Электроника на пальцах основы. Какие книги помогут освить электронику. Какие нужны инструменты и приборы

Твоё путешествие в мир электроники мы начнем с погружения в цифровую электронику. Во-первых, потому что это верхушка пирамиды электронного мира, во-вторых, базовые понятия цифровой электроники просты и понятны.

Задумывался ли ты о том, какой феноменальный прорыв в науке и технике произошел благодаря электронике и цифровой электронике в частности? Если нет, тогда возьми свой смартфон и внимательно на него посмотри. Такая простая с виду конструкция -- результат огромной работы и феноменальных достижений современной электроники. Создание такой техники стало возможным благодаря простой идее о том, что любую информацию можно представить в виде чисел. Таким образом, независимо от того, с какой информацией работает устройство, глубоко внутри оно занимается обработкой чисел.

Тебе наверняка знакомы римские и арабские цифры. В римской системе числа представляются в виде комбинации букв I, V, X, L, C, D, M, а в арабской с помощью комбинации символов 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Но существуют и другие формы представления числа. Одна из них -- это двоичная форма. Или, как её чаще называют, двоичная система счисления. В такой системе счисления любое число представляет собой последовательность только из "0" и "1".

Арабские Римские Двоичные
0 - 00
1 I 01
2 II 10
3 III 11

Математики c инженерами хорошо потрудились, и сегодня любая информация может быть представлена в виде комбинации нулей и единиц: сигнал с датчика движения, музыка, видео, фото, температура, и даже вот этот текст, который ты сейчас читаешь, на самом деле в недрах твоего устройства имеет вид последовательности из нулей и единиц.

Независимо от того, с какой информацией работает цифровое устройство, глубоко внутри оно занимается обработкой чисел.

Почему именно "0" и "1", а не "0", "1" и "2", к примеру? На самом деле были вполне успешные попытки создать цифровую технику, которая использует не двоичную, а троичную систему исчисления ("0", "1" и "2"), но двоичная все же победила.

Возможно, победа досталась ей, потому что СССР развалился, а может потому, что "0" и "1" легче представить в виде электрических сигналов. А значит, цифровые устройства на основе двоичной системы исчисления проще и дешевле производить. Подробнее о двоичных числах я расскажу позже.

Структура цифрового устройства

Почти в каждом цифровом устройстве встречаются типовые элементы, из комбинации которых оно состоит. Какие-то элементы совсем простые, какие-то более сложные, а какие-то совсем сложные. В любительской практике чаще всего встречаются: триггеры, таймеры, счетчики, регистры, микроконтроллеры, компараторы и др.

Давай выберем что-нибудь из этого списка и посмотрим, как оно устроено. Пусть это будет микроконтроллер (МК)! Ладно, признаюсь. Микроконтроллер я выбрал неспроста. Дело в том, что именно появление микропроцессоров произвело настоящую революцию в электронике и выдвинуло её развитие на новый уровень.

МК является наиболее многочисленным и популярным видом микропроцессоров в мире. Особенным его делает то, что микроконтроллер представляет собой микро-PC -- целый компьютер в одной микросхеме. Представь себе компьютер размером, например, с копейку. Вот это и есть МК.

Микроконтроллеры используются повсеместно: в современных телевизорах, холодильниках, планшетах, охранных системах. Везде, где требуется чем-то управлять, микроконтроллер может найти своё место. А всё благодаря тому, что, как и любой микропроцессор, МК можно программировать. В итоге один и тот же вид микросхем можно использовать в сотнях различных устройств.

В наше время наибольшей популярностью пользуются, к примеру, микроконтроллеры AVR, PIC, ARM. Каждая из компаний, что выпускает перечисленные виды МК, производит десятки, если не сотни, разновидностей микроконтроллеров, предназначенных под все мыслимые и немыслимые задачи.

Как работает микроконтроллер

Несмотря на всю сложность конструкции настоящего микроконтроллера, рассказать, как он функционирует можно всего одним предложением: "В память микроконтроллера записывается текст программы, МК считывает команды из этой программы и выполняет их", -- вот и всё.

Конечно, МК не может выполнить какие угодно команды. У него есть базовый набор команд, которые он понимает и знает как выполнить. Комбинируя эти команды, можно получить практически любую программу, с помощью которой устройство будет делать именно то, что от него хотят.

В современном мире микропроцессор (МК тоже микропроцессор, но специализированный) может иметь либо очень много базовых команд, либо очень мало. Это такое условное разделение, для которого даже придумали два термина: CISC и RISC. CISC -- это много разных видов команд на все случаи жизни, RISC -- это только наиболее необходимые и часто использующиеся команды, т.е. сокращенный набор команд.

Большинство микроконтроллеров исповедуют RISC. Объясняется это тем, что при использовании сокращенного набора команд микроконтроллеры проще и дешевле для производства, их легче и быстрей осваивают разработчики аппаратуры. Между CISC и RISC много различий, но сейчас принципиально важно запомнить только то, что CISC -- много команд, RISC -- мало команд. Глубже с этими двумя идеями познакомимся как-нибудь в другой раз.

Что происходит, когда включается микроконтроллер?

Итак, давай представим идеальный мир, в котором у тебя есть МК и в его память уже записана программа. Или, как обычно говорят, МК "прошит" (при этом программу называют "прошивкой") и готов к бою.

Что произойдёт, когда ты подашь питание на свою схему с МК? Оказывается, ничего особенного. Там нет вообще никакой магии. Происходить будет следующее:

После подачи питания микроконтроллер пойдёт смотреть, что находится в памяти. При этом он "знает", куда следует смотреть, чтобы найти первую команду своей программы .

Местоположение начала программы устанавливается при производстве МК и никогдане меняется. МК считает первую команду, выполнит её, затем считает вторую команду, выполнит её, затем третью и так до последней. Когда же он считает последнюю команду, то всё начнётся сначала, так как МК выполняет программу по кругу, если ему не сказали остановится. Так вот он и работает.

Но это не мешает писать сложные программы, которые помогают управлять холодильниками, пылесосами, промышленными станками, аудиоплеерами и тысячами других устройств. Ты тоже можешь научиться создавать устройства с МК. Это потребует времени, желания и немножко денег. Но это такие мелочи, правда?

Как устроен типичный МК

Любая микропроцессорная система стоит на трёх китах:

  1. Процессор (АЛУ + устройство управления),
  2. Память (ROM, RAM, FLASH),
  3. Порты ввода-вывода .

Процессор с помощью портов ввода-вывода получает/отправляет данные в виде чисел, производит над ними различные арифметические операции и сохраняет их в память. Общение между процессором, портами и памятью осуществляет по проводам, которые называются шиной (шины делятся на несколько видов по назначению). Это общая идея работы МП-системы. Вот как на картинке ниже.

МК, как я уже писал, тоже микропроцессор. Просто специализированный. Физическая структура микросхем МК разных серий может существенно различаться, но идейно они будут похожи и будут иметь такие, например, блоки как: ПЗУ, ОЗУ, АЛУ, порты ввода/вывода, таймеры, счетчики, регистры.

ПЗУ Постоянная память. Всё, что в неё записано, остаётся в ПЗУ и после того как устройство было отключено от питания.
ОЗУ Временная память. ОЗУ -- это рабочая память МК. В неё помещаются все промежуточные результаты выполнения команд или данные от внешних устройств.
АЛУ Математический мозг микроконтроллера. Именно он складывает, вычитает, умножает, а иногда и делит, сравнивает нолики и единички в процессе выполнения команд программы. Один из важнейших органов МК.
Порты I/O Просто устройства для общения МК с внешним миром. Без них ни во внешюю память записать, ни данные от датчика или клавиатуры получить нельзя.
Таймеры Готовил торт или курицу? Ставил таймер, чтобы он тебя оповестил, когда блюдо будет готово? Вот в МК таймер выполняет схожие функции: отсчитывает интервалы, выдаёт сигнал о срабатывании и т.д.
Счетчики Пригождаются, когда требуется что-либо подсчитать.
Регистры Самое непонятное слово для тех, кто хоть раз пытался освоить Асемблер самостоятельно. А между прочим они своего рода выполняют роль быстрой ОЗУ МК. Каждый регистр представляет собой своего рода ячейку памяти. И в каждом МК их всего несколько десятков.

Современный масштаб развития цифровой электроники настолько огромен, что даже по каждому пункту из этой табилцы можно написать целую книгу, а то и не одну. Я же опишу базовые идеи, которые помогут дальше самостоятельно разобраться более подробно в каждом из устройств.

Мозг микроконтроллера

Микропроцессор/микроконтроллер всегда работает по заложенной в него программе. Программа состоит из последовательности операций, которые МК умеет выполнять. Операции выполняются в ЦПУ -- это мозг микроконтроллера. Именно этот орган умеет производить арифметические и логические операции с числами. Но есть ещё четыре важных операции, которые он умеет делать:

  • чтение из ячейки памяти
  • запись в ячейку памяти
  • чтение из порта В/В
  • запись в порт В/В

Эти операции отвечают за чтение/запись информации в память и во внешние устройства через порты ввода/вывода. И без них любой процессор проверащается в бесполезный хлам.

Технически процессор состоит из АЛУ (калькулятор процессора) и управляющего устройства, которое дерижирует взаимодействием между портами ввода-вывода, памятью и арифметико-логическим устройством (АЛУ).

Память микроконтроллера

Ранее в таблице с типичными устройствами, входящими в МК, я указал два вида памяти: ПЗУ и ОЗУ. Различие между ними заключается в том, что в ПЗУ данные сохраняются между включениями устройства. Но при этом ПЗУ (ROM) довольно медленная память. Поэтому и существует ОЗУ (RAM), которая довольно быстра, но умеет хранить данные только тогда, когда на устройство подано питание. Стоит выключить устройство и все данные оттуда...пшик и нету.

Если у тебя есть ноутбук или персональный компьютер, то тебе знакома например такая ситуация: писал гору текста, забыл сохранить его на жесткий диск, внезапно пропало электричество. Включаешь компьютер, а текста нет. Всё верно. Пока ты его писал, он хранился в ОЗУ. Поэтому текст и пропал с выключением компьютера.

В зарубежном мире ОЗУ и ПЗУ называют RAM и ROM:

  1. RAM (Random Access Memory) -- память со случайны доступом
  2. ROM (Read Only Memory) -- память только для чтения

У нас же их еще называют энергозависимой и энергонезависимой памятью. Что на мой взгляд более точно отражает природу каждого вида памяти.

ПЗУ

Сейчас всё больше получила распространение ПЗУ память типа FLASH (или, по-нашему, ЭСПЗУ). Она позволяет сохранять данные даже тогда, когда устройство выключено. Поэтому в современных МК, например в МК AVR в качестве ПЗУ используются именно FLASH-память.

Раньше микросхемы ПЗУ-памяти были однократно-программируемыми. Поэтому если были записаны программа или данные с ошибками, то такую микросхемы просто выкидывали. Чуть позже появились ПЗУ, которые можно было перезаписывать многократно. Это были чипы с ультрафиолетовым стиранием. Они довольно долго прожили и даже сейчас встречаются в некоторых устройствах из 1990-х...2000-х годов. Например, вот такая ПЗУ родом из СССР.

У них был один существенный минус -- при случайно засветке кристалла (тот, что виден в окошечке) программа могла быть повреждена. А также ПЗУ до сих пор работает медленней, чем ОЗУ.

ОЗУ

Оперативная память в отличие от ПЗУ, ППЗУ и ЭСПЗУ является энергозависимой и при выключении питания устройства все данные в ОЗУ пропадают. Но без неё не обходится ни одно микропроцессорное устройство. Так как в процессе работы требуется где-то хранить результаты вычислений и данные, с которыми работает процессор. ПЗУ для этих целей не подходит из-за своей медлительности.

ПАМЯТЬ ПРОГРАММ И ПАМЯТЬ ДАННЫХ

Помимо разделения на энергозависимую (ОЗУ) и энергонезависимую память в микроконтроллерах есть разделение на память данных и память программ. Это значит, что в МК есть специальная память, которая предназначена только для хранения программы МК. В нынешние времена обычно это FLASH ПЗУ. Именно из этой памяти микроконтроллер считывает команды, которые выполняет.

Отдельно от памяти программ существует память данных, в которую помещаются промежуточные результаты работы и любые другие данные, требующиеся программе. Память программ -- это обычное ОЗУ.

Такое разделение хорошо тем, что никакая ошибка в программе не сможет повредить саму программу. К примеру, когда по ошибке МК попытается записать на место какой-нибудь команды в программе случайное число. Получается что программа надёжно защищена от повреждения. Кстати, у такого разделения есть своё особо название -- "гарвардская архитектура".

В 1930-х годах правительство США поручило Гарвардскому и Принстонскому университетам разработать архитектуру ЭВМ для военно-морской артиллерии. В конце 1930-х годов в Гарвардском университете Говардом Эйкеном была разработана архитектура компьютера Марк I, в дальнейшем называемая по имени этого университета.

Ниже я схематично изобразил гарвардскую архитектуру:

Таким образом программа и данные, с которыми она работает, физически храняться в разных местах. Что касается больших процессорных систем подобных персональному компьютеру, то в них данные и программа во время работы программы хранятся в одном и том же месте.

ИЕРАРХИЯ ПАМЯТИ

КАК УСТРОЕН МОЗГ МИКРОКОНТРОЛЛЕРА

Ты уже значешь, что мозгом МК является ЦПУ -- центральный процессор, который состоит из АЛУ (арифметико-логическое устройство) и устройства управления (УУ). УУ дерижирует всем оркестром из памяти, внешних устройств и АЛУ. Благодаря ему МК может выполнять команды в том порядке в каком мы этого хотим.

АЛУ -- это калькулятор, а УУ говорит АЛУ что, с чем, когда и в какой последовательности вычислять или сравнивать. АЛУ умеет складывать, вычитать, иногда делить и умножать, выпонять логические операции: И, ИЛИ, НЕ (о них будет чуть позже)

Любой компьютер, МК в том числе, умеет сегодня работать только с двоичными числами, составленными из "0" и "1". Именно эта простая идея привела к революции в области электроники и взрывному развитию цифровой техники.

Предположим, что АЛУ надо сложить два числа: 2 и 5. В упрощенном виде это будет выглядеть так:

При этом УУ знает в каком месте памяти взять число "2", в каком число "5" и в какое место памяти поместить результат. УУ знает обо всём этом потому, что оно прочитало об этом в команде из программы, которую в данный момент прочитало в программе. Более подробно про арефмитические операции с двоичными числами и как устроен сумматор АЛУ изнутри я расскажу чуть позже.

Хорошо, скажешь ты, а что если нужно получить эти числа не из программы, а из вне, например, с датчика? Как быть? Вот тут в игру и вступают порты ввода-вывода, с помощью которых МК может принимать и передавать данных на внешние устройства: дисплеи, датчики, моторы, задвижки, принтеры и т.д.

ЛОГИЧЕСКИЕ ОПЕРАЦИИ

Тебе наверняка хорошо знакомо шуточное высказывание про "женскую логику"? Но речь пойдет не о ней, а логике в принципе. Логика оперирует причинно-следственными связями: если солнце взошло, то стало светло. Причина "солнце взошло" вызвала следствие "стало светло". При этом про каждое утверждение мы можем сказать "ИСТИНА" или "ЛОЖЬ".

Например:

  • "Птицы плавают под водой" -- это ложь
  • "Вода мокрая" -- при комнатной температуре это утверждение истинно

Как ты заметил, второе утверждение при определённых условиях может быть как истинным, так и ложным. В нашем компьютере есть только числа и инженеры с математичками придумали обозначать истину "1", а ложь "0". Это дало возможность записывать истинность утверждения в виде двоичных чисел:

  • "Птицы плавают под водой" = 0
  • "Вода мокрая" = 1

А ещё такая запись позволила математикам выполнять с этими утверждениями целые операции -- логические операции. Первым до этого додумался Джордж Буль. По имени которого и названа такая алгебра: "булева алгебра", которая оказалась очень удобной для цифровых машин.

Вторая половина АЛУ -- это логические операции. Они позволяют "сравнивать" утверждения. Базовых логических операций всего несколько штук: И, ИЛИ, НЕ, -- но этого достаточно, так как более сложные могут комбинироваться из этих трёх.

Логическая операция И обозначает одновременность утверждений, т.е. что оба утверждения истинны одновременно. Например утверждение будет истинно только тогда, когда оба более простых утверждения будут истинны. Во всех остальных случаях результат операции логического И будет ложным

Логическая операция ИЛИ будет истинно, если хотя бы одно из участвующих в операции утверждений будет истинно. "Птицы плавают под водой" И "Вода мокрая" истинно, так как истинно утверждение "вода мокрая"

Логическое операция НЕ меняет истинность утверждения на противоположное значение. Это логическое отрицание. Например:

Солнце всходит каждый день = ИСТИНА

НЕ (Солнце всходит каждый день) = НЕ ИСТИНА = ЛОЖЬ

Благодаря логическим операция мы можем сравнивать двоичные числа, а так как наши двоичные числа всегда что-то обозначают, например, какой-нибудь сигнал. То получается, что благодаря булевой алгебре мы можем сравнивать настоящие сигналы. Этим логическая часть АЛУ и занимается.

УСТРОЙСТВО ВВОДА-ВЫВОДА

Наш МК должен общаться с внешним миром. Только тогда он будет представлять из себя полезное устройство. Для этого у МК есть особые устройства, которые называются устройствами ввода-вывода.
Благодаря этим устройствам мы можем посылать в микроконтроллер сигналы от датчиков, клавиатуры и других внешних приборов. А МК после обработки таких сигналов отправит через устройства вывода ответ, с помощью которого можно будет регулировать скорость вращения двигателя или яркость свечения лампы.

Подведу итоги:

  1. Цифровая электроника -- верхушка айсберга электроники
  2. Цифровое устройство знает и понимает только числа
  3. Любая информация: сообщение, текст, видео, звук, -- могут быть закодированы с помощью двоичных чисел
  4. Микроконтроллер -- это микрокомпьютер на одной микросхеме
  5. Любая микропроцессорная система состоит из трёх частей: процессор, память, устройства ввода-вывода
  6. Процессорс состоит из АЛУ и управляющего устройства
  7. АЛУ умеет выполнять арифметические и логические операции с двоичными числами

Оставайся с нами. В следующих статьях я расскажу более подробно как устроена память МК, порты ввода-вывода и АЛУ. А после этого мы пойдём ещё дальше и в итоге дойдём до аналоговой электроники.

p.s.
Нашёл ошибку? Сообщи мне!

/blog/tsifrovaya-elektronika-chto-eto/ В этом рассказе первые шаги в мир электроники делаются с необычного направления. Своё путешествие по электронике ты начинаешь с мира цифровой схемотехники, с микроконтроллеров 2016-11-17 2016-12-26 цифровая электроника, цифровая схемотехника, микроконтроллер, логические элементы

Большой радиолюбитель и конструктор программ

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.

Электричество применяется во многих областях, оно окружает нас практически повсюду. Электроэнергия позволяет получать безопасное освещение дома и на работе, кипятить воду, готовить пищу, работать на компьютере и станках. Вместе с тем, обращаться с электричеством необходимо уметь, иначе можно не только получить травмы, но и нанести вред имуществу. Как правильно прокладывать проводку, организовывать снабжение объектов электричеством, изучает такая наука, как электротехника.

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны). При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество. Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным. Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности. На нем работают практически все устройства и оборудование.

Что изучает электротехника

Данная наука знает практически все об электричестве. Изучить ее необходимо всем, кто хочет получить диплом или квалификацию электрика. В большинстве учебных заведений курс, на котором изучают все, что связано с электроэнергией, называется «Теоретические основы электротехники» или, сокращенно ТОЭ.

Данная наука получила развитие в XIX веке, когда был изобретен источник постоянного тока, и появилась возможность строить электрические цепи. Дальнейшее развитие электротехника получила в процессе новых открытий в области физики электромагнитных излучений. Чтобы без проблем осваивать науку в настоящее время, необходимо иметь знания не только в области физики, но также химии и математики.

В первую очередь, на курсе ТОЭ изучаются основы электричества, дается определение тока, исследуются его свойства, характеристики и направления применения. Далее изучаются электромагнитные поля и возможности их практического использования. Завершается курс, как правило, изучением устройств, в которых используется электрическая энергия.

Чтобы разобраться с электричеством, не обязательно поступать в высшее или среднее учебное заведение, достаточно воспользоваться самоучителем или пройти видеоуроки «для чайников». Полученных знаний вполне хватит, чтобы разобраться с проводкой, заменить лампочку или повесить люстру дома. Но, если планируется профессионально работать с электричеством (например, в должности электромонтера или энергетика), то соответствующее образование будет обязательным. Оно позволяет получить специальный допуск на работу с приборами и устройствами, работающими от источника тока.

Основные понятия электротехники

Изучая электричество для начинающих, главное разобраться с тремя основными терминами:

  • Сила тока;
  • Напряжение;
  • Сопротивление.

Под силой тока понимается количество электрического заряда, протекающего через проводник с определенным сечением за единицу времени. Другими словами, количество электронов, которые переместились из одного конца проводника в другой за некоторое время. Сила тока является самой опасной для жизни и здоровья человека. Если взяться за оголенный провод (а человек – это тоже проводник), то электроны пройдут через него. Чем больше их пройдет, тем больше будут повреждения, поскольку в процессе своего движения они выделяют тепло и запускают различные химические реакции.

Однако чтобы ток шел по проводникам, между одним и другим концом проводника должно быть напряжение или разность потенциалов. Причем она должна быть постоянной, чтобы движение электронов не прекращалось. Для этого электрическую цепь обязательно замыкают, а на одном конце цепи обязательно ставят источник тока, который обеспечивает в цепи постоянное движение электронов.

Сопротивление – это физическая характеристика проводника, его способность к проведению электронов. Чем ниже сопротивление проводника, тем большее количество электронов по нему пройдет за единицу времени, тем выше сила тока. Высокое сопротивление, наоборот, уменьшает силу тока, но влечет за собой нагревание проводника (если напряжение достаточно высоко), что может привести к возгоранию.

Подбор оптимальных соотношений между напряжением, сопротивлением и силой тока в электрической цепи является одной из основных задач электротехники.

Электротехника и электромеханика

Электромеханика является разделом электротехники. Она изучает принципы функционирования устройств и оборудования, которые работают от источника электрического тока. Изучив основы электромеханики, можно научиться ремонтировать различное оборудование или даже проектировать его.

В рамках уроков по электромеханике, как правило, изучаются правила преобразования электрической энергии в механическую (каким образом функционирует электродвигатель, принципы работы любого станка и так далее). Также исследуются и обратные процессы, в частности, принципы действия трансформаторов и генераторов тока.

Таким образом, без понимания того, как составляются электрические цепи, принципов их функционирования и других вопросов, которые изучает электротехника, осваивать электромеханику невозможно. С другой стороны, электромеханика является более сложной дисциплиной и носит прикладной характер, поскольку результаты ее изучения применяются непосредственно при конструировании и ремонте машин, оборудования и различных электрических устройств.

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками). Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью. Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.

В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее. Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами.

Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам. Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями. Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.

Видео

Начинающий радиолюбитель: школа начинающего радиолюбителя, схемы и конструкции для начинающих, литература, радиолюбительские программы

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

На сайте работает “Школа начинающего радиолюбителя “. Полный курс обучения включает в себя занятия начиная от азов радиоэлектроники и кончая практическим конструированием радиолюбительских устройств средней сложности исполнения. Каждое занятие строиться на предоставлении слушателям необходимых теоретических сведений и практических видеоматериалов, а также домашних заданий. В ходе учебы каждый обучаемый получит необходимые знания и навыки в полном цикле конструирования в домашних условиях радиоэлектронных устройств.

Для того чтобы стать слушателем школы, необходимо желание и подписка на новости сайта или через FeedBurner, или через стандартное окно подписки. Подписка необходима для своевременного получения новых уроков, видеоматериалов занятий и домашнего задания.

Только подписавшимся на курс обучения в “Школе начинающего радиолюбителя” будут доступны видеоматериалы и домашнии задания по занятиям.

Для тех, кто решил изучать радиолюбительство вместе с нами, необходимо кроме подписки, внимательно изучить подготовительные статьи:






Все вопросы, пожелания и замечания Вы можете оставлять в комментариях в разделе “Начинающим”.

Первое занятие.

Второе занятие.
Лаборатория радиолюбителя. Собираем блок питания.

Определяемся со схемой. Как проверить радиоэлементы.

Подготовка деталей.
Расположение деталей на плате.
Изготовление платы самым простым способом.

Пайка схемы.
Проверка работоспособности.
Изготовление корпуса для блока питания.
Изготовление передней панели с помощью программы “Front Designer”.

Третье занятие.
Лаборатория радиолюбителя. Собираем функциональный генератор.



Проектирование печатной платы с помощью программы “Sprint Layout”.
Применение ЛУТ (лазерно-утюжной технологии) для переноса тонера на плату.

Окончательный вариант платы.
Нанесение “шелкографии”.
Проверка работоспособности генератора.
Настройка генератора с помощью специальной программы “Virtins Multi-Instrument”

Четвертое занятие.
Собираем светомузыкальное устройство на светодиодах

Предисловие.
Определяемся со схемой и изучаем характеристики основных деталей.

Фоторезисты и их применение.
Немного о программе “Cadsoft Eagle”. Установка и русификация официальной версии.

Изучаем программу Cadsoft Eagle:
– начальные настройки программы;
– создание нового проекта, новой библиотеки и нового элемента;
– создание принципиальной схемы устройства и печатной платы.

Уточняем схему;
Изготавливаем печатную плату в программе Cadsoft Eagle;
Облуживаем дорожки платы сплавом “Розе”;
Собираем устройство и проверяем его работоспособность специализированной программой и генератором;
Ну и, в конце-концов, радуемся результатам.

Подведем некоторые итоги работы “Школы”:

Если вы последовательно прошли все шаги, то ваш результат должен быть следующим:

1. Мы узнали:
- что такое закон Ома и изучили 10 основных формул;
– что такое конденсатор, резистор, диод и транзистор.
2. Мы научились:
♦ изготавливать простым способом корпуса для устройств;
♦ залуживать печатные проводники простым способом;
♦ наносить “шелкографию”;
♦ изготавливать печатные платы:
– с помощью шприца и лака;
– с использованием ЛУТ (лазерно-утюжной технологии);
– с использованием текстолита с нанесенным пленочным фоторезистом.
3. Мы изучили:
- программу для создания передних панелей “Front Designer”;
– любительскую программу для налаживания различных устройств “Virtins Multi-Instrument”;
– программу для ручного проектирования печатных плат “Sprint Layout”;
– программу для автоматического проектирования печатных плат “Cadsoft Eagle”.
4. Мы изготовили:
- двухполярный лабораторный блок питания;
– функциональный генератор;
– цветомузыку на светодиодах.
Кроме того, из раздела “Практикум” мы научились:
- собирать простые устройства из подручных материалов;
– рассчитывать токоограничительные резисторы;
– рассчитывать колебательные контуры для радиоустройств;
– рассчитывать делитель напряжения;
– рассчитывать фильтры низких и верхних частот.

В дальнейшем в “Школе” планируется изготовить несложный УКВ радиоприемник и приемник радионаблюдателя. На этом скорее всего работа “Школы” будет закончена. В дальнейшем, основные статьи для начинающих будут публиковаться в разделе “Практикум”.

Кроме того, начат новый раздел по изучению и программированию микроконтроллеров AVR.

Работы начинающих радиолюбителей:

Интигринов Александр Владимирович:

Григорьев Илья Сергеевич:

Ruslan Volkov:

Петров Никит Андреевич:

Морозас Игорь Анатольевич:

Недавно ко мне, узнав что я радиолюбитель, на форуме нашего города, в ветке Радио обратились за помощью два человека. Оба по разным причинам, и оба разного возраста, уже взрослые, как выяснилось при встрече, одному было 45 лет, другому 27. Что доказывает, что начать изучение электроники, можно в любом возрасте. Объединяло их одно, оба были так или иначе знакомы с техникой, и хотели бы самостоятельно освоить радиодело, но не знали с чего начать. Мы продолжили общение в В_Контакте , на мой ответ, что в инете море информации на эту тему, занимайся - не хочу, я услышал от обоих примерно одинаковое, - что оба не знают с чего начать. Одним из первых вопросов было: что входит в необходимый минимум знаний радиолюбителя. Перечисление им необходимых умений, заняло довольно приличное время, и я решил написать на эту тему обзор. Думаю, он будет полезен таким же начинающим, как и мои знакомые, всем кто не может определиться, с чего начать свое обучение.

Сразу скажу, что при обучении, нужно равномерно сочетать теорию с практикой. Как бы ни хотелось, побыстрее начать паять и собирать конкретные устройства, нужно помнить о том, что без необходимой теоретической базы в голове, вы в лучшем случае, сможете безошибочно копировать чужие устройства. Тогда как если будете знать теорию, хотя бы в минимальном объеме, то сможете изменить схему, и подогнать её под свои потребности. Есть такая фраза, думаю известная каждому радиолюбителю: “Нет ничего практичнее хорошей теории”.

В первую очередь, необходимо научиться читать принципиальные схемы. Без умения читать схемы невозможно собрать даже самое простое электронное устройство. Также впоследствии, не лишним будет освоить и самостоятельное составление принципиальных схем, в специальной .

Пайка деталей

Необходимо уметь опознавать по внешнему виду, любую радиодеталь, и знать, как она обозначается на схеме. Разумеется, для того чтобы собрать, спаять любую схему, нужно иметь паяльник, желательно мощностью не выше 25 ватт, и уметь им хорошо пользоваться. Все полупроводниковые детали не любят перегрева, если вы паяете, к примеру, транзистор на плату, и не удалось припаять вывод за 5 - 7 секунд, прервитесь на 10 секунд, или припаяйте в это время другую деталь, иначе высока вероятность сжечь радиодеталь от перегрева.

Также важно паять аккуратно, особенно расположенные близко выводы радиодеталей, и не навесить “соплей”, случайных замыканий. Всегда если есть сомнение, прозвоните мультиметром в режиме звуковой прозвонки подозрительное место.

Не менее важно, удалять остатки флюса с платы, особенно если вы паяете цифровую схему, либо флюсом содержащим активные добавки. Смывать нужно специальной жидкостью, либо 97 % этиловым спиртом.

Начинающие часто собирают схемы навесным монтажом, прямо на выводах деталей. Я согласен, если выводы надежно скручены между собой, а после еще и пропаяны, такое устройство прослужит долго. Но таким способом собирать устройства, содержащие больше 5 - 8 деталей, уже не стоит. В таком случае, нужно собирать устройство на печатной плате. Собранное на плате устройство, отличается повышенной надежностью, схему соединений можно легко отследить по дорожкам, и при необходимости вызвонить мультиметром все соединения.

Минусом печатного монтажа, является трудность изменения схемы готового устройства. Поэтому перед разводкой и травлением печатной платы, всегда, сначала нужно собирать устройство на макетной плате. Делать устройства на печатных платах, можно разными способами, здесь главное соблюдать одно важное правило: дорожки медной фольги на текстолите, не должны иметь контакта с другими дорожками, там, где это не предусмотрено по схеме.

Вообще есть разные способы сделать печатную плату, например, разъединив участки фольги - дорожки, бороздкой, прорезаемой резаком в фольге, сделанным из ножовочного полотна. Либо нанеся защитный рисунок защищающий фольгу под ним, (будущие дорожки) от стравливания с помощью перманентного маркера.

Либо с помощью технологии ЛУТ (лазерно - утюжной технологии), где дорожки от стравливания защищаются припекшимся тонером. В любом случае, каким-бы способом мы не делали печатную плату, нам необходимо, сперва её развести в программе трассировщике. Для начинающих рекомендую , это ручной трассировщик с большими возможностями.

Также при самостоятельной разводке печатных плат, либо если распечатали готовую плату, необходимо умение работать с документацией на радиодеталь, с так называемыми Даташитами (Datasheet ), страничками в PDF формате. В интернете есть Даташиты практически на все импортные радиодетали, исключение составляют некоторые Китайские.

На отечественные радиодетали, можно найти информацию в отсканированных справочниках, специализированных сайтах, размещающих страницы с характеристиками радиодеталей, и информационных страничках различных интернет магазинов типа Чип и Дип . Обязательно умение определять цоколевку радиодетали, также встречается название распиновка, потому что очень многие, даже двух выводные детали имеют полярность. Также необходимы практические навыки работы с мультиметром.

Мультиметр, это универсальный прибор, с помощью только его одного, можно провести диагностику, определить выводы детали, их работоспособность, наличие или отсутствие замыкания на плате. Думаю не лишним, будет напомнить, особенно молодым начинающим радиолюбителям, и о соблюдении мер электробезопасности, при отладке работы устройства.

После сборки устройства, необходимо оформить его в красивый корпус, чтобы не стыдно было показать друзьям, а это значит, необходимы навыки слесарного, если корпус из металла или пластмассы, либо столярного дела, если корпус из дерева. Рано или поздно, любой радиолюбитель приходит к тому, что ему приходится заниматься мелким ремонтом техники, сначала своей, а потом с приобретением опыта, и по знакомым. А это означает, что необходимо умение проводить диагностику неисправности, определение причины поломки, и её последующее устранение.

Часто даже опытным радиолюбителям, без наличия инструментов, трудно выпаять многовыводные детали из платы. Хорошо если детали идут под замену, тогда откусываем выводы у самого корпуса, и выпаиваем ножки по одной. Хуже и труднее, когда эта деталь нужна для сборки какого-либо другого устройства, или производится ремонт, и деталь, возможно, потребуется после впаять назад, например, при поиске короткого замыкания на плате. В таком случае нужны инструменты для демонтажа, и умение ими пользоваться, это оплетка и оловоотсос.

Использование паяльного фена не упоминаю, ввиду частого отсутствия у начинающих доступа к нему.

Вывод

Все перечисленное, это только часть того необходимого минимума, что должен знать начинающий радиолюбитель при конструировании устройств, но имея эти навыки, вы уже сможете собрать, с приобретением небольшого опыта, практически любое устройство. Специально для сайта - AKV .

Обсудить статью С ЧЕГО НАЧАТЬ РАДИОЛЮБИТЕЛЮ