Динамическое программирование для начинающих. Введение в динамическое программирование

Среди задач, решаемых с помощью математического программирования, можно выделить отдельный класс задач, требующих оптимизации многошаговых (многоэтапных) процессов. Такие задачи отличаются возможностью разбиения решения на несколько взаимосвязанных этапов. Для решения подобных задач используется динамическое программирование или, как его еще называют, многоэтапное программирование. Его методы оптимизированы для поиска оптимального решения многошаговых задач, которые можно разделить на несколько этапов, шагов и т. д.

Происхождение термина

Использование в названии слова «динамический» первоначально предполагало, что разделение на подзадачи будет происходить в основном во времени. При использовании динамических методов для решения производственных, хозяйственных и иных задач, в которых фигурирует временной фактор, разбивание на отдельные этапы не составляет труда. Но использовать технику динамического программирования возможно и в задачах, где отдельные этапы не связаны по времени. Всегда в многошаговой задаче можно выделить параметр или свойство, по которому можно произвести разделение на отдельные шаги.

Алгоритм (метод) решения многоэтапных задач

Алгоритм илиметод динамического программирования основан на использовании принципа последовательного оптимизирования задачи, когда решение общей задачи разбивается на ряд решений отдельных подзадач с последующим объединением в единое решение. Очень часто отдельные подзадачи оказываются одинаковыми, и одно общее решение значительно сокращает время расчета.

Особенностью метода является автономность решения задачи на каждом отдельном этапе, т. е. независимо от того, как оптимизировался и решался процесс на предыдущем этапе, в текущем расчете используются только параметры процесса, характеризующие его в данный момент. Например, водитель, двигающийся по дороге, принимает решение о текущем повороте независимо от того, как и сколько он ехал до этого.

Метод сверху и метод снизу

Несмотря то что при расчете на отдельном этапе решения задачи используются параметры процесса на текущий момент, результат оптимизации на предыдущем этапе влияет на расчеты последующих этапов для достижения наилучшего результата в целом. Динамическое программирование называет такой принцип решения методом оптимальности, который определяет, что оптимальная стратегия решения задачи вне зависимости от начальных решений и условий должна последующими решениями на всех этапах составить оптимальную стратегию относительно первоначального состояния. Как видим, процесс решения задачи представляет собой непрерывную оптимизацию результата на каждом отдельном этапе от первого до последнего. Такой метод называется методом программирования сверху. На рисунке схематически показан алгоритм решения сверху вниз. Но существует класс многошаговых задач, в которых максимальный эффект на последнем этапе уже известен, например, мы уже приехали из пункта А в пункт Б и теперь хотим узнать, правильно мы ехали на каждом предыдущем этапе или можно было что-то сделать более оптимально. Возникает рекурсивная последовательность этапов, т. е. мы идем как бы «от обратного». Этот метод решения получил название "метод программирования снизу".

Практическое применение

Динамическое программирование может использоваться в любой сфере деятельности, где присутствуют процессы, которые можно по какому-либо параметру (время, сумма, температура и т. д.) разделить на ряд одинаковых небольших этапов. Наибольшее применение динамические способы решения получили в теории управления и при разработке вычислительных систем.

Поиск оптимального пути

С помощью динамической оптимизации возможно решение широкого класса задач по нахождению или оптимизации кратчайшего пути и других задач, в которых «классический» метод перебора возможных вариантов решения приводит к увеличению времени расчета, а иногда вообще неприемлем. Классическая задача динамического программирования - это задача о рюкзаке: дано некоторое количество предметов с определенной массой и стоимостью, и необходимо выбрать набор предметов с максимальной стоимостью и массой, не превосходящий объем рюкзака. Классический перебор всех вариантов в поисках оптимального решения займет значительное время, а с помощью динамических методов задача решается в приемлемые сроки. Задачи поиска кратчайшего пути для транспортной логистики являются основными, и динамические методы решения оптимально подходят для их решения. Наиболее простым примером такой задачи является построение кратчайшего маршрута автомобильным GPS-навигатором.

Производство

Динамическое программирование широко используется при решении разнообразных производственных задач, таких как управление складскими запасами для поддержания нужного количества комплектующих в любой момент времени, календарное планирование производственного процесса, текущий и капитальный ремонт оборудования, равномерная загрузка персонала, максимально эффективное распределение инвестиционных средств и т. д. Для решения производственных задач методами динамического программирования разработаны специальные программные пакеты, интегрированные в популярные системы управления предприятиями, такие как SAP.

Научная сфера

Методы динамического программирования широко применяются в различных научных исследованиях. Например, они успешно используются в алгоритмах распознавания речи и образов, при обработке больших массивов данных в социологии и

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ, раздел оптимального управления, посвящённый теории и методам решения многошаговых задач. В задачах оптимального управления среди возможных управлений ищется то, при котором достигается экстремальное (наименьшее или наибольшее) значение так называемой целевой функции - некоторой числовой характеристики процесса. В динамическом программировании под многошаговостью понимают либо многоступенчатую структуру процесса, либо то, что управление разбивается на ряд последовательных этапов (шагов), соответствующих, как правило, различным моментам времени. Иногда многошаговость проистекает из существа процесса, но она может вводиться и искусственно для того, чтобы обеспечить возможность применения методов динамического программирования. Под программированием в динамическом программировании понимают принятие решений (планирование), а слово «динамическое» указывает на существенную роль времени и порядка выполнения операций. Методы динамического программирования являются составной частью методов, используемых в исследовании операций, и применяются в задачах оптимального планирования (например, в задачах об оптимальном распределении ресурсов, в теории управления запасами, в задачах замены оборудования) и при решении многих технических проблем (например, в задачах управления последовательными химическими процессами, в задачах оптимальной прокладки дорог).

Пусть процесс управления некоторой системой Х состоит из m шагов (этапов); на i-м шаге управление y i переводит систему из состояния x i-1 , в котором она находилась после (i - 1)-го шага, в новое состояние x i . При этом задана функция f i (х, у), и новое состояние определяется по этой функции значениями x i-1 , y i так, что x i = f i (x i-1 , y i), i = 1, 2,..., m. Таким образом, управления у 1 , у 2 , ..., у m переводят систему из начального состояния х 0 ∈ Х 0 в конечное состояние х m ∈ Х m , где Х 0 и Х m - совокупности допустимых начальных и конечных состояний системы Х.

Одна из возможных постановок задач динамического программирования состоит в следующем. При заданном начальном состоянии х 0 требуется выбрать управления у 1 , у 2 , ..., у m таким образом, чтобы система Х перешла в допустимое конечное состояние и при этом заданная целевая функция F(х 0 , у 1 , х 1 ,..., у m , х m) достигла максимального значения F*, т. е.

где максимум берётся по всем управлениям у 1 , ..., у m , для которых х m ∈ Х m .

В динамическом программировании обычно предполагается, что целевая функция является аддитивной. В рассмотренном примере это означает, что

Кроме того, в динамическом программировании предполагается, что в задаче отсутствует последействие: решения (управления), принимаемые на шаге i, оказывают влияние только на состояние x i системы в момент i. Оба упомянутых ограничительных условия можно ослабить, но только за счёт существенного усложнения метода.

В основе динамического программирования лежит принцип оптимальности, сформулированный Р. Беллманом. Пусть выбраны некоторые управления у 1 , у 2 , ..., y k и тем самым траектория х 0 , х 1 , ...,x k состояний и требуется завершить процесс, т. е. выбрать у k+1 , ..., у m (а значит, и x k+1 , ..., х m).

Если завершающая часть процесса не будет оптимальной в смысле достижения максимума функции

то и весь процесс не будет оптимальным. Пользуясь принципом оптимальности Беллмана, можно получить основное функциональное соотношение динамического программирования, которое состоит в следующем. Пусть ω m (х) = 0,

k = 1, 2, ..., m, где максимум берётся по всем управлениям у, допустимым на шаге k. Соотношение, определяющее зависимость ω k-1 от ω k , называется уравнением Беллмана. Смысл этих функций достаточно ясен: если система на шаге k-1 оказалась в состоянии х, то ω k-1 (х) есть максимально возможное значение функции F k . Одновременно с построением функций ω k-1 (х) находятся условные оптимальные управления y k (х) на каждом шаге, т. е. значения оптимального управления при всевозможных предположениях о состоянии х системы на шаге k-1. Окончательно оптимальные управления находятся последовательным вычислением величин ω 0 (х 0) = F*, у 1 , х 1 , у 2 , ..., у m , x m .

С помощью динамического программирования решается не одна конкретная задача при определённом х 0 , а сразу все подобные однотипные задачи при любом начальном состоянии. Численная реализация динамического программирования довольно сложна, так как требует запоминания большого количества информации, поэтому динамическое программирование целесообразно применять в тех случаях, когда необходимо многократно решать типовые задачи (например, определение оптимального режима полёта самолёта при меняющихся погодных условиях). Обычно задача динамического программирования формулируется для дискретных процессов, но в ряде случаев динамическое программирование применяется и для решения динамических задач с непрерывными параметрами.

Динамическое программирование дало новый подход ко многим задачам вариационного исчисления. Важный раздел динамического программирования составляют стохастические задачи динамического программирования, т. е. задачи, в которых на состояние системы и на целевую функцию влияют случайные факторы.

Строгое обоснование динамического программирования следует из результатов Л. С. Понтрягина и его учеников по математической теории управляемых процессов.

Лит.: Беллман Р. Динамическое программирование. М., 1960; Математическая теория оптимальных процессов. М., 1961; Ховард Р. А. Динамическое программирование и марковские процессы. М., 1964; Хедли Дж. Нелинейное и динамическое программирование. М., 1967; Хедли Дж., Уайтин Т. Анализ систем управления запасами. М., 1969.

Динамическое программирование представляет собой математический аппарат, позволяющий быстро находить оптимальное решение в случае, когда анализируемая ситуация не содержит факторов неопределенности, но имеется большое количество вариантов поведения, приносящих различные результаты, среди которых необходимо выбрать наилучший. Динамическое программирование подходит к решению некоторого класса задач путем их разложения на небольшие и менее сложные задачи. В принципе, задачи такого рода могут быть решены путем простого перебора всех возможных вариантов и выбора среди них наилучшего, однако часто такой перебор весьма затруднителен. В таких случаях процесс принятия оптимального решения может быть разбит на шаги (этапы) и исследован с помощью метода динамического программирования.

Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы не было первоначальное поведение системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.

Таким образом, планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.

Вместе с тем динамическое программирование не является универсальным методом решения. Практическая каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации.

Динамическое программирование применяется для решения таких задач, как: распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию, составления календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирования последовательности развития коммерческой операции и т. д.

Пусть процесс оптимизации разбит на n шагов. На каждом шаге необходимо определить два типа переменных – переменную состояния S и переменную управления X . Переменная определяет, в каких состояниях может оказаться система на данном k -м шаге. В зависимости от на этом шаге можно применить некоторые управления, которые характеризуются переменной . Применение управления на k -м шаге приносит некоторый результат и переводит систему в некоторое новое состояние . Для каждого возможного состояния на k -м шаге среди всех возможных управлений выбирается оптимальное управление такое, чтобы результат, который достигается за шаги сk -го по n -й оказался оптимальным. Числовая характеристика этого результата называется функцией Беллмана и зависит от номера шага k и состояния системы .

Всё решение задачи разбивается на два этапа. На первом этапе, который называют условной оптимизацией ,отыскивается функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего.

После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n -го по первый, производится второй этап решения задачи, который называется безусловной оптимизацией .

В общем случае задача динамического программирования формулируется следующим образом: требуется определить такое управление , переводящее систему из начального состоянияв конечное состояние, при котором целевая функция
принимает наибольшее (наименьшее) значение.

Особенности математической модели динамического программирования заключаются в следующем:

    задача оптимизации формулируется как конечный многошаговый процесс управления;

    целевая функция (выигрыш) является аддитивной и равна сумме целевых функций каждого шага:

Условная оптимизация. Как уже отмечалось выше, на данном этапе отыскиваются функция Беллмана и оптимальное управление для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем n -м шаге найти оптимальное управление и значение функции Беллмана не сложно, так как , где максимум берется по всем возможным значениям .

Дальнейшее вычисление производится согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге:

Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X .

Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n -го по первый (на первом шаге k =1 состояние системы равно ее начальному состоянию ), осуществляется второй этап решения задачи. Находится оптимальное управление на первом шаге, применение которого переведет систему в состояние
, зная которое можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнегоn -го шага.

Рассмотрим примеры решения трех задач с использованием динамического программирования, содержание которых требует выбора переменных состояния и управления.

1. Динамическое программирование. Основные понятия…………………2

2. Суть метода динамического программирования………………………..4

3. Пример решения задачи методом динамического программирования………………………………………………………...7

Список используемых источников……………………………………...11


Динамическое программирование. Основные понятия.

Динамическое программирование (ДП) в теории вычислительных систем - способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи. При этом отличительной особенностью является решение задач по этапам, через фиксированные интервалы, промежутки времени, что и определило появление термина динамическое программирование. Следует заметить, что методы динамического программирования успешно применяются и при решении задач, в которых фактор времени не учитывается. В целом математический аппарат можно представить как пошаговое или поэтапное программирование. Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
Из этого следует, что планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.

Таким образом, динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.



В целом динамическое программирование представляет собой стройную теорию для восприятия и достаточно простую для применения в коммерческой деятельности при решении как линейных, так и нелинейных задач.

Динамическое программирование является одним из разделов оптимального программирования. Для него характерны специфические методы и приемы, применительные к операциям, в которых процесс принятия решения разбит на этапы (шаги). Методами динамического программирования решаются вариантные оптимизационные задачи с заданными критериями оптимальности, с определенными связями между переменными и целевой функцией, выраженными системой уравнений или неравенств. При этом, как и в задачах, решаемых методами линейного программирования, ограничения могут быть даны в виде равенств или неравенств. Однако если в задачах линейного программирования зависимости между критериальной функцией и переменными обязательно линейны, то в задачах динамического программирования эти зависимости могут иметь еще и нелинейный характер. Динамическое программирование можно использовать как для решения задач, связанных с динамикой процесса или системы, так и для статических задач, связанных, например, с распределением ресурсов. Это значительно расширяет область применения динамического программирования для решения задач управления. А возможность упрощения процесса решения, которая достигается за счет ограничения области и количества, исследуемых при переходе к очередному этапу вариантов, увеличивает достоинства этого комплекса методов.



Вместе с тем динамическому программированию свойственны и недостатки. Прежде всего, в нем нет единого универсального метода решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Последнее достигается с помощью методов анализа вариантов и переработки списка состояний.

Для процессов с непрерывным временем динамическое программирование рассматривается как предельный вариант дискретной схемы решения. Получаемые при этом результаты практически совпадают с теми, которые получаются методами максимума Л. С. Понтрягина или Гамильтона-Якоби-Беллмана.

Динамическое программирование применяется для решения задач, в которых поиск оптимума возможен при поэтапном подходе, например, распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами, устанавливающими момент пополнения запаса и размер пополняющего заказа; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирование последовательности развития коммерческой операции и т. д.


Суть метода динамического программирования.

В основу метода динамического программирования положен принцип оптимальности , сформулированный в 1957 г. американским математиком Ричардом Беллманом: «Оптимальное поведение обладает тем свойством, что каковы бы ни были первоначальные состояние и решение в начальный момент времени, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения».

Физическая сущность принципа оптимальности заключается в том, что ошибка выбора решения в данный момент не может быть исправлена в будущем.

Рассматривается следующая общая задача. Имеется некоторая физическая система, в которой происходит какой-то процесс, состоящий из n шагов. Эффективность процесса характеризуется некоторым показателем W , который называют выигрышем . Пусть общий выигрыш W за все n шагов процесса складывается из выигрышей на отдельных шагах

где w i - выигрыш на i -м шаге. Если W обладает таким свойством, то его называют аддитивным критерием .

Процесс, о котором идет речь, представляет собой управляемый процесс, т.е. имеется возможность выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге. Это решение называется шаговым управлением . Совокупность всех шаговых управлений представляет собой управление процессом в целом. Обозначим его буквой U , а шаговые управления - буквами . Тогда

Шаговые управления в общем случае не числа, а, как правило, векторы, функции и т.п.

В модели динамического программирования процесс на каждом шаге находится в одном из состояний s множества состояний S . Считается, что всякому состоянию сопоставлены некоторые шаговые управления. Эти управления таковы, что управление, выбранное в данном состоянии при любой предыстории процесса, определяет полностью следующее состояние процесса. Обычно выделены два особых состояния: s 0 - начальное и s w - конечное.

Итак, пусть каждому состоянию поставлено множество допустимых шаговых управлений , и каждому шаговому управлению , соответствует - состояние, в которое процесс попадает из s i в результате использования шагового управления u . Пусть процесс находится в начальном состоянии s 0 . Выбор переводит процесс в состояние s 1 = σ(s 0 ,u 1), выбор - в состояние s 2 = σ(s 1 ,u 2) и т.д. В результате получается траектория процесса, которая состоит из последовательности пар

и заканчивается конечным состоянием. Для единообразия можно считать, что включает только одно состояние , оставляющее процесс в том же конечном состоянии. Следует отметить, что множества допустимых состояний и управлений

конечны и U s для различных s не пересекаются.

В общем виде задача динамического программирования формулируется следующим образом: найти такую траекторию процесса, при которой выигрыш (2.1)будет максимальным.

То управление, при котором достигается максимальный выигрыш, называется оптимальным управлением . Оно состоит из совокупности шаговых управлений

Тот максимальный выигрыш, который достигается при этом управлении обозначим W max :

W max = max U {W (u )}. (2.5)

Рассмотрим на примере задачи о рюкзаке, что понимается под шагом, состоянием, управлением и выигрышем.

Загрузку рюкзака можно представить себе как процесс, состоящий из n шагов. На каждом шаге требуется ответить на вопрос: взять данный предмет в рюкзак, или нет? Таким образом, шаг процесса - присваивание переменной x i значения 1 или 0.

Теперь определим состояния. Очевидно, что текущее состояние процесса характеризует остаточная грузоподъёмность рюкзака - вес, который остался в нашем распоряжении до конца (до полной укладки рюкзака). Следовательно, под состоянием перед i

(2.10)

Требуется найти оптимальное управление , при котором величина выигрыша (2.10) обращается в максимум.

Динамическое программирование - тема, которой в рунете посвящено довольно мало статей, поэтому мы решили ею заняться. В этой статье будут разобраны классические задачи на последовательности, одномерную и двумерную динамику, будет дано обоснование решениям и описаны разные подходы к их реализации. Весь приведённый в статье код написан на Java.

О чём вообще речь? Что такое динамическое программирование?

Метод решения задачи путём её разбиения на несколько одинаковых подзадач, рекуррентно связанных между собой. Самым простым примером будут числа Фибоначчи - чтобы вычислить некоторое число в этой последовательности, нам нужно сперва вычислить третье число, сложив первые два, затем четвёртое таким же образом на основе второго и третьего, и так далее (да, мы слышали про замкнутую формулу).

Хорошо, как это использовать?

Решение задачи динамическим программированием должно содержать следующее:

И что, мне для решения рекурсивный метод писать надо? Я слышал, они медленные.

Конечно, не надо, есть и другие подходы к реализации динамики. Разберём их на примере следующей задачи:

Вычислить n-й член последовательности, заданной формулами:
a 2n = a n ­+ a n-1 ,
a 2n+1 = a n — a n-1 ,
a 0 = a 1 = 1.

Идея решения

Здесь нам даны и начальные состояния (a 0 = a 1 = 1), и зависимости. Единственная сложность, которая может возникнуть - понимание того, что 2n - условие чётности числа, а 2n+1 - нечётности. Иными словами, нам нужно проверять, чётно ли число, и считать его в зависимости от этого по разным формулам.

Рекурсивное решение

Очевидная реализация состоит в написании следующего метода:

Private static int f(int n){ if(n==0 || n==1) return 1; // Проверка на начальное значение if(n%2==0){ //Проверка на чётность return f(n/2)+f(n/2-1); // Вычисляем по формуле для чётных индексов, // ссылаясь на предыдущие значения }else{ return f((n-1)/2)-f((n-1)/2-1); // Вычисляем по формуле для нечётных //индексов, ссылаясь на предыдущие значения } }

И она отлично работает, но есть нюансы. Если мы захотим вычислить f(12) , то метод будет вычислять сумму f(6)+f(5) . В то же время, f(6)=f(3)+f(2) и f(5)=f(2)-f(1) , т.е. значение f(2) мы будем вычислять дважды. Спасение от этого есть - мемоизация (кеширование значений).

Рекурсивное решение с кэшированием значений

Идея мемоизации очень проста - единожды вычисляя значение, мы заносим его в какую-то структуру данных. Перед каждым вычислением мы проверяем, есть ли вычисляемое значение в этой структуре, и если есть, используем его. В качестве структуры данных можно использовать массив, заполненный флаговыми значениями. Если значение элемента по индексу N равно значению флага, значит, мы его ещё не вычисляли. Это создаёт определённые трудности, т.к. значение флага не должно принадлежать множеству значений функции, которое не всегда очевидно. Лично я предпочитаю использовать хэш-таблицу - все действия в ней выполняются за O(1) , что очень удобно. Однако, при большом количестве значений два числа могут иметь одинаковый хэш, что, естественно, порождает проблемы. В таком случае стоит использовать, например, красно-чёрное дерево .

Для уже написанной функции f(int) кэширование значений будет выглядеть следующим образом:

Private static HashMap cache = new HashMap(); private static int fcashe(int n){ if(!cache.containsKey(n)){//Проверяем, находили ли мы данное значение cache.put(n, f(n)); //Если нет, то находим и записываем в таблицу } return cache.get(n); }

Не слишком сложно, согласитесь? Зато это избавляет от огромного числа операций. Платите вы за это лишним расходом памяти.

Последовательное вычисление

Теперь вернёмся к тому, с чего начали - рекурсия работает медленно. Не слишком медленно, чтобы это приносило действительные неприятности в настоящей жизни, но на соревнованиях по спортивному программированию каждая миллисекунда на счету.

Метод последовательного вычисления подходит, только если функция ссылается исключительно на элементы перед ней - это его основной, но не единственный минус. Наша задача этому условию удовлетворяет.

Суть метода в следующем: мы создаём массив на N элементов и последовательно заполняем его значениями. Вы, наверное, уже догадались, что таким образом мы можем вычислять в том числе те значения, которые для ответа не нужны. В значительной части задач на динамику этот факт можно опустить, так как для ответа часто бывают нужны как раз все значения. Например, при поиске наименьшего пути мы не можем не вычислять путь до какой-то точки, нам нужно пересмотреть все варианты. Но в нашей задаче нам нужно вычислять приблизительно log 2 (N) значений (на практике больше), для 922337203685477580-го элемента (MaxLong/10) нам потребуется 172 вычисления.

Private static int f(int n){ if(n<2) return 1; //Может, нам и вычислять ничего не нужно? int fs = int[n]; //Создаём массив для значений fs=fs=1; //Задаём начальные состояния for(int i=2; i

Ещё одним минусом такого подхода является сравнительно большой расход памяти.

Создание стека индексов

Сейчас нам предстоит, по сути, написать свою собственную рекурсию. Идея состоит в следующем - сначала мы проходим «вниз» от N до начальных состояний, запоминая аргументы, функцию от которых нам нужно будет вычислять. Затем возвращаемся «вверх», последовательно вычисляя значения от этих аргументов, в том порядке, который мы записали.

Зависимости вычисляются следующим образом:

LinkedList stack = new LinkedList(); stack.add(n); { LinkedList queue = new LinkedList(); //Храним индексы, для которых ещё не вычислены зависимости queue.add(n); int dum; while(queue.size()>0){ //Пока есть что вычислять dum = queue.removeFirst(); if(dum%2==0){ //Проверяем чётность if(dum/2>1){ //Если вычисленная зависимость не принадлежит начальным состояниям stack.addLast(dum/2); //Добавляем в стек queue.add(dum/2); //Сохраняем, чтобы //вычислить дальнейшие зависимости } if(dum/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast(dum/2-1); //Добавляем в стек queue.add(dum/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } }else{ if((dum-1)/2>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2); //Добавляем в стек queue.add((dum-1)/2); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } if((dum-1)/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2-1); //Добавляем в стек queue.add((dum-1)/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } } /* Конкретно для этой задачи есть более элегантный способ найти все зависимости, здесь же показан достаточно универсальный */ } }

Полученный размер стека – то, сколько вычислений нам потребуется сделать. Именно так я получил упомянутое выше число 172.

Теперь мы поочередно извлекаем индексы и вычисляем для них значения по формулам – гарантируется, что все необходимые значения уже будут вычислены. Хранить будем как раньше – в хэш-таблице.

HashMap values = new HashMap(); values.put(0,1); //Важно добавить начальные состояния //в таблицу значений values.put(1,1); while(stack.size()>0){ int num = stack.removeLast(); if(!values.containsKey(num)){ //Эту конструкцию //вы должны помнить с абзаца о кешировании if(num%2==0){ //Проверяем чётность int value = values.get(num/2)+values.get(num/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу }else{ int value = values.get((num-1)/2)-values.get((num-1)/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу } }

Все необходимые значения вычислены, осталось только написать

Return values.get(n);

Конечно, такое решение гораздо более трудоёмкое, однако это того стоит.

Хорошо, математика - это красиво. А что с задачами, в которых не всё дано?

Для больше ясности разберём следующую задачу на одномерную динамику:

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных «маршрутов» мячика с вершины на землю.

Идея решения

На первую ступеньку можно попасть только одним образом - сделав прыжок с длиной равной единице. На вторую ступеньку можно попасть сделав прыжок длиной 2, или с первой ступеньки - всего 2 варианта. На третью ступеньку можно попасть сделав прыжок длиной три, с первой или со втрой ступенек. Т.е. всего 4 варианта (0->3; 0->1->3; 0->2->3; 0->1->2->3). Теперь рассмотрим четвёртую ступеньку. На неё можно попасть с первой ступеньки - по одному маршруту на каждый маршрут до неё, со второй или с третьей - аналогично. Иными словами, количество путей до 4-й ступеньки есть сумма маршрутов до 1-й, 2-й и 3-й ступенек. Математически выражаясь, F(N) = F(N-1)+F(N-2)+F(N-3) . Первые три ступеньки будем считать начальными состояниями.

Реализация через рекурсию

private static int f(int n){ if(n==1) return 1; if(n==2) return 2; if(n==3) return 4; return f(n-1)+f(n-2)+f(n-3); }

Здесь ничего хитрого нет.

Исходя из того, что, по большому счёту, простое решение на массиве из N элементов очевидно, я продемонстрирую тут решение на массиве всего из трёх.

Int vars = new int; vars=1;vars=2;vars=4; for(int i=3; i

Так как каждое следующее значение зависит только от трёх предыдущих, ни одно значение под индексом меньше i-3 нам бы не пригодилось. В приведённом выше коде мы записываем новое значение на место самого старого, не нужного больше. Цикличность остатка от деления на 3 помогает нам избежать кучи условных операторов. Просто, компактно, элегантно.

Там вверху ещё было написано про какую-то двумерную динамику?..

С двумерной динамикой не связано никаких особенностей, однако я, на всякий случай, рассмотрю здесь одну задачу и на неё.

В прямоугольной таблице NxM в начале игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). Посчитайте, сколько есть способов у игрока попасть в правую нижнюю клетку.

Идея решения

Логика решения полностью идентична таковой в задаче про мячик и лестницу - только теперь в клетку (x,y) можно попасть из клеток (x-1,y) или (x, y-1) . Итого F(x,y) = F(x-1, y)+F(x,y-1) . Дополнительно можно понять, что все клетки вида (1,y) и (x,1) имеют только один маршрут - по прямой вниз или по прямой вправо.

Реализация через рекурсию

Ради всего святого, не нужно делать двумерную динамику через рекурсию. Уже было упомянуто, что рекурсия менее выгодна, чем цикл по быстродействию, так двумерная рекурсия ещё и читается ужасно. Это только на таком простом примере она смотрится легко и безобидно.

Private static int f(int i, int j) { if(i==1 || j==1) return 1; return f(i-1, j)+f(i, j-1); }

Реализация через массив значений

int dp = new int; for(int i=0; iКлассическое решение динамикой, ничего необычного - проверяем, является ли клетка краем, и задаём её значение на основе соседних клеток.

Отлично, я всё понял. На чём мне проверить свои навыки?

В заключение приведу ряд типичных задач на одномерную и двумерную динамику, разборы прилагаются.

Взрывоопасность

При переработке радиоактивных материалов образуются отходы двух видов - особо опасные (тип A) и неопасные (тип B). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более одного контейнера типа A. Стопка считается безопасной, если она не является взрывоопасной. Для заданного количества контейнеров N определить количество возможных типов безопасных стопок.

Решение

Ответом является (N+1)-е число Фибоначчи. Догадаться можно было, просто вычислив 2-3 первых значения. Строго доказать можно было, построив дерево возможных построений.


Каждый основной элемент делится на два - основной (заканчивается на B) и побочный (заканчивается на A). Побочные элементы превращаются в основные за одну итерацию (к последовательности, заканчивающейся на A, можно дописать только B). Это характерно для чисел Фибоначчи.

Реализация

Например, так:

//Ввод числа N с клавиатуры N+=2; BigInteger fib = new BigInteger; fib=fib=BigInteger.ONE; for(int i=2; i

Подъём по лестнице

Мальчик подошел к платной лестнице. Чтобы наступить на любую ступеньку, нужно заплатить указанную на ней сумму. Мальчик умеет перешагивать на следующую ступеньку, либо перепрыгивать через ступеньку. Требуется узнать, какая наименьшая сумма понадобится мальчику, чтобы добраться до верхней ступеньки.

Решение

Очевидно, что сумма, которую мальчик отдаст на N-ой ступеньке, есть сумма, которую он отдал до этого плюс стоимость самой ступеньки. «Сумма, которую он отдал до этого» зависит от того, с какой ступеньки мальчик шагает на N-ую - с (N-1)-й или с (N-2)-й. Выбирать нужно наименьшую.

Реализация

Например, так:

Int Imax; //*ввод с клавиатуры числа ступенек* DP = new int; for(int i=0; i

Калькулятор

Имеется калькулятор, который выполняет три операции:

  • Прибавить к числу X единицу;
  • Умножить число X на 2;
  • Умножить число X на 3.

Определите, какое наименьшее число операций необходимо для того, чтобы получить из числа 1 заданное число N. Выведите это число, и, на следующей строке, набор исполненных операций вида «111231».

Решение

Наивное решение состоит в том, чтобы делить число на 3, пока это возможно, иначе на 2, если это возможно, иначе вычитать единицу, и так до тех пор, пока оно не обратится в единицу. Это неверное решение, т.к. оно исключает, например, возможность убавить число на единицу, а затем разделить на три, из-за чего на больших числах (например, 32718) возникают ошибки.

Правильное решение заключается в нахождении для каждого числа от 2 до N минимального количества действий на основе предыдущих элементов, иначе говоря: F(N) = min(F(N-1), F(N/2), F(N/3)) + 1 . Следует помнить, что все индексы должны быть целыми.

Для воссоздания списка действий необходимо идти в обратном направлении и искать такой индекс i, что F(i)=F(N) , где N - номер рассматриваемого элемента. Если i=N-1 , записываем в начало строки 1, если i=N/2 - двойку, иначе - тройку.

Реализация
int N; //Ввод с клавиатуры int a = new int; a= 0; { int min; for(int i=2; i1){ if(a[i]==a+1){ ret.insert(0, 1); i--; continue; } if(i%2==0&&a[i]==a+1){ ret.insert(0, 2); i/=2; continue; } ret.insert(0, 3); i/=3; } } System.out.println(a[N]); System.out.println(ret);

Самый дешёвый путь

В каждой клетке прямоугольной таблицы N*M записано некоторое число. Изначально игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). При проходе через клетку с игрока берут столько килограммов еды, какое число записано в этой клетке (еду берут также за первую и последнюю клетки его пути).

Требуется найти минимальный вес еды в килограммах, отдав которую игрок может попасть в правый нижний угол.