  • Говорить можно только по очереди
  • Говорить можно только на языке, понятном всем собеседникам
  • Говорить надо с достаточной громкостью, чтобы тебя слышали все собеседники
При соблюдении протокола в одной линии связи может действовать несколько каналов – несколько человек, находящихся в одной комнате, могут вести совместный информационный обмен. Если кто-то из участников общения нарушает установленный протокол, он не только разрушает собственный канал, но и вносит искажения в чужие каналы. Это сказывается на свойствах информации, которая через них поступает (снижается достоверность, затрудняется доступность, уменьшается полнота), что приводит к снижению её ценности.

Говоря по очереди, мы разделяем такой общий ресурс линии связи, как время. Этот принцип многоканальной связи называется принципом разделения времени. Когда один собеседник высказался (исчерпал свой ресурс времени), наступает время говорить другому.

У линии связи могут быть и другие ресурсы, которые тоже можно разделять. Например, проводники обладают способностью передавать электромагнитные колебания разных (хотя и не любых) частот. Диапазон допустимых частот (от минимальных до максимальных) – это ресурс, который можно разделить. Такой принцип называется частотным разделением каналов. Он действует в теле- и радиовещании. Одна и та же антенна телевизионного приёмника принимает сигналы от нескольких передатчиков. Если те вещают на разных частотах (не слишком близких), мы можем переключаться между каналами и смотреть разные телепрограммы. Если бы два передатчика передавали сигнал на одной частоте (на близких частотах), мы получили бы только помехи.

Телефонная связь – одноканальная по конструкции. На отрезке линии от телефонного аппарата до телефонной станции ничего не сделано для разделения ресурсов линии связи, хотя далее (между телефонными станциями) работает более современное оборудование. Например, в одной волоконнооптической линии, связывающей телефонные станции разных городов, могут одновременно действовать десятки тысяч телефонных каналов.

При желании мы тоже можем организовать несколько информационных каналов на участке линии от своего телефонного аппарата до телефонной станции. Для этого достаточно подключить компьютер к Интернету. Данные в Интернете циркулируют порциями (пакетами) в режиме разделения времени. Разные пакеты имеют разных адресатов, так что мы можем держать связь одновременно с несколькими серверами. Чем больше каналов связи мы откроем, тем медленнее будет работать каждый из них, потому что пакетам придётся простаивать, пропуская друг друга по очереди через одну линию связи.

Типы каналов передачи данных и их характеристики

Применяемые в вычислительных сетях каналы передачи данных классифицируются по ряду признаков.

Во-первых , по форме представления информации в виде электрических сигналов каналы подразделяют на цифровые и аналоговые.

Во-вторых , по физической природе среды передачи данных различают каналы связи проводные (обычно медные), оптические (как правило, волоконно-оптические), беспроводные (инфракрасные и радиоканалы).

В третьих , по способу разделения среды между сообщениями выделяют упомянутые выше каналы с временным (TDM) и частотным (FDM) разделением.

Одной из основных характеристик канала является его пропускная способность (скорость передачи информации), определяемая полосой пропускания канала и способом кодирования данных в виде электрических сигналов. Информационная скорость измеряется количеством бит информации, переданных в единицу времени. Наряду с информационной оперируют бодовой (модуляционной ) скоростью, которая измеряется в бодах , то есть числом изменений дискретного сигнала в единицу времени. Именно бодовая скорость определяется полосой пропускания линии. Если одно изменение значения дискретного сигнала соответствует нескольким битам, то информационная скорость превышает бодовую.

Действительно, если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций сигнала равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составляет 4800 бит/с.
С ростом длины линии связи увеличивается затухание сигнала и, следовательно, уменьшаются полоса пропускания и информационная скорость.

Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона. Предполагается, что одно изменение значения сигнала приходится на log 2 k бит, где k – число возможных дискретных значений сигнала. Так как скорость V = log 2 k / t , где t - длительность переходных процессов, приблизительно равная 3Т В, а Т В = 1 / (2pF), то:

V = 2F log 2 k, бит/с,

где k ≤ 1+A (A – отношение сигнал/помеха).

Проводные линии связи в вычислительных сетях представлены коаксиальными кабелями и витыми парами проводов.

Используются следующие коаксиальные кабели – «толстый» диаметром 12,5 мм и “тонкий” диаметром 6,25 мм. «Толстый» кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже «тонкого».

Существуют экранированные STP (Shielded Twist Pair) и неэкранированные UTP (Unshielded Twist Pair) пары проводов. Чаще используются неэкранированные пары, имеющие несколько категорий (типов).

Более совершенными являются неэкранированные витые пары категорий 5 и 6. Пару категории 5 применяют при частотах до 100 МГц. В ней проводник выполнен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. Длины соединений в высокоскоростных ЛВС на UTP обычно не превышают 100 м.

Примерами пар категорий 6 и 7 могут служить кабели, выпускаемые фирмой PIC. В них размещается по 4 пары проводов, каждая со своим цветом полиэтиленовой изоляции. В кабеле категории 6 оболочка имеет диаметр 5 мм, а медные проводники имеют диаметр 0,5 мм. Затухание в этом кабеле на частоте 100 МГц составляет около 22 дБ. В кабеле категории 7 каждая пара дополнительно заключена в экранирующую алюминиевую фольгу, диаметр оболочки увеличен до 8 мм, затухание на 100 МГц составляет около 20 дБ, на 600 МГц – 50 дБ.

Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к «земле»), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

Волоконно-оптические линии связи (ВОЛС) имеют значительное преимущество перед проводными линиями. Они незаменимы при передаче информации на большие расстояния, а также в высокоскоростных магистральных каналах корпоративных и территориальных сетей.

Конструктивно ВОЛС представляет собой кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой с внешним диаметром 125...200 мкм. Типичные характеристики ВОЛС – работа на волнах 0,83...1,55 мкм, затухание 0,7 дБ/км, полоса частот до 2 ГГц.

Предельные расстояния D для передачи данных по ВОЛС
(без ретрансляции) зависят от длины волны излучения l : при l = 850 нм
D = 5 км, а при l = 300 нм – D = 50 км. Однако с уменьшением длины волны излучения значительно возрастает стоимость аппаратуры.

Примером среды передачи данных между мейнфреймами, рабочими станциями, пулами периферийных устройств может служить среда Fiber Channel на ВОЛС, обеспечивающая скорости от 133 до 1062 Мбит/с на расстояниях до 10 км. Для сравнения – по стандартному интерфейсу SCSI скорость составляет 160 Мбит/с при расстояниях не более десятков метров между рабочей станцией и дисководом.

К числу новых стандартов для высокоскоростных магистралей передачи данных относится стандарт цифровой синхронной иерархии SDH (Synchronous Digital Hierachy). В сетях SDH в качестве линий передачи данных используют ВОЛС. Стандарт устанавливает структуру фреймов, на которые разбивается поток передаваемых данных. Эта структура названа транспортным модулем.

Если у вашей компании возникла необходимость:

  • соединить два или несколько офисов в единую корпоративную сеть;
  • подключить удаленный склад к офисной АТС или корпоративному серверу;
  • подключить любой объект к корпоративной сети и т.п.,
специалисты компании ИТЕРАНЕТ помогут Вам решить эти задачи, организовав каналы связи или каналы передачи данных между нужными объектами. В зависимости от месторасположения ваших объектов и по результатам технического обследования наши специалисты предложат вам проложить "витую пару" , организовать радиоканал или (ВОЛС).

Когда необходимо объединить в одну телефонную и корпоративную сеть два офиса, находящихся в пределах одного здания или одного территориального объекта, чаще всего используют "витую пару" . Это наиболее удобный и простой способ организации проводного канала связи на небольших расстояниях.

Радиоканал или волоконно-оптическую линию связи (ВОЛС) используют при необходимости объединить в единую корпоративную сеть территориально-распределенные объекты.

Главные преимущества при построении радиоканала - это короткий срок его организации, а также меньшие капиталовложения по сравнению, например, с организацией ВОЛС. При этом важным условием для организации радиоканала является наличие прямой видимости между объединяемыми объектами или между объектом и ближайшей базовой станцией компании ИТЕРАНЕТ (в зависимости от схемы построения канала связи).

Несомненным преимуществом является ее высокая надежность, хотя и радиотехнологии сегодня достигли такого развития, что говорить о ненадежности радиоканала стало неактуально. При этом срок построения и затраты на организацию ВОЛС выше, чем для организации радиоканала.

Что делать, если канал связи Вам необходим в ближайшее время, но и требования к надежности высоки?
Все очень просто. В первую очередь компания ИТЕРАНЕТ может построить радиоканал и тем самым решить первую часть задачи - "срочность" организации канала связи. Затем специалисты ИТЕРАНЕТ приступят к реализации второй части задачи - построение надежной волоконно-оптической линии связи . По окончанию работ по строительству ВОЛС целесообразно использовать радиоканал в режиме резервного, тем самым повысив в целом отказоустойчивость организованного между объектами канала связи.

Слаботочные системы

О каналах связи

Канал связи - канал, организованный на базе определенного проводника, и используемый для передачи информации.

Каналы связи образуется различным образом.

Они могут быть как физическими проводными каналами – образуемыми кабелями связи, так и волновыми каналами – формируемыми для организации в какой-либо среде (например, эфире) различных видов радиосвязи с помощью антенн и выделенной полосы частот. При этом электрические и оптические каналы связи (образуемые соответствующими сигналами) подразделяются на: проводные и беспроводные (радио-, инфракрасные и другие) каналы. Таким образом, оптический, как и электрический сигнал может распространяться, по проводам, в эфире и других средах.

В телефонной сети после набора номера, канал образуется на время соединения, например, двух абонентов и проведения между ними сеанса голосовой связи. В проводных системах передачи данных канал формируется путём применения оборудования уплотнения, позволяющего одновременно продолжительно или кратковременно передавать по линии связи данные большого (тысяч) количества источников. Такие линии состоят из одной или нескольких пар проводов (кабелей) и обеспечивают передачу данных на различные расстояния. Термин «канал » в радиосвязи означает среду передачи данных, организованную для одного или нескольких, одновременно проводимых сеансов связи. Во втором случае, например, может использоваться частотное разделение каналов.

Также, как и средства связи, линии или каналы связи делятся на: аналоговые, цифровые, а также аналогово-цифровые.

Цифровые коммуникации (каналы связи) надёжнее, чем аналоговые. Они обеспечивают высокое качество передачи информации, позволяют внедрять механизмы, гарантирующие целостность каналов, защиту данных и применение других сервисов. Для передачи аналоговой информации по цифровому каналу, она преобразуется в цифровую форму.

В конце 1980-х годов появилась цифровая сеть с интеграцией услуг (IntegratedServicedDigitalNetwork – ISDN ). Предполагается, что она станет глобальной цифровой магистралью, соединяющей офисные и домашние компьютеры, обеспечивая им высокоскоростную передачу данных (до 2 Мбит/с и более). Стандартными четырёхпроводными абонентскими устройствами ISDN могут быть: телефон, факсимильный аппарат, устройства передачи данных, оборудование телеконференций и другие. Конкуренцию им могут составить современные технологии, применяемые в сетях кабельного телевидения.

По пропускной способности каналы связи делятся на:

  • низкоскоростные (телеграфные, скорость передачи информации от 50 до 200 бод/с). Напомним, что 1 бод = 1 бит/сек,
  • среднескоростные (аналоговые телефонные, от 300–9600 до 56000 бит/с для ЭВМ),
  • высокоскоростные или широкополосные (скорость передачи информации свыше 56000 бит/с). Так как, 1 байт равен 8 битам, можно легко осуществить пересчёт, например, 56000 бит/с = 7 Кб/с.

В зависимости от возможностей организации направлений передачи информации каналы связи делятся на:

¨симплексные , позволяющие осуществлять передачу информации только в одном направлении;
¨полудуплексные , обеспечивающие попеременную передачу информации в прямом и обратном направлениях;
¨дуплексные или полнодуплексные, допускающие передачу информации одновременно в прямом и обратном направлениях.

Проводные каналы связи представляют группу параллельных или скрученных (витая пара) медных проводов, коаксиальные кабели и волоконно-оптические линии связи (ВОЛС). В проводных каналах используют следующие виды кабелей:

1. Витая пара (скорость передачи данных – 1 Мбит/сек).
2. Коаксиальный кабель (типа TV, тонкий и толстый) – скорость передачи данных – 15 Мбит/сек.
3. Оптоволоконный кабель (скорость передачи данных – 400 Мбит/сек).

1. Витая пара (англ. «twistedpair») – изолированные проводники, попарно свитые между собой для уменьшения наводок между проводниками и парами. Выделяют пять категорий витых пар. Первая и вторая категории используются при низкоскоростной передаче данных, причём первая – стандартный телефонный абонентский провод. Третью, четвёртую и пятую категории применяют при скоростях передачи до 16, 25 и 155 Мбит/с соответственно, причём третья (TokenRing) и четвёртая (Ethernet) для частоты до 10 МГц, а пятая – до 100 МГц. Наибольшее распространение получила третья категория. Ориентируясь на перспективные решения, связанные с потребностью увеличивать пропускную способность сети, следует использовать оборудование пятой категории, обеспечивающее передачу данных по обычным телефонным линиям и ЛВС со скоростью до 1 Мбит/с.

Такие провода содержат две или четыре пары и могут иметь экран из алюминиевой фольги. В последнем случае они называются – экранированная витая пара (англ. «shieldedtwistedpair», STP). Неэкранированный провода называют UTP (англ. «unshieldedtwistedpair»).

2. Коаксиальный кабель – медный проводник (или алюминиевый провод, покрытый медью) внутри цилиндрической экранирующей защитной оболочки, свитой из тонких медных проводников, изолированной от проводника диэлектриком (заполняющим пространство между ними). От стандартного телевизионного кабеля он отличается волновым сопротивлением. У первого 75 Ом, а у второго – 50 Ом. По такому кабелю скорость передачи данных достигает 300 Мбит/с. Различают тонкий (Ø 0,2 дюйма/5 мм) и толстый (Ø 0,4 дюйма/10 мм) коаксиальный кабель. В ЛВС обычно применяют тонкий кабель, так как его легче прокладывать и монтировать. Значительная стоимость и сложность прокладки ограничивают его использование в сетях передачи данных.

Сети кабельного телевидения (CATV) строились с использованием коаксиального кабеля, аналоговый сигнал по которому передавался на расстояние до нескольких десятков км. Типичная сеть кабельного TV имеет древовидную структуру, где головной узел получает сигналы со спутника связи или по ВОЛС. Ныне появляются такие сети, в которых используются коаксиальный и волоконно-оптический кабель, позволяющий обслуживать большие территории и передавать бóльшие объёмы информации, обеспечивая высокое качество сигналов даже без применения повторителей. Такие сети называются гибридными (HFC).

При симметричной архитектуре прямой и обратный сигналы передаются по одному кабелю в различных диапазонах частот с разными скоростями (обратный медленнее).

В любом случае скорость загрузки данных в таких сетях многократно выше (до 1000 раз), чем в стандартных телефонных линиях. Данные, загружаемые по телефонной линии в течение 20 мин., могут быть загружены в кабельной сети за 1–2 с.

В организациях с собственными кабельными сетями предпочтительнее использовать симметричные схемы, так как в этом случае скорость прямой и обратной передачи одинакова и составляет примерно 10 Мбит/с. Ныне выпускаются модемы, способные передавать информацию со скоростью до 30 Мбит/с и более.

Количество проводов, используемых для домашних ПК и электроники, постоянно растёт. По оценке специалистов в 150-метровой квартире прокладывается до 3 км различных кабелей. В 1990-е годы решить эту проблему предложила британская компания UnitedUtilities, разработав технологию Digital Power Line (DPL). Она предложила использовать обычные силовые электрические сети в качестве сетей или среды высокоскоростной передаче данных, осуществив передачу голоса и пакетов данных по простым электрическим сетям напряжением 120/220 В.

Наибольших успехов в данной области добилась израильская компания Main.net, разработавшая технологию Powerline Communications (PLC), обеспечивающую передачу данных и голоса (VoIP) со скоростью от 2 до 10 Мбит/с. При этом высокоскоростной поток данных разбивался на несколько низкоскоростных, передававшихся на отдельных поднесущих частотах с последующим их объединением в один сигнал (частотное разделение сигнала).

PLC-технология подходит для низкоскоростной передачи данных (домашняя автоматика, бытовые устройства и т.п.), доступа в Интернет со скоростью менее 1 Мбит/с, для приложений, требующих высокоскоростного соединения (видео по запросу, видеоконференц-связи и т.п.). При этом питающие здание электрические кабели служат «последней милей», а электропроводка внутри здания – «последним дюймом» для передачи данных.

При небольшом расстоянии между промежуточной приемопередающей точкой (трансформаторной подстанцией) и зданием скорость передачи доходи до 4,5 Мбит/с. PLC-технология может использоваться при создании локальной сети в небольшом офисе или жилом доме, так как минимальная скорость передачи позволяет покрывать расстояние до 200–300 м. Такая технология обеспечивает реализацию услуг дистанционного мониторинга, охраны жилища, управления его режимами, ресурсами и т.п., составляющих концепцию интеллектуального дома. Ожидается, что с её помощью станет возможным организовать прямой доступ в Интернет.

3. Оптоволоконный кабель состоит из кварцевого сердечника диаметром 10 мкм (микрон), окружённого отражающей защитной оболочкой с внешним диаметром 125–200 мкм. Передача информации осуществляется преобразованием электрических сигналов в световые с помощью, например, светодиода. Кодирование информации производится изменением интенсивности светового потока. При передаче информации отражённый от стенок волокна луч приходит на приёмный конец с минимальным затуханием. Такой кабель обеспечивает полную защиту от воздействия внешних электромагнитных полей и высокую скорость передачи данных (до 1000 Мбит/с). Он позволяет одновременно организовать работу нескольких сотен тысяч телефонных, нескольких тысяч видеотелефонных и около тысячи телевизионных каналов. Волоконно-оптические кабели сложны для несанкционированного подключения, пожаробезопасны, но достаточно дороги и требуют устройств преобразования световых сигналов в электрические (лазеры) и наоборот. Такие кабели используются, как правило, при прокладке магистральных линий связи (ВОЛС). Уникальные свойства кабеля позволяют использовать его для организации сетей Интернет.

Каналы связи бывают коммутируемые (создаются лишь на время проведения сеанса передачи информации, например, телефонные) и некоммутируемые (выделяются абоненту на продолжительный период времени и не зависят от времени передачи данных – выделенные).

Беспроводные каналы связи

Выделяют три основных типа беспроводных сетей :

1) радиосети свободного радиочастотного диапазона (сигнал передаётся сразу по нескольким частотам);
2) микроволновые (дальняя и спутниковая связь),
3) инфракрасные (лазерные, передаваемые когерентными пучками света).
Последние являются высокопроизводительными (высокоскоростными) системами. Их широкое применение порой ограничивается из-за невысокой устойчивости к таким природным явлениям как дождь и туман. Предел дальности такой связи равен 5 км, устойчивой связи – 1–1,5 км.

По способу организации используются системы одночастотной, двухчастотной и многочастотной радиосвязи. Обычно одночастотная связь применяется в режиме радиальной радиосвязи, то есть предоставляет возможность всем абонентам сети слышать вызывающего абонента и отвечать ему (симплексный режим ). Для организации прямой связи между двумя удалёнными абонентами используется также одноканальная двухчастотная (полудуплексная ) радиосвязь – двухчастотный симплекс , то есть на одной частоте осуществляется передача, а на другой – приём сообщений.

Многоканальные системы полудуплексной радиосвязи формируются на основе транковых и радиорелейных систем.

Транкинговая (англ. «trunking») или транковая (англ. « trunked») связь – (ствол, канал связи) означает соединительную линию, организуемую между двумя станциями или узлами сети и предназначенную для организации передачи информации группы пользователей в одном радиостволе (до 50 и более абонентов) с радиусом действия от 20 до 35, 70 и 100 км. Это профессиональная мобильная радиосвязь (ПМР) с автоматическим распределением ограниченного количества свободных каналов среди большого числа подвижных абонентов, позволяющая эффективно использовать частотные каналы, существенно повышая пропускную способность системы.

Радиорелейная связь образуется путём строительства протяжённых линий с приёмо-передающими станциями и антеннами. Она обеспечивает узкополосную высокочастотную передачу данных на расстоянии между ближайшими антеннами в пределах прямой видимости (примерно 50 км). Скорость передачи данных в такой сети достигает 155 Мбит/с.

Рассмотрим особенности видов связи.

Телефонная связь – самый распространённый вид оперативно-управленческой связи. Официально она появилась 14 февраля 1876 года, когда А. Белл (Александр Грейам, 1847–1922, США) зарегистрировал изобретение первого телефонного аппарата. Спустя два часа другой изобретатель Иоайш Грей подал заявку на аналогичный аппарат. Первая телефонная станция появилась также в США (Нью-Хейвен) в 1878 году.

Принцип телефонной связи заключается в следующем. Телефонный микрофон, в который говорит абонент, преобразует колебания звука в аналоговый электрический сигнал. Сигнал передаётся по линиям связи на телефонный аппарат абонента, принимающего голосовую информацию, с помощью индуктивных катушек и мембраны, расположенных в телефонной трубке. Этот сигнал преобразуется в колебания звука. Диапазон передаваемых частот по отечественным телефонным каналам – 300 Гц–3,4 кГц.

Телефонная связь представляет разветвлённую структуру, объединяющую аппараты абонентов с ближайшими автоматическими телефонными станциями (АТС), которые соединяются между собой в единую телефонную сеть . Любой аппарат абонента соединяется абонентской линией с ближайшей АТС, удаленной от него на расстояние до 10 км. На телефонной станции производится подключение телефонных каналов абонентских и соединительных линий (между АТС) на время телефонных переговоров и их разъединение по окончании переговоров.

Широкое применение в организациях находят офисные телефонные системы (УАТС, ОАТС, ЭУАТС и др.).

Спутниковая связь образуется между специальными наземными станциями спутниковой связи и спутником с антеннами и приёмо-передающим оборудованием. Она позволяет охватывать территории со слабо развитой инфраструктурой связи, расширить сферу и набор услуг, в т.ч. мультимедийных, радионавигационных и др. Принцип работы систем спутниковой связи (ССС) заключается в том, что от абонента сигнал поступает (в т.ч. по радиоканалу), как правило, на ближайшую наземную станцию, которая переадресовывает его на станцию спутниковой связи. Оттуда этот сигнал с помощью мощной антенны отправляется на спутник. К абоненту сигнал поступает аналогично, в обратном порядке.

Спутники располагаются на одной из трёх орбит.

Спутник, расположенный на геостационарной орбите (GeostationaryEarthOrbit, GEO), находится на высоте 36 тыс. км и является неподвижным для наблюдателя. Он способен охватывать значительные области (территории) планеты.
- Средние орбиты (MeanEarthOrbit, MEO) обитания спутников характеризуются высотой 5–15 тыс. км.
- На низких орбитах (LowEarthOrbit, LEO) высота размещения спутников не превышает 1,5 тыс. км. В этом случае они охватывают небольшие, локальные территории.

Станции спутниковой связи (ССС) делятся на: стационарные, переносные (перевозимые ) и портативные .

Они обеспечивают:
1) телевидение и радиовещание для коллективных и индивидуальных пользователей;
2) национальные и цифровые телефонные сети связи;
3) поддержку системы коммерческой связи SMS (SatelliteMultiservicesSystem) для высокоскоростной передачи данных, проведения видеоконференций и межкомпьютерного обмена информацией;
4) предоставление связи наземным подвижным объектам и др.

Персональная спутниковая радиосвязь или спутниковая индивидуальная связь ориентирована на использовании систем персональной спутниковой связи (СПСС). Портативные станции спутниковой связи вместе с антенной умещаются в кейсе и имеют массу до 8,5 кг.

Современные средства связи всё больше ориентируются на обеспечение передачи различных видов данных. Для этого создаются сети передачи данных, использующие специальные каналы связи и методы передачи данных, предоставляющие пользователям различные виды передачи данных.

Для того чтобы компьютеры могли связаться между собой в сеть, они должны быть соединены между собой с помощью некоторой физической передающей среды. Основными типами передающих сред, используемых в компьютерных сетях, являются:

    аналоговые телефонные каналы общего пользования;

    цифровые каналы;

    узкополосные и широкополосные кабельные каналы;

    радиоканалы и спутниковые каналы связи;

    оптоволоконные каналы связи.

Аналоговые каналы связи первыми начали применяться для передачи данных в компьютерных сетях и позволили использовать уже существовавшие тогда развитые телефонные сети общего пользования. Передача данных по аналоговым каналам может выполняться двумя способами. При первом способе телефонные каналы (одна или две пары проводов) через телефонные станции физически соединяют два устройства, реализующие коммуникационные функции с подключенными к ним компьютерами. Такие соединения называют выделенными линиями или непосредственными соединениями. Второй способ - это установление соединения с помощью набора телефонного номера (с использованием коммутируемых линий).

Качество передачи данных по выделенным каналам, как правило, выше, и соединение постоянное. Кроме того, для каждого выделенного канала необходимо свое коммуникационное устройство (хотя есть и многоканальные коммуникационные устройства), а при коммутируемой связи можно использовать для связи с другими узлами одно коммуникационное устройство.

Параллельно с использованием аналоговых телефонных сетей для межкомпьютерного взаимодействия начали развиваться и методы передачи данных в дискретной (цифровой) форме по ненагруженным телефонным каналам (к которым не подведено электрическое напряжение, используемое в телефонной сети) - цифровым каналам.

Следует отметить, что наряду с дискретными данными по цифровому каналу можно передавать и аналоговую информацию (голосовую, видео-, факсимильную и т. д.), преобразованную в цифровую форму.

Наиболее высокие скорости на небольших расстояниях могут быть получены при использовании особым образом скрученной пары проводов (для того, чтобы избежать взаимодействия между соседними проводами), так называемой витой паре (ТР - Twisted Pair).

Кабельные каналы, или коаксиальные пары, представляют собой два цилиндрических проводника на одной оси, разделенных диэлектрическим покрытием. Один тип коаксиального кабеля (с сопротивлением 50 Ом), используется главным образом для передачи узкополосных цифровых сигналов, другой тип кабеля (с сопротивлением 75 Ом) - для передачи широкополосных аналоговых и цифровых сигналов. Узкополосные и широкополосные кабели, непосредственно связывающие между собой коммуникационные оборудования, позволяют обмениваться данными на высоких скоростях (до нескольких мегабит/с) в аналоговой или цифровой форме. Следует отметить, что на небольших расстояниях (особенно в локальных сетях) кабельные каналы все больше вытесняются каналами на витых парах, а на большихрасстояниях - оптоволоконными каналами связи.

Использование в компьютерных сетях в качестве передающей среды радиоволн различной частоты является экономически эффективным либо для связи на больших и сверхбольших расстояниях (с использованием спутников), либо для связи с труднодоступными, подвижными или временно используемыми объектами.

Обмен данными по радиоканалам может вестись с помощью как аналоговых, так и цифровых методов передачи. Цифровые методы получают в последнее время преимущественное развитие, т. к. позволяют объединить наземные участки цифровых сетей и спутниковых каналов или радиоканалов в единой сети. Новым импульсом в развитии радиосетей стало появление сотовой телефонной связи, позволяющей осуществлять голосовую связь и обмен данными с помощью радиотелефонов или специальных устройств обмена данными.

Помимо обмена данными в радиодиапазоне, последнее время для связи на небольшие расстояния (обычно в пределах комнаты) используется и инфракрасное излучение.

В оптоволоконных каналах связи используется известное из физики явление полного внутреннего отражения света, что позволяет передавать потоки света внутри оптоволоконного кабеляна большие расстояния практически без потерь. В качестве источников света в оптоволоконном кабеле используются светоиспускаюшие диоды (LED-light-emittingdiode) или лазерныедиоды, а в качестве приемников - фотоэлементы.

Оптоволоконные каналы связи, несмотря на их более высокую стоимость по сравнению с другими видами связи, получают все большее распространение, причем для связи не только на небольших расстояниях, но и на внутригородских и междугородных участках.

Технические средства коммуникаций составляют кабели, коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.