Электропитание без перебоев. Устойчивость к сбоям питания. Как это работает

Добавлено: 08.07.2013

Компьютеры – довольно капризное устройства, то они зависают, то сами по себе перезагружаются или возникает так знакомый каждому пользователю Windows синий экран смерти (или печальный смайлик). Причин тому может быть множество. Сбои делятся на программные и аппаратные. В этой статье попробуем разобрать основные причины компьютерных сбоев и методы их устранения.

Аппаратные проблемы

№1 Плохие конденсаторы

Самая частая аппаратная проблема. Плохой конденсатор может никак не сказываться на работе, а может вызывать сбои и зависания вплоть до того, что система не будет включаться. Их легко найти и нетрудно заменить, нужен только паяльник и желание, впрочем подойдёт и знакомый, умеющий паять или сервис-центр, где за небольшую плату вам заменят конденсаторы.

Продвинутые радиолюбители возможно скажут, что я сильно упрощаю проблему с конденсаторами и будут правы, но в большинстве случаев такой визуальной диагностики с перепайкой вздутых ёмкостей достаточно, а более сложная диагностика и ремонт комплектующих требует специального оборудования и навыков радиоинженера

№2 Встроенная сетевая карта

Чаще всего горит из-за наведённого электричества или дефектного свитча. Если сгорела встроенная сетевая карта, установите отдельную сетевую карточку, а встроенную отключите в BIOS. Если её не отключить, то компьютер может зависать при загрузке

№3 Блок питания

Блок питания напрямую влияет на стабильность и срок жизни комплектующих. Из-за некачественного блока питания чаще всего ломаются жёсткие диски. Проблема с блоком питания может проявляться в виде внезапных перезагрузок или выключений компьютера. Иногда он может реагировать на кнопу питания не с первого раза.

Блок питания должен быть известных марок: FSP, Thermaltake, OCZ, Corsair, Zalman, Cooler Master. Хороший 700Вт блок стоит около 100$. Советую брать блок с отстёгивающимися кабелями – это удобно.

№4 Платы расширения

Иногда причина нестабильной работы системы кроется в плате расширения. Сегодня в большинстве компьютеров единственной такой платой является видеокарта. Поэтому диагностика сводится к вопросу о работоспособности видеокарты. Проверить её можно специализированными тестами, например

№5 Разгон

Разгон – это увеличение тактовой частоты вычислительных блоков компьютера, чаще всего процессора и видеокарты, с целью повышения производительности. Почти любой компьютер можно немного разогнать без потери стабильности. Однако не всегда проблемы появляются сразу. Если ваша система разогнана и вы наблюдаете сбои, проверьте свой компьютер стресс тестами на стабильность, например тем же , если проблема в разгоне, то система должна зависнуть или перезагрузиться. Главное следите за температурой GPU, желательно, чтобы она не доходила до 100ºС

№6 Оперативная память

Некачественная память очень неприятная вещь. Проблемы могут вылезти в виде синих экранов, причём код ошибки вам может ничего не дать. Проявляется дефектная память очень разнообразно, но проверить её можно во первых через встроенный тест быстродействия в (можно даже в пробной версии) или тот же . Вариант продвинутый - .

№7 Контакт процессора

Иногда процессор может каким-то неведомым образом терять контакт с гнездом. Чаще всего видел такое с Pentium 4 S478 и с AMD. Решение очень простое: вытащить процессор и снова вставить его.

№8 Севшая батарейка CMOS

Компьютеры по-разному реагируют на севшую батарейку. Иногда просто сбиваются часы, а бывает, что вообще не включаются. Решение: заменить батарейку. Обычно она выглядит как таблетка

№9 Перемычка CLR CMOS

Эта перемычка служит для сброса BIOS Если переключить эту перемычку в положение CLR CMOS, то компьютер перестанет реагировать даже на кнопку питания. Как она может оказаться в положении сброса? Кто знает... Просто иногда так оказывается.

Перемычка обнуления bios рядом с батарейкой

На фотографии перемычка имеет 2 штырька, на других материнских платах может быть 3, тогда положение 1-2 обычно означает рабочий режим 2-3 – режим сброса

№10 Перегрев узлов компьютера

Обычно больше всего греется процессор, северный и южный мосты и видеокарта. Если греется видеокарта, значит её пока снять и почистить, если процессор, то возможно засохла термопаста или также нужно почистить кулер. Если процессор Pentium 4 с сокетом 478 (не смейтесь, на них ещё долго будут работать), то проверьте крепления кулера, они часто ломаются у этой модели и радиатор перестаёт плотно прилегать к поверхности процессора. Если греются мосты, то на них нужно поставить радиатор. Узнать температуру процессора, видеокарты и жёстких дисков можно с помощью программы

Здесь всё хорошо

№11 Сбои на диске

Диски портятся – это факт. Диск после 3-4 лет интенсивной работы не так быстр, как после покупки, а если это системный диск, то сбои на нём могут проявляться в виде зависаний при загрузке, очень долгой загрузки, падения системы из-за ошибок ввода-вывода. Решение - запустите встроенную в ОС проверку диска или воспользуйтесь . Если диск на гарантии, то лучше сразу менять.

Программные сбои

№12 Драйверы

Windows устроен так, что любой драйвер может свалить систему в синий экран. Начиная с Windows Vista, дело обстоит несколько лучше, но по прежнему эта проблема встречается..

Большинство проблем с драйверами решается их обновлением. При сбоях драйверов дискового контроллера или ntfs/vfat стоит проверить диск на наличие ошибок.

№13 Ядро

PAGE_FAULT_IN_NONPAGED_AREA - это наверное самая часто возникающая ошибка, связанная с тем, что некая программа залезла в недопустимую область памяти или запросила данные, которых нет. Причины этого сбоя очень разнообразны. Если стало повторяться часто, лечится переустановкой Windows. Иногда антивирусы вызывают такой сбой. Ещё одна причина сбоев, связанных с ядром Windows – пиратский Windows с плохим активатором

№14 Реестр

Если реестр повреждён, то вы можете наблюдать следующую картину:


Обычно это связано со сбоями при записи на диск, например при скачке напряжения. Иногда этот сбой легко исправляется с помощью загрузочной флешки, но бывает, что лечится только переустановкой Windows.

№15 Вирусы

Большинство современных вирусов никак не проявляют себя в работе потому что их цель кража информации, а не поломка системы. Но есть и вирусы, служащие для создания ботнетов, например для распределённого взлома паролей, DDoS атак или даже для добывания криптовалюты bitcoin. Такой вирус будет использовать 100% ресурсов вашего компьютера из-за чего он начнёт сильно тормозить

№16 Системное ПО

Есть определённая категория программ, устанавливающая в систему свои модули ядра для низкоуровневого взаимодействия с ОС или оборудованием. К таким программам относятся все эмуляторы CDROM, антивирусы, программы для разметки дисков, фаерволы, некоторые системы защиты от копирования, виртуальные устройства. Самая распространённая проблема от такого ПО – синий экран. Чтобы определить какая именно программа вызвала ошибку, зайдите в системный журнал:

Панель управления → Администрирование → Управление компьютером

Обращайте внимание на колонку Уровень. На этом скриншоте нет ошибок, но если вместо «Сведения» появится «Ошибка» или «Критический», проверьте ей содержимое. Иногда это помогает определить причину сбоя.

Заключение

Это может и не все возможные сбои, но я постарался собрать наиболее распространённые проблемы. В других статьях эти проблемы ещё будут рассматриваться подробнее с примерами и пояснениями, сама статья, возможно, будет дополняться. А пока, надеюсь эта статья кому-то поможет понять почему компьютер вдруг стал работать нестабильно.

Очень многие проблемы, связанные с компьютером, можно предотвратить, если купить к нему ИБП. Не пожалейте 100$ на него, если конечно у вас не ноутбук.


Здравствуйте. Эта статья посвящена программе настройки BIOS, позволяющей пользователю изменять основные настройки системы. Параметры настройки хранятся в энергонезависимой памяти CMOS и сохраняются при выключении питания компьютера.

ВХОД В ПРОГРАММУ НАСТРОЙКИ

Чтобы войти в программу настройки BIOS, включите компьютер и сразу же нажмите клавишу . Чтобы изменить дополнительные настройки BIOS, нажмите в меню BIOS комбинацию «Ctrl+F1». Откроется меню дополнительных настроек BIOS.

УПРАВЛЯЮЩИЕ КЛАВИШИ

< ?> Переход к предыдущему пункту меню
< ?> Переход к следующему пункту
< ?> Переход к пункту слева
< ?> Переход к пункту справа
Выбрать пункт
Для главного меню - выход без сохранения изменений в CMOS. Для страниц настроек и сводной страницы настроек - закрыть текущую страницу и вернуться в главное меню

<+/PgUp> Увеличить числовое значение настройки или выбрать другое значение из списка
<-/PgDn> Уменьшить числовое значение настройки или выбрать другое значение из списка
Краткая справка (только для страниц настроек и сводной страницы настроек)
Подсказка по выделенному пункту
Не используется
Не используется
Восстановить предыдущие настройки из CMOS (только для сводной страницы настроек)
Установить безопасные настройки BIOS по умолчанию
Установить оптимизированные настройки BIOS по умолчанию
Функция Q-Flash
Информация о системе
Сохранить все изменения в CMOS (только для главного меню)

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Главное меню

В нижней части экрана отображается описание выбранной настройки.

Сводная страница настроек / Страницы настроек

При нажатии клавиши F1 появляется окно с краткой подсказкой о возможных вариантах настройки и назначении соответствующих клавиш. Для закрытия окна нажмите .

Главное меню (на примере версии BIOS Е2)

При входе в меню настройки BIOS (Award BIOS CMOS Setup Utility) открывается главное меню (рис.1), в котором можно выбрать любую из восьми страниц настроек и два варианта выхода из меню. С помощью клавиш со стрелками выберите нужный пункт. Для входа в подменю нажмите .

Рис.1: Главное меню

Если вам не удается найти нужную настройку, нажмите «Ctrl+F1» и поищите ее в меню дополнительных настроек BIOS.

Standard CMOS Features (Стандартные настройки BIOS)

На этой странице содержатся все стандартные настройки BIOS.

Advanced BIOS Features (Дополнительные настройки BIOS)

На этой странице содержатся дополнительные настройки Award BIOS.

Integrated Peripherals (Встроенные периферийные устройства)

На этой странице производится настройка всех встроенных периферийных устройств.

Power Management Setup (Настройки управления питанием)

На этой странице производится настройка режимов энергосбережения.

PnP/PCI Configurations (Настройка ресурсов РnР и PCI)

На этой странице производится настройка ресурсов для устройств

PCI и РnР ISA PC Health Status (Мониторинг состояния компьютера)

На этой странице отображаются измеренные значения температуры, напряжения и частоты вращения вентиляторов.

Frequency/Voltage Control (Регулировка частоты и напряжения)

На этой странице можно изменить тактовую частоту и коэффициент умножения частоты процессора.

Для достижения максимальной производительности установите в пункте «Тор Performance» значение «Enabled».

Load Fail-Safe Defaults (Установить безопасные настройки по умолчанию)

Безопасные настройки по умолчанию гарантируют работоспособность системы.

Load Optimized Defaults (Установить оптимизированные настройки по умолчанию)

Оптимизированные настройки по умолчанию соответствуют оптимальным рабочим характеристикам системы.

Set Supervisor password (Задание пароля администратора)

На этой странице Вы можете задать, изменить или снять пароль. Эта опция позволяет ограничить доступ к системе и настройкам BIOS либо только к настройкам BIOS.

Set User password (Задание пароля пользователя)

На этой странице Вы можете задать, изменить или снять пароль, позволяющий ограничить доступ к системе.

Save & Exit Setup (Сохранение настроек и выход)

Сохранение настроек в CMOS и выход из программы.

Exit Without Saving (Выход без сохранения изменений)

Отмена всех сделанных изменений и выход из программы настройки.

Standard CMOS Features (Стандартные настройки BIOS)

Рис.2: Стандартные настройки BIOS

Date (Дата)

Формат даты: <день недели>, <месяц>, <число>, <год>.

День недели - день недели определяется BIOS по введенной дате; его нельзя изменить непосредственно.

Месяц - название месяца, с января по декабрь.

Число - день месяца, от 1 до 31 (или максимального числа дней в месяце).

Год - год, от 1999 до 2098.

Time (Время)

Формат времени: <часы> <минуты> <секунды>. Время вводится в 24-часовом формате, например, 1 час дня записывается как 13:00:00.

IDE Primary Master, Slave / IDE Secondary Master, Slave (Дисковые накопители IDE)

В этом разделе определяются параметры дисковых накопителей, установленных в компьютере (от С до F). Возможны два варианта задания параметров: автоматически и вручную. При определении вручную параметры накопителя задаёт пользователь, а в автоматическом режиме параметры определяются системой. Имейте в виду, что введенная информация должна соответствовать типу вашего диска.

Если вы укажете неверные сведения, диск не будет нормально работать. При выборе варианта User Туре (Задается пользователем) вам потребуется заполнить приведенные ниже пункты. Введите данные с клавиатуры и нажмите . Необходимая информация должна содержаться в документации к жесткому диску или компьютеру.

CYLS - Количество цилиндров

HEADS - Количество головок

PRECOMP - Предкомпенсация при записи

LANDZONE - Зона парковки головки

SECTORS - Количество секторов

Если один из жестких дисков не установлен, выберите пункт NONE и нажмите .

Drive А / Drive В (Флоппи-дисководы)

В этом разделе задаются типы флоппи-дисководов А и В, установленных в компьютере. -

None - Флоппи-дисковод не установлен
360К, 5.25 in. Стандартный 5.25-дюймовый флоппи-дисковод типа PC емкостью 360 Кбайт
1.2М, 5.25 in. 5.25-дюймовый флоппи-дисковод типа АТ с высокой плотностью записи емкостью 1,2 Мбайт
(3.5-дюймовый дисковод, если включена поддержка режима 3).
720К, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 720 Кбайт

1.44М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 1.44 Мбайт

2.88М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 2.88 Мбайт.

Floppy 3 Mode Support (for Japan Area) (Поддержка режима 3 - только для Японии)

Disabled Обычный флоппи-дисковод. (Настройка по умолчанию)
Drive А Флоппи-дисковод А поддерживает режим 3.
Drive В Флоппи-дисковод В поддерживает режим 3.
Both Флоппи-дисководы А и В поддерживают режим 3.

Halt on (Прерывание загрузки)

Данная настройка определяет, при обнаружении каких ошибок загрузка системы будет остановлена.

NO Errors Загрузка системы будет продолжена несмотря на любые ошибки. Сообщения об ошибках выводятся на экран.
All Errors Загрузка будет прервана, если BIOS обнаружит любую ошибку.
All, But Keyboard Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры. (Настройка по умолчанию)
Ail, But Diskette Загрузка будет прервана при любой ошибке, за исключением сбоя флоппи-дисковода.
All, But Disk/Key Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры или диска.

Memory (Память)

В этом пункте выводятся размеры памяти, определяемые BIOS при самотестировании системы. Изменить эти значения вручную нельзя.
Base Memory (Базовая память)
При автоматическом самотестировании BIOS определяет объем базовой (или обычной) памяти, установленной в системе.
Если на системной плате установлена память объемом 512 Кбайт, на экран выводится значение 512 К, если же на системной плате установлена память объемом 640 Кбайт или более, выводится значение 640 К.
Extended Memory (Расширенная память)
При автоматическом самотестировании BIOS определяет размер установленной в системе расширенной памяти. Расширенная память - это оперативная память с адресами выше 1 Мбайт в системе адресации центрального процессора.

Advanced BIOS Features (Дополнительные настройки BIOS)

Рис.З: Дополнительные настройки BIOS

First / Second / Third Boot Device
(Первое/второе/третье загрузочное устройство)
Floppy Загрузка с флоппи-диска.
LS120 Загрузка с дисковода LS120.
HDD-0-3 Загрузка с жесткого диска от 0 до 3.
SCSI Загрузка с SCSI-устройства. Загрузка с ZIP-дисковода.
USB-FDD Загрузка с флоппи-дисковода с интерфейсом USB.
USB-ZIP Загрузка с ZIP-устройства с интерфейсом USB.
USB-CDROM Загрузка с CD-ROM с интерфейсом USB.
USB-HDD Загрузка с жесткого диска с интерфейсом USB.
LAN Загрузка через локальную сеть.

Boot Up Floppy Seek (Определение типа флоппи-дисковода при загрузке)

В процессе самотестирования системы BIOS определяет тип флоппи-дисковода - 40-дорожечный или 80-дорожечный. Дисковод емкостью 360 Кбайт является 40-дорожечным, а дисководы на 720 Кб, 1,2 Мбайт и 1,44 Мбайт - 80-дорожечными.

Enabled BIOS определяет тип дисковода - 40- или 80-дорожечный. Имейте в виду, что BIOS не различает дисководы 720 Кбайт, 1,2 Мбайт и 1,44 Мбайт, поскольку все они являются 80-дорожечными.

Disabled BIOS не будет определять тип дисковода. При установке дисковода на 360 Кбайт никакого сообщения на экран не выводится. (Настройка по умолчанию)

Password Check (Проверка пароля)

System Если при запросе системы не ввести правильный пароль, компьютер не загрузится и доступ к страницам настроек будет закрыт.
Setup Если при запросе системы не ввести правильный пароль, компьютер загрузится, однако доступ к страницам настроек будет закрыт. (Настройка по умолчанию)

CPU Hyper-Threading (Многопоточный режим работы процессора)

Disabled Режим Hyper Threading отключен.
Enabled Режим Hyper Threading включен. Обратите внимание, что эта функция реализуется только в том случае, если операционная система поддерживает многопроцессорную конфигурацию. (Настройка по умолчанию)

DRAM Data Integrity Mode (Контроль целостности данных в памяти)

Опция позволяет установить режим контроля ошибок в оперативной памяти, если используется память типа ЕСС.

ЕСС Режим ЕСС включен.
Non-ECC Режим ЕСС не используется. (Настройка по умолчанию)

Init Display First (Порядок активизации видеоадаптеров)
AGP Активизировать первым видеоадаптер AGP. (Настройка по умолчанию)
PCI Активизировать первым видеоадаптер PCI.

Integrated Peripherals (Встроенные периферийные устройства)

Рис.4: Встроенные периферийные устройства

On-Chip Primary PCI IDE (Встроенный контроллер 1 канала IDE)

Enabled Встроенный контроллер 1 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 1 канала IDE отключен.
On-Chip Secondary PCI IDE (Встроенный контроллер 2 канала IDE)

Enabled Встроенный контроллер 2 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 2 канала IDE отключен.

IDE1 Conductor Cable (Tип шлейфа, подключенного к IDE1)


АТА66/100 К IDE1 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE1 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

IDE2 Conductor Cable (Тип шлейфа, подключенного к ШЕ2)
Auto Автоматически определяется BIOS. (Настройка по умолчанию)
АТА66/100/133 К IDE2 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE2 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

USB Controller (Контроллер USB)

Если вы не используете встроенный контроллер USB, отключите здесь эту опцию.

Enabled Контроллер USB включен. (Настройка по умолчанию)
Disabled Контроллер USB отключен.

USB Keyboard Support (Поддержка USB-клавиатуры)

При подключении USB-клавиатуры задайте в этом пункте значение “Enabled”.

Enabled Поддержка USB-клавиатуры включена.
Disabled Поддержка USB-клавиатуры отключена. (Настройка по умолчанию)

USB Mouse Support (Поддержка мыши USB)

При подключении мыши USB задайте в этом пункте значение “Enabled”.

Enabled Поддержка мыши USB включена.
Disabled Поддержка мыши USB отключена. (Настройка по умолчанию)

АС97 Audio (Аудиоконтроллер АС’97)

Auto Встроенный аудиоконтроллер АС’97 включен. (Настройка по умолчанию)
Disabled Встроенный аудиоконтроллер АС’97 отключен.

Onboard H/W LAN (Встроенный сетевой контроллер)

Enable Встроенный сетевой контроллер включен. (Настройка по умолчанию)
Disable Встроенный сетевой контроллер отключен.
Onboard LAN Boot ROM (Загрузочное ПЗУ встроенного сетевого контроллера)

Использование ПЗУ встроенного сетевого контроллера для загрузки системы.

Enable Функция включена.
Disable Функция отключена. (Настройка по умолчанию)

Onboard Serial Port 1 (Встроенный последовательный порт 1)

Auto BIOS устанавливает адрес порта 1 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес 3F8.(Настройка по умолчанию)
2F8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2F8.

3E8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 1.

Onboard Serial Port 2 (Встроенный последовательный порт 2)

Auto BIOS устанавливает адрес порта 2 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес 3F8.

2F8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2F8. (Настройка по умолчанию)
3E8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 2.

Onboard Parallel port (Встроенный параллельный порт)

378/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес 378 и назначив прерывание IRQ7. (Настройка по умолчанию)
278/IRQ5 Включить встроенный LPT-порт, присвоив ему адрес 278 и назначив прерывание IRQ5.
Disabled Отключить встроенный LPT-порт.

3BC/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес ЗВС и назначив прерывание IRQ7.

Parallel Port Mode (Режим работы параллельного порта)

SPP Параллельный порт работает в обычном режиме. (Настройка по умолчанию)
ЕРР Параллельный порт работает в режиме Enhanced Parallel Port.
ЕСР Параллельный порт работает в режиме Extended Capabilities Port.
ЕСР+ЕРР Параллельный порт работает в режимах ЕСР и ЕРР.

ЕСР Mode Use DMA (Канал DMA, используемый в режиме ЕСР)

3 Режим ЕСР использует канал DMA 3. (Настройка по умолчанию)
1 Режим ЕСР использует канал DMA 1.

Game Port Address (Адрес игрового порта)

201 Установить адрес игрового порта равным 201. (Настройка по умолчанию)
209 Установить адрес игрового порта равным 209.
Disabled Отключить функцию.

Midi Port Address (Адрес MIDI-порта)

290 Установить адрес MIDI-порта равным 290.
300 Установить адрес MIDI-порта равным 300.
330 Установить адрес MIDI-порта равным 330. (Настройка по умолчанию)
Disabled Отключить функцию.
Midi Port IRQ (Прерывание для MIDI-порта)

5 Назначить MIDI-порту прерывание IRQ 5.
10 Назначить MIDI-порту прерывание IRQ 10. (Настройка по умолчанию)

Power Management Setup (Настройки управления питанием)

Рис.5: Настройки управления питанием

ACPI Suspend Туре (Тип режима ожидания ACPI)

S1(POS) Установить режим ожидания S1. (Настройка по умолчанию)
S3(STR) Установить режим ожидания S3.

Power LED in SI state (Индикатор питания в режиме ожидания S1)

Blinking В режиме ожидания (S1) индикатор питания мигает. (Настройка по умолчанию)

Dual/OFF В режиме ожидания (S1):
a. Если используется одноцветный индикатор, в режиме S1 он гаснет.
b. Если используется двухцветный индикатор, в режиме S1 он меняет цвет.
Soft-offby PWR BTTN (Программное выключение компьютера)

Instant-off При нажатии кнопки питания компьютер выключается сразу. (Настройка по умолчанию)
Delay 4 Sec. Для выключения компьютера кнопку питания следует удерживать нажатой в течение 4 сек. При кратковременном нажатии кнопки система переходит в режим ожидания.
РМЕ Event Wake Up (Пробуждение по событию РМЕ)

Disabled Функция пробуждения по событию РМЕ отключена.

ModemRingOn (Пробуждение по сигналу модема)

Disabled Функция пробуждения по сигналу модема/локальной сети отключена.
Enabled Функция включена. (Настройка по умолчанию)

Resume by Alarm (Включение по часам)

В пункте Resume by Alarm можно задать дату и время включения компьютера.


Enabled Функция включения компьютера в заданное время включена.

Если функция включена, задайте следующие значения:

Date (of Month) Alarm: День месяца, 1-31
Time (hh: mm: ss) Alarm: Время (чч: мм: cc): (0-23): (0-59): (0-59)

Power On By Mouse (Пробуждение по двойному щелчку мыши)

Disabled Функция отключена. (Настройка по умолчанию)
Double Click Пробуждение компьютера при двойном щелчке мыши.

Power On By Keyboard (Включение по сигналу с клавиатуры)

Password Для включения компьютера необходимо ввести пароль длиной от 1 до 5 символов.
Disabled Функция отключена. (Настройка по умолчанию)
Keyboard 98 Если на клавиатуре имеется кнопка включения, при нажатии на нее компьютер включается.

КВ Power ON Password (Задание пароля для включения компьютера с клавиатуры)

Enter Введите пароль (от 1 до 5 буквенно-цифровых символов) и нажмите Enter.

AC Back Function (Поведение компьютера после временного исчезновения напряжения в сети)

Memory После восстановления питания компьютер возвращается в то состояние, в котором он находился перед отключением питания.
Soft-Off После подачи питания компьютер остается в выключенном состоянии. (Настройка по умолчанию)
Full-On После восстановления питания компьютер включается.

PnP/PCI Configurations (Настройка PnP/PCI)

Рис.6: Настройка устройств PnP/PCI

PCI l/PCI5 IRQ Assignment (Назначение прерывания для PCI 1/5)

Auto Автоматическое назначение прерывания для устройств PCI 1/5. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройств PCI 1/5 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РСI2 IRQ Assignment (Назначение прерывания для PCI2)

Auto Автоматическое назначение прерывания для устройства PCI 2. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 2 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РОЗ IRQ Assignment (Назначение прерывания для PCI 3)

Auto Автоматическое назначение прерывания для устройства PCI 3. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 3 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.
PCI 4 IRQ Assignment (Назначение прерывания для PCI 4)

Auto Автоматическое назначение прерывания для устройства PCI 4. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 4 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

PC Health Status (Мониторинг состояния компьютера)

Рис.7: Мониторинг состояния компьютера

Reset Case Open Status(Возврат датчика вскрытия корпуса в исходное состояние)

Case Opened (Вскрытие корпуса)

Если корпус компьютера не вскрывался, в пункте «Case Opened» отображается «No» (Нет). Если корпус был вскрыт, в пункте «Case Opened» отображается «Yes» (Да).

Чтобы сбросить показания датчика, установите в пункте «Reset Case Open Status» значение «Enabled» и выйдите из BIOS с сохранением настроек. Компьютер перезагрузится.
Current Voltage (V) Vcore / VCC18 / +3.3 V / +5V / +12V (Текущие значения напряжения в системе)

В этом пункте отображаются автоматически измеренные основные напряжения в системе.

Current CPU Temperature (Текущее значение температуры процессора)

В этом пункте отображается измеренная температура процессора.

Current CPU/SYSTEM FAN Speed (RPM) (Текущая частота вращения вентиляторов)

В этом пункте отображается измеренная частота вращения вентиляторов процессора и корпуса.

CPU Warning Temperature (Выдача предупреждения при повышении температуры процессора)

Disabled Температура процессора не контролируется. (Настройка по умолчанию)
60°С / 140°F Предупреждение выдается при превышении значения температуры 60°С.
70°С / 158°F Предупреждение выдается при превышении значения температуры 70°С.

80°С / 176°F Предупреждение выдается при превышении значения температуры 80°С.

90°С / 194°F Предупреждение выдается при превышении значения температуры 90°С.

CPU FAN Fail Warning (Выдача предупреждения об остановке вентилятора процессора)

Disabled Функция отключена. (Настройка по умолчанию)

SYSTEM FAN Fail Warning (Выдача предупреждения об остановке вентилятора корпуса)

Disabled Функция отключена. (Настройка по умолчанию)
Enabled При остановке вентилятора выдается предупреждение.

Frequency/Voltage Control (Регулировка частоты/напряжения)

Рис.8: Регулировка частоты/напряжения

CPU Clock Ratio (Коэффициент умножения частоты процессора)

Если коэффициент умножения частоты процессора фиксирован, эта опция в меню отсутствует. - 10Х- 24Х Значение устанавливается в зависимости от тактовой частоты процессора.

CPU Host Clock Control (Управление базовой частотой процессора)

Замечание: Если система зависает до загрузки утилиты настройки BIOS, подождите 20 сек. По истечении этого времени система перезагрузится. При перезагрузке будет установлено значение базовой частоты процессора, задаваемое по умолчанию.

Disabled Отключить функцию. (Настройка по умолчанию)
Enabled Включить функцию управления базовой частотой процессора.

CPU Host Frequency (Базовая частота процессора)

100MHz - 355MHz Установить значение базовой частоты процессора в пределах от 100 до 355 МГц.

PCI/AGP Fixed (Фиксированные частоты PCI/AGP)

Для регулировки тактовых частот AGP/PCI выберите в этом пункте значение 33/66, 38/76, 43/86 или Disabled (Отключено).
Host/DRAM Clock Ratio (Отношение тактовой частоты памяти к базовой частоте процессора)

Внимание! Если значение в этом пункте задано неверно, компьютер не сможет загрузиться. В этом случае следует сбросить настройки BIOS.

2.0 Частота памяти = Базовая частота X 2.0.
2.66 Частота памяти = Базовая частота X 2.66.
Auto Частота устанавливается по данным SPD модуля памяти. (Значение по умолчанию)

Memory Frequency (Mhz) (Тактовая частота памяти (МГц))

Значение определяется базовой частотой процессора.

PCI/AGP Frequency (Mhz) (Тактовая частота PCI /AGP (МГц))

Частоты устанавливаются в зависимости от значения опции CPU Host Frequency или PCI/AGP Divider.

CPU Voltage Control (Регулировка напряжения питания процессора)

Напряжение питания процессора можно повысить на величину от 5.0% до 10.0%. (Значение по умолчанию: номинальное)

DIMM OverVoltage Control (Повышение напряжения питания памяти)

Normal Напряжение питания памяти равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания памяти повышено на 0.1 В.
+0.2V Напряжение питания памяти повышено на 0.2 В.
+0.3V Напряжение питания памяти повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

AGP OverVoltage Control (Повышение напряжения питания платы AGP)

Normal Напряжение питания видеоадаптера равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания видеоадаптера повышено на 0.1 В.
+0.2V Напряжение питания видеоадаптера повышено на 0.2 В.
+0.3V Напряжение питания видеоадаптера повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

Top Performance (Максимальная производительность)

Рис.9: Максимальная производительность

Top Performance (Максимальная производительность)

Для достижения наибольшей производительности системы задайте в пункте «Тор Performance» значение «Enabled».

Disabled Функция отключена. (Настройка по умолчанию)
Enabled Режим максимальной производительности.

При включении режима максимальной производительности увеличивается скорость работы аппаратных компонентов. На работу системы в этом режиме оказывают влияние как аппаратная, так и программная конфигурации. Например, одна и та же аппаратная конфигурация может хорошо работать под Windows NT, но не работать под Windows ХР. Поэтому в случае, если возникают проблемы с надежностью или стабильностью работы системы, рекомендуем отключить эту опцию.

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Рис.10: Установка безопасных настроек по умолчанию

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Безопасные настройки по умолчанию - это значения параметров системы, наиболее безопасные с точки зрения работоспособности системы, но обеспечивающие минимальное быстродействие.

Load Optimized Defaults (Установка оптимизированных настроек по умолчанию)

При выборе этого пункта меню загружаются стандартные настройки параметров BIOS и набора микросхем, автоматически определяемые системой.

Set Supervisor/User Password (Задание пароля администратора/пароля пользователя)

Рис.12: Задание пароля

При выборе этого пункта меню в центре экрана появится приглашение для ввода пароля.

Введите пароль длиной не более 8 знаков и нажмите . Система попросит подтвердить пароль. Введите этот же пароль еще раз и нажмите . Чтобы отказаться от ввода пароля и перейти в главное меню, нажмите .

Чтобы отменить пароль, в ответ на приглашение ввести новый пароль нажмите . В подтверждение того, что пароль отменён, появится сообщение «PASSWORD DISABLED». После снятия пароля система перезагрузится и вы сможете свободно войти в меню настроек BIOS.

Меню настроек BIOS позволяет задать два разных пароля: пароль администратора (SUPERVISOR PASSWORD) и пароль пользователя (USER PASSWORD). Если пароли не заданы, любой пользователь может получить доступ к настройкам BIOS. При задании пароля для доступа ко всем настройкам BIOS необходимо ввести пароль администратора, а для доступа только к основным настройкам - пароль пользователя.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете параметр “System”, система будет запрашивать пароль при каждой загрузке компьютера или попытке входа в меню настроек BIOS.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете “Setup”, система будет запрашивать пароль только при попытке войти в меню настроек BIOS.

Save & Exit Setup (Сохранение настроек и выход)

Рис.13: Сохранение настроек и выход

Для сохранения сделанных изменений и выхода из меню настроек нажмите «Y». Для возврата в меню настроек нажмите «N».

Exit Without Saving (Выход без сохранения изменений)

Рис.14: Выход без сохранения изменений

Для выхода из меню настроек BIOS без сохранения сделанных изменений нажмите «Y». Для возврата в меню настроек BIOS нажмите «N».

Защита от сбоев питания SSD - это не новая концепция, но способы и методики защиты SSD во время и после сбоя питания значительно улучшились в современных моделях SSD. Цель защиты от сбоев питания заключается в выполнении двух основных задач:

Безопасный перенос передаваемых данных (или данных, оставшихся в буферах кэшей DRAM- или SRAM-накопителя) в постоянную энергонезависимую флеш-память и

Сохранение целостности таблицы размещения SSD, чтобы SSD распознавался и был пригоден для использования после перезагрузки системы.

Примечание: таблица размещения SSD, или Flash Transition Layer (FTL), отвечает за логическое распределение физических данных на SSD.

В условиях обычного отключения системы SSD получает команду (Standby Immediate Command) от ATA-драйвера хост-устройства, предупреждающую SSD об отключении системы, чтобы SSD подготовился к нарушению питания. При обычном отключении системы у SSD есть достаточно времени для переноса данных из буферов кэша и обновления таблиц размещения.

В качественных SSD используется аппаратная система со встроенными в SSD конденсаторами питания и/или защита от сбоев питания (Pfail) во встроенном ПО, позволяющая записать важную информацию метаданных на флеш-память, чтобы обеспечить успешное восстановление SSD при включении питания.

Ранние модели SSD были не так хорошо готовы к внезапному отключению питания, как современные. Обычно SSD, подвергшийся внезапному отключению питания, не отвечал в следующем цикле питания. Во многих таких случаях сбои питания приводили к поломке SSD и утере данных.

Подробнее о двух подходах к PFAIL

Аппаратный PFAIL - аппаратный PFAIL предназначен в первую очередь для снижения потерь данных с помощью сохранения питания SSD, благодаря встроенным конденсаторам питания (Power Caps) на время, достаточное для записи во флеш-память данных, оставшихся в буфере кэша SSD, и обновления таблиц размещения. Общая схема типичного случая аппаратного PFAIL в SSD выглядит примерно так:

Контроллер SSD обнаруживает внезапное отключение питания

1. Встроенные конденсаторы питания сохраняют питание для SSD

2. Контроллер отдает внутреннюю команду на перенос данных из буфера кэша

3. Контроллер обновляет таблицы размещения, подготавливаясь к отключению питания

4. Накопитель безопасно отключается

PFAIL во встроенном ПО - программная защита PFAIL также предназначена для снижения вероятности утери данных с помощью способности восстановления встроенным ПО таблицы размещения при следующем включении питания после сбоя. Общая схема типичного случая защиты от PFAIL через встроенное ПО выглядит примерно так:

1. Таблица размещения SSD сохраняется во флеш-памяти и обновляется в DRAM

2. При записи новых данных на SSD встроенное ПО обновляет таблицу размещения

3. Новые записываемые данные всегда записываются с метками (или запасными байтами), включающими LBA, EEC и другую информацию о структуре данных

4. Возникает сбой питания

5. Запасные байты, содержащие информацию о структуре данных вместе с исходной таблицей размещения, позволяют встроенному ПО SSD восстановить таблицу размещения SSD при следующем включении питания

Программная защита от PFAIL - это высокоэффективный способ предотвращения утери данных в корпоративных системах хранения данных. Например, необходимо, чтобы SSD, сконфигурированные в RAID-массивы, были способны восстанавливаться и возвращаться в исправное состояние после сбоя питания для поддержания целостности RAID-массива. Один или несколько сбойных накопителей из массива приведут к отключению массива с высокой вероятностью утери данных.

В другом случае корпоративной системы накопители SSD могут образовывать большой пул хранения данных, в котором физические SSD разделены на несколько LUN и разделены между несколькими хостами. В этом примере критически важной характеристикой является высокий уровень доступности, и защита от PFAIL на основе встроенного ПО обеспечивает успешное восстановление SSD, обслуживающего LUN и хосты.

Kingston делает отказоустойчивость при сбоях питания первостепенной задачей

В стандартном процессе сертификации Kingston подвергает свои SSD (клиентские и корпоративные) напряженному циклу тестирования питания. Кроме тестирования совместимости, производительности и надежности SSD Kingston должны успешно выдержать несколько типов небезопасного отключения питания. Для прохождения процесса сертификации они должны включаться и быть совершенно работоспособными. Если SSD не проходит тестирование отключением питания, тестирование на сертификацию приостанавливается, устраняется причина проблемы, и процесс сертификации начинается сначала.

Заключение

Каждая система и среда уникальна, поэтому при выборе типа PFAIL, подходящего среде, нужно учесть различные факторы.

Многие корпоративные системы сегодня защищены с помощью избыточных источников питания, систем резервного аккумуляторного питания и генераторов, чтобы ЦОД продолжали работать в случае неожиданного отключения питания. ПО и высокоскоростные сети создали способы внедрения большого количества архитектур репликации данных, благодаря чему оборудование перестало быть единственной причиной сбоев.

Стабильность питания ЦОД и методики обеспечения высокой доступности должны быть важными факторами, определяющими выбор наиболее подходящего для системы хранения данных типа PFAIL SSD.

С приближением холодов данная тема систематически возникает на страницах компьютерной периодики. Мы не собираемся нарушать эти традиции и в дополнение к уже сказанному ( , ) предлагаем материал, который поможет избежать множества неприятностей, связанных с вопросами обеспечения безопасного режима питания для вашей компьютерной техники. Какие перебои случаются в сетях электропитания?

Все неполадки в энергосетях можно классифицировать примерно следующим образом: полное отключение питания, пониженное или повышенное напряжение, высоковольтные всплески, кратковременные провалы напряжения, отклонение частоты от номинального значения (50 Hz), искажение синусоидальной формы напряжения.

Почему возникают неполадки в электросетях?

Сбои в электропитании вызываются самыми различными причинами: например грозами, происходящими вблизи линий электропередачи, неустойчивой работой генераторов, авариями на подстанциях, разрывами или выгоранием проводки, плохими контактами. Кроме того, отклонения от нормы напряжения в сети возникают вследствие включения/выключения мощного электрооборудования (лифтов, сварочных аппаратов, моторов, холодильников и т. д.) или, наконец, обусловливаются электромагнитными наводками и радиопомехами от работы бытовых электроприборов микроволнового излучения или радиопередатчиков.

Чем грозят сбои в электропитании домашнему компьютеру?

Некачественное электропитание крайне отрицательно воздействует на наших электронных любимцев. Во-первых, оно может привести к потере данных в памяти, а регулярные сбои неминуемо чреваты появлением bad-секторов на дисках (чаще всего в системной области). Во-вторых, сильные всплески напряжения способны вывести из строя блоки питания, а также некоторые микросхемы. В-третьих, систематические проблемы с электроэнергией вызывают преждевременное старение аппаратуры. Кстати сказать, нередко различные блокировки клавиатуры и "зависания" компьютера, которые, на наш взгляд, объясняются ошибками в программе, на самом деле могут быть обусловлены некачественным энергоснабжением.

Так ли уж важно заземлять компьютер? У моих знакомых, например, ПК прекрасно работает и без заземления.

Заземлять компьютер важно не только для его устойчивой работы, но и для вас самих, точнее, для сохранения вашего здоровья. Известно, что на корпусе компьютера существует потенциал порядка 100—110 В — напряжение немаленькое. Попасть под него можно, например, случайно прикоснувшись к неокрашенным металлическим частям корпуса компьютера и одновременно к батарее отопления. Если компьютер заземлен, удара током не последует — разряд уйдет в землю через соответствующий провод с низким сопротивлением, а не через вас.

Кроме того, производители вычислительной техники, приводя свои изделия в соответствие с жесткими современными нормами безопасности, постоянно уменьшают уровень их электромагнитных излучений. Однако многие из этих усилий сводятся к нулю из-за банального отсутствия заземления.

Проблема заземления станет особенно актуальной, если вы построите домашнюю сеть. Отдельные компьютеры в ней, естественно, будут подключаться к различным источникам питания, сетевой же кабель начнет играть роль своеобразного моста для выравнивания потенциалов. Возникающие при этом токи способны вывести сетевое оборудование из строя.

Итак, заземление необходимо, чтобы: 1) исключить поражение человека током; 2) уменьшить неблагоприятное воздействие электромагнитных излучений; 3) понизить влияние внешних наводок на компьютерную систему; 4) обеспечить нормальную работу аппаратуры в сети.

Если на металлическом корпусе компьютера присутствует потенциал, грозящий при неосторожном обращении с ПК перейти через нас в землю, то почему их не выпускают, например, в пластмассовых корпусах?

Все дело в том, что для "компьютерной начинки" просто необходим металлический кожух, чтобы, с одной стороны, экранировать электромагнитные излучения самого ПК, а с другой — уменьшить наводки и радиопомехи извне. Для обеспечения элементарной безопасности металлические корпуса покрываются довольно толстым слоем краски, не проводящей электричество, а некоторые "брэнды" действительно изготовляют пластиковые корпуса, но, открыв такой ПК, вы все равно внутри обнаружите металлический экран, скрепленный с пластмассой.

В моей квартире отсутствует заземляющий контур. Как мне обеспечить заземление ПК?

Ксожалению, во многих домах, сданных в эксплуатацию до 1996—1998 гг., в розетках нет контакта, предназначенного для заземления аппаратуры. Более того, бывают случаи, когда такие контакты в розетках имеются, но только к ним не подведены соответствующие провода. Нередко отечественные Кулибины сами пытаются исправить такое положение вещей, что иногда приводит к плачевным последствиям. Поэтому лучше проводку заземляющего контура доверить опытным специалистам. Да! Возможно, при этом придется слегка нарушить дизайн только что отремонтированной квартиры. Да! Необходимо будет вложить дополнительные средства. Но нужно отважиться на эти действия, чтобы раз и навсегда решить для себя данную проблему. Поверьте, игра стоит свеч! Здоровье все равно дороже, да и не забывайте народную мудрость — скупой платит дважды.

Главное, не пытайтесь обойтись "половинчатыми" или временными мерами, и давайте сразу договоримся, чего делать ни в коем случае нельзя, даже если вам это порекомендуют тысячи "продвинутых" знакомых. Никогда не заземляйте аппаратуру на: 1) батарею парового (водяного) отопления (вдруг соседу вздумается ее переварить?); 2) водопровод (во-первых, в нем и так встречаются блуждающие токи, и вовсе не обязательно их пускать на компьютер, а во-вторых, систематический ток с корпуса компьютера в землю вызовет активную коррозию труб); 3) газопровод (надеюсь, вы не из рода камикадзе); 4) молниеотвод (кажется, мы собрались защищать компьютер, а не пускать его "в расход"); 5) "нулевой" контакт обычной розетки (если не хотите, чтобы на корпус компьютера попало напряжение 220 В).

Могу ли я для заземления компьютера воспользоваться "зануляющим" контуром электроплиты?

Действительно, для заземления бытовой электроаппаратуры иногда используют "зануляющий" контакт электроплиты, но лучше будет взять "ноль" с распределительного щитка на лестничной площадке и развести его к соответствующим контактам розеток европейского образца.

На дачах и в частных домах заземление легко организовать самостоятельно. Для этого можно забить в грунт металлическую трубу диаметром 100 мм и длиной 2,5—3 м и приварить к ней провод сечением 5 мм. Для разводки по квартире достаточно использовать медную проволоку сечением 1,5—2 мм. И все же, еще раз подчеркну, для решения подобных задач лучше пригласить специалиста.

Я снимаю квартиру. О том, чтобы в ней провести заземление, речь не идет. Имею компьютер — не совсем современный, но для работы хватает. По роду занятий приходится много печатать, причем как на стареньком матричном, так и на струйном принтере. У меня почему-то уже второй раз выгорает LPT-порт. На работе мне сказали, что это из-за отсутствия заземления. Что мне делать?

Похоже, вы нередко подключаете печатающие устройства к компьютеру, предварительно не обесточив все изделия, что в вашем случае делать не рекомендуется. При этом на корпусах ПК и принтера существуют различные потенциалы. В результате при соединении устройств с помощью интерфейсного кабеля появляется уравнивающий электрический ток силой в несколько десятков миллиампер, чего вполне достаточно, чтобы вывести из строя параллельный порт. Если бы ПК и принтер были надежно заземлены на общий контур, проблемы разности потенциалов не возникало бы. В данном же случае, чтобы иметь возможность "горячего" подключения принтера, необходимо предварительно соединить корпуса ПК и принтера отдельным стальным многожильным или медным проводом для выравнивания потенциалов.

В нашей квартире заземление подведено, розетка в моей комнате расположена за шкафом, поэтому для подключения компьютера и других устройств я использую переноску-разветвлитель. Вилку, правда, пришлось обрезать (не помещается между шкафом и стеной) и запитать удлинитель непосредственно с проводов разводки. Однако недавно, делая ремонт, я обнаружил, что эти контакты сильно окислились и значительно выгорели, даже изолента расплавилась. В чем причина? Какие нормы электрической безопасности не соблюдены?

Как известно, для прокладки электросетей в наших квартирах применяются алюминиевые провода. Удлинители же выполняются из меди. При скручивании меди с алюминием образуется гальваническая пара, металл в месте контакта активно окисляется и разрушается, сопротивление растет, а значит, увеличивается и выделение тепла, что в конце концов может привести к выгоранию проводки и даже к пожару. Выход следующий: при соединении проводов необходимо использовать специальные переходники. Можно также применять обыкновенные стальные винты с гайками, при этом концы проводов разделяют с помощью шайбы.

От каких неприятностей может уберечь компьютер сетевой фильтр?

Основное назначение сетевых фильтров состоит в том, чтобы, с одной стороны, защищать аппаратуру от кратковременных (до 5 мс) бросков напряжения величиной до 6000 В (например, вследствие удара молнии), а с другой — беречь сеть от проникновения в нее помех от самого компьютера. Кроме того, многие фильтры включают в себя средства подавления электромагнитных наводок и радиопомех.

Большинство сетевых фильтров отводят броски питания через заземление, поэтому в случае его отсутствия ваш фильтр превращается просто в дорогостоящий удлинитель. Правда, часто для компенсации пиковых бросков питания используются высокоемкие конденсаторы, но и в этом случае заземление необходимо для защиты самого фильтра.

Сетевой фильтр не спасет вас при долговременном понижении напряжения в сети, при резких его перепадах или при внезапном отключении питания. От простейшего ИБП (источник бесперебойного питания) сетевой фильтр отличается отсутствием резервного источника энергии.

Следует также помнить, что в сетевые фильтры не следует подключать мощные нагрузки — утюги, электрочайники, стиральные машины и т. д.

Зачем покупать дополнительный сетевой фильтр, если большинство блоков питания ПК оснащены встроенным?

Действительно, практически любой современный блок питания компьютера или периферийного устройства имеет простейший встроенный сетевой фильтр, который предназначен для подавления высокочастотных помех питающей сети. Однако импульсным броскам амплитуды напряжения до 4—6 тысяч вольт, которые изредка случаются в сети, они противостоять не в силах.

На какие характеристики необходимо обращать внимание при выборе фильтра?

Впервую очередь — на суммарную мощность нагрузки. Она должна быть по крайней мере около 2 кВт. При превышении этого значения в хорошем фильтре обязательно сработает автоматический предохранитель, который разомкнет цепь. Далее поинтересуйтесь (если есть в этом необходимость), способен ли фильтр защищать модем, обеспечивая барьер на пути возможного проникновения в систему опасных скачков напряжения через телефонную линию. Ну и наконец, гарантия и сервисное обслуживание! Три года — это минимум. Для именитого и серьезного производителя такой срок — не проблема.

Можно ли включать компьютер через стабилизатор для телевизора?

Как известно, основная задача стабилизаторов — вы-равнивать напряжение до стандартных 220 В при его отклонении на 30—50 В. Если другие неприятности в сети встречаются редко, то стабилизатор способен частично решить ваши проблемы при условии, что он обеспечивает выходную мощность не менее 200 Вт. Для компьютера хватит, а вот монитор в этом случае все равно придется запитывать напрямую через розетку. Предпочтительнее использовать так называемые активные стабилизаторы напряжения. Феррорезонансные устройства для этих целей подходят меньше, поскольку в случае резких скачков напряжения они способны вывести из строя блоки питания компьютерных устройств.

Для чего служит UPS?

ИБП (UPS — Uninterruptible Power System) в первую очередь необходим для защиты ПК от длительных спадов напряжения, а также для обеспечения работы компьютера на сравнительно короткий промежуток времени после исчезновения напряжения в сети, чтобы пользователь смог корректно завершить работу приложений или переключиться на резервный источник питания (например, мобильный дизель-генератор). Как правило, большинство источников бесперебойного питания обладают свойствами сетевых фильтров. Так, они могут справляться со скачками напряжения до 1000 В, однако более мощных всплесков им не выдержать. Поэтому имеет смысл совместно использовать сетевой фильтр и UPS, подсоединив последний к розетке первого (но ни в коем случае не наоборот!). Кроме того, к оставшимся свободным розеткам фильтра можно подключить принтер, сканер и прочие периферийные устройства, питание которых в данный момент нет необходимости организовывать через ИБП. Сетевой фильтр в таком случае обеспечит им элементарную защиту.

На что следует обращать внимание при выборе UPS?

Вот основные характеристики ИБП, которые следует брать во внимание при выборе источника.

1. Мощность. Выражается в вольт-амперах (B·A). Суммарная мощность подключаемых устройств не должна превышать мощности, обеспечиваемой UPS.

2. Диапазон входного напряжения. Задается минимальным и максимальным допустимыми значениями напряжений в сети, при которых ИБП еще способен поддерживать номинальное напряжение на выходе, не переключаясь на питание от аккумуляторов. Чем шире этот диапазон, тем дольше прослужат батареи.

3. Время автономной работы. Зависит как от емкости батарей, так и от величины нагрузки.

4. Срок службы аккумуляторов. Этот параметр существенно зависит от условий эксплуатации: частоты переключения в автономный режим, условий зарядки, окружающей среды. Обычно срок службы аккумуляторов составляет 3—5 лет.

5. Время переключения ИБП на батарею и обратно. Естественно, чем оно меньше, тем лучше.

6. Наличие в UPS средств фильтрации питания, подавляющих импульсные броски напряжения.

7. Способ уведомления пользователя о начале работы компьютера от батарей, предусмотренный в UPS.

8. Возможность самостоятельной замены батарей.

9. Обеспечение защиты телефонных линий (если вы пользуетесь модемом).

10. Наличие функции "холодного" старта, т. е. возможности включить ИБП при отсутствии напряжения в сети. Она будет полезной во время длительного пропадания питания, если вдруг, к примеру, понадобится прочитать сообщения e-mail.

При покупке многофункциональных и дорогих источников питания особое внимание обращайте на известность торговой марки и сервисное обслуживание, которое обеспечивает продавец.

ИБП какого класса лучше использовать в зависимости от существующих условий?

Вопрос сложный, интересный и, пожалуй, не имеющий однозначного ответа. Тем не менее давайте попробуем с ним разобраться.

Источники типа off-line являются самыми простыми и наиболее дешевыми, а следовательно, на них чаще других останавливают свой выбор домашние пользователи. Однако данные ИБП плохо защищают ПК от длительных "проседаний" сети и кратковременных всплесков напряжения, изменений его частоты и формы. Практически все недорогие модели ИБП типа off-line пропускают входное напряжение "транзитом", никак его не корректируя. Ряд изделий не имеют средств управления компьютером, и при возникновении аварийных ситуаций единственная их реакция — достаточно громкий звуковой сигнал. Таким образом, ИБП резервного типа не годятся для работы в местах с низким качеством электропитания, их целесообразнее использовать в сетях со стабильным напряжением, но сравнительно частыми отключениями питания. Иногда источники типа off-line для снижения стоимости устройств заключают в дешевые пластиковые корпуса, а это означает полное отсутствие экранирования полей, наводимых трансформатором, ввиду чего такой ИБП нельзя располагать вблизи монитора.

Линейно-интерактивные ИБП (line-interactive UPS) обеспечивают довольно неплохую стабилизацию питания. Обычно они управляются микропроцессором, который осуществляет мониторинг линии, реагируя на различные отклонения электрических параметров от номинальных значений. Данные устройства могут быть рекомендованы, когда отключения питания редки, зато часты длительные спады напряжения. Одним из главных преимуществ данных ИБП перед устройствами off-line является широкий диапазон допустимых входных напряжений. К недостаткам такого рода устройств следует отнести слабую защиту от флуктуаций частоты и формы входного напряжения. Line-intеractive UPS — это, как правило, наилучшее соотношение цены и функциональности.

ИБП типа on-line обеспечивают на сегодняшний день наиболее высокий уровень защиты. Качество питания, предоставляемое ими, значительно лучше, чем у иных устройств. Полностью регенерируя входное напряжение, они надежно предохраняют нагрузку от таких нарушений, как изменение частоты и формы входного напряжения. Практически все on-line ИБП оснащены специальной обводной шиной, которая позволяет при кратковременных перегрузках и наличии напряжения в сети не обесточивать подключенное оборудование. Данные ИБП — естественный выбор там, где необходимо обеспечить надежную работу критически важных приложений. Очень часто такие устройства позволяют выставлять приоритет для отключаемой нагрузки, чтобы более разумно распорядиться зарядом батарей в случае отключения внешнего питания.

У нас дома два компьютера. Можно ли приобрести один ИБП для всех ПК или лучше для каждой машины установить свой собственный?

Если оба компьютера расположены недалеко друг от друга, например в пределах одной комнаты, то, конечно же, можно приобрести для них один общий ИБП мощностью примерно 1,0—1,2 кВ·А. Но вот стоит ли это делать? Вопрос спорный. Удобства от такого решения сомнительные. Допустим, вы закончили работу и случайно, по привычке, выключили UPS (если, конечно, модель допускает такие действия) в то время, когда ваш сын загружал из Internet жизненно важную для него информацию. Конфликт неизбежен!

О экономии средств также говорить не приходится: чаще всего два равноценных по классу ИБП от одного и того же производителя (в нашем случае на 500 В·А) в сумме стоят примерно столько же, сколько и один UPS "удвоенной мощности" (на 1000 В·А). Так что я все же посоветовал бы приобрести отдельный источник для каждого компьютера.

Я слышал, что существуют ИБП, которые можно встраивать в корпус компьютера. В каком случае имеет смысл их использовать?

Для многих пользователей поддержка долговременной работы компьютера без электричества не нужна. Основное, что требуется от UPS, — это обеспечение качественного энергоснабжения компьютера, а также возможность автономного питания ПК от аккумуляторов (в случае исчезновения напряжения в сети) в течение некоторого времени, достаточного для корректного завершения работы.

Сегодня существует довольно много моделей внутренних UPS. По ряду причин они не получили у нас широкого распространения. Такие изделия иногда вставляют в свободный пятидюймовый слот корпуса ПК, например ИБП SI300 производства компании Beam Tech Electronics . Данный источник является весьма "интеллектуальным" устройством, однако основной его недостаток — сильное выделение тепла внутри ПК. Необходимо серьезное охлаждение.

Среди прочих внутренних ИБП можно выделить PowerCard производства компании Guardian On Board . По сути, это обыкновенный UPS мощностью 420 В·А с весьма средними показателями. Интерфейс PCI — в некотором смысле бутафория (для связи с компьютером используется COM-порт), однако если не установить карту в свободный слот PCI и не проинсталлировать соответствующее ПО, UPS работать не будет. Батареи крепятся внутри корпуса с помощью специальных липучек, рядом с PCI-картой, на которой расположена электроника ИБП. Общая масса такого изделия составляет 2,3 кг. В принципе, все красиво, незаметно, компактно и, кстати, не сопровождается обильным выделением тепла, но зато и не обеспечиваются стабилизация напряжения и защита от скачков напряжения.

Для чего необходимо программное обеспечение, входящее в комплект поставки ИБП?

ПО, поставляемое с недорогими моделями ИБП, обычно доступно для бесплатной загрузки с сайтов производителей. Как правило, у такого ПО фиксированный набор функций: мониторинг электрической сети на входе и параметров питающего напряжения на выходе, контроль за состоянием батарей, а также управление защищаемым компьютером и уведомление пользователя о потенциальных и случившихся проблемах.

Приложения, поставляющиеся с дорогими моделями ИБП, позволяют осуществлять тестирование и диагностику UPS, мониторинг электросети, вести журнал регистрации событий, дистанционно управлять ИБП по коммутируемой линии, автоматически присваивать имена закрываемым файлам при завершении работы ПК, оповещать пользователя о проблемах с энергоснабжением по электронной почте или пейджинговой связи и даже отслеживать состояние окружающей среды.

Производители ИБП обычно выражают мощность в вольт-амперах (В·А), в то время как на блоках питания компьютеров и многих других электробытовых устройств мощность указывается в ваттах (Вт). Строго говоря, здесь речь идет о разных величинах — полной и активной мощностях. Для перевода одних единиц в другие можно воспользоваться формулой 1 В·А = 1,5 Вт. Такое соответствие весьма приблизительно, тем не менее кое-какие ориентиры дает.

1. Находим сумму мощностей всех устройств, которые планируем подключить к ИБП, например, игрового компьютера с 17-дюймовым монитором (всего около 220 Вт).

2. Воспользуемся приведенной выше формулой: 220 x 1,5 = 330 В·А.

3. Кроме того, многие производители UPS советуют увеличить полученное таким образом значение на 20%: 330 + 66 ~ 400 В·А. Итак, в данном случае неплохо бы приобрести ИБП мощностью 420 В·А, а если с запасом, то и 450, или все 500 В·А (поскольку эти характеристики у большинства производителей имеют строгую дискретизацию).

Вот, в целом, и вся арифметика.

Для того чтобы узнать активную мощность конкретного устройства, нужно заглянуть либо в руководство пользователя, либо в табличку, расположенную на задней стороне корпуса устройства. Там обязательно указывают хотя бы одну из двух величин: ватты (Вт) или амперы (А). Если указаны ватты — это то, что надо. В противном случае активную мощность придется вычислять самому: силу тока в амперах необходимо умножить на 220. Полученное значение и будет искомой активной мощностью в ваттах.

Какие правила необходимо соблюдать при эксплуатации ИБП?

Каких-то особых рекомендаций не существует. В первую очередь с ИБП нужно обращаться так же, как и со многими электробытовыми приборами: не касаться устройства влажными руками; если ИБП долго находился при низкой температуре, дать ему нагреться до комнатной. Кроме того, не следует подключать к источнику устройства, превышающие его мощность (в этом случае UPS просто отключит нагрузку), по возможности держать батарею на "плавающей" или постоянной подзарядке — это продлит срок ее службы. Любопытно, что срок эксплуатации подзаряжаемой батареи значительно превышает срок ее хранения. Объясняется это тем, что некоторые естественные процессы старения приостанавливаются вследствие постоянной подзарядки. Для источников типа on-line (они намного сильнее нагреваются, чем off-line) необходимо обеспечивать дополнительную вентиляцию.

Для защиты ИТ-оборудования от перебоев в электросети и некачественного электропитания широко применяются источники бесперебойного питания (Uninterruptible Power Supply, UPS) - ИБП. Это дополнительное оборудование, предназначенное для электропитания ИТ-систем или других устройств при кратковременном (до нескольких десятков минут) отключении основного электропитания, а также для защиты от помех и бросков в электросети и поддержания параметров питания в допустимых пределах. То есть ИБП также могут использоваться для улучшения качества электропитания.


По конструктивному исполнению ИБП можно разделить на настольные, напольные и стоечные (19"). Основное назначение любого ИБП - защита нагрузки от возможных проблем в цепях электропитания. По статистике, каждый ПК ежемесячно подвергается воздействию около 120 нештатных ситуаций, связанных с проблемами электропитания. В их числе:

Таким образом, ИБП сглаживают небольшие и кpатковpеменные броски питания, фильтpуют питающее напpяжение, но их главная задача - питать нагpузку в течение некотоpого вpемени после пpопадания напpяжения в сети. Многие модели с помощью пpогpаммного обеспечения могут автоматически завершать работу ИТ-оборудования пpи пpодолжительном отсутствии напpяжения в питающей сети, а также пеpезапускать его пpи восстановлении сетевого питания или по таймеру. Некоторые ИБП предусматривают функции монитоpинга и записи параметров источника питания (таких как темпеpатуpа, уpовень заpяда батаpей и дpугие показатели), отобpажение параметров напpяжения и частоты тока, выходного напpяжения и мощности, пpедупpеждение об аварийных ситуациях и пр. При пропадании напряжения в электросети любые ИБП переключают нагрузку на питание от батареи, но есть важные отличия.

Батареи: альтернатива свинцово-кислотным аккумуляторам

Сегодня 95% всех источников бесперебойного питания производятся с использованием свинцово-кислотных батарей в качестве источника постоянного тока.

Тем временем некоторые вендоры уже объявили о начале перевода нескольких моделей устройств бесперебойного питания со свинцово-кислотных аккумуляторов на литий-ионные. Их начальная стоимость пока что выше свинцово-кислотных, однако за последние несколько лет разрыв в ценах существенно сократился.

По данным Schneider Electric, в зависимости от сферы применения литий-ионных аккумуляторов в общей стоимости владения в течение срока их службы можно добиться экономии в 10-40% по сравнению с традиционными аккумуляторами.

Литий-ионные аккумуляторы (Li-ion) накапливают гораздо больше энергии в меньшем объеме. Так, в сравнении со свинцово-кислотными аккумуляторами с клапанным регулированием (VRLA) равной мощности они занимают втрое меньше места. А благодаря длительному сроку службы существенно сокращаются объемы работ и расходов по их замене.

Между тем подавляющее большинство ИБП по-прежнему комплектуется свинцово-кислотными батареями, известными своей надежностью, высоким качеством и оптимальными ценовыми характеристиками.

Классы ИБП

По принципу действия ИБП делятся на три основных класса: резервные ИБП (off-line), линейно-интерактивные (line-interactive) и ИБП с двойным преобразованием (on-line). Тип ИБП определяется соотношением параметров на входе и выходе устройства. У первых частота и напряжение на выходе определяются частотой и напряжением на входе; вторые стабилизируют напряжение на выходе при совпадении частот, а ИБП с двойным преобразованием преобразуют переменное напряжение в постоянное и вновь генерируют на выходе переменное (синусоидальное) напряжение, характеристики которого не зависят от параметров на входе ИБП.

В резервных (или пассивных) ИБП нагрузка питается напрямую от электросети, как правило, через помехоподавляющий фильтр. При отказе электросети нагрузка переключается на резервное питание от инвертора, питающегося от батарей. Такие ИБП просты и недороги, имеют высокий КПД, но не стабилизируют напряжение и частоту электросети, а переключение на питание от батарей происходит за несколько миллисекунд. Их мощность обычно невелика - от 220 до 2000 ВА.

Резервные ИБП:

Типовая область применения резервных ИБП - защита ПК или вспомогательного оборудования, где значимость хранимой информации или выполняемых операций сравнительно невелика. Эта топология не подходит в случае частых отключений или при некачественном электропитании.
Схема работы простейшего резервного ИБП показана ниже.


ИБП резервного типа: нормальный режим работы (rectifier - выпрямитель, inverter - инвертор, SPD - фильтр питания, bypass - байпас).


ИБП резервного типа: аварийный режим работы .

Для защиты более важного оборудования, например, серверов начального уровня, сетевого и телекоммуникационного оборудования, лучше использовать линейно-интерактивные ИБП. Они обеспечивают стабилизацию напряжения питания в заданном диапазоне и снижают влияние переходных процессов на работоспособность защищаемого оборудования.

Линейно-интерактивные ИБП поддерживают параметры питающего напряжения и синхронно переключают нагрузку на инвертор при его пропадании. В них инвертор включен параллельно электросети, он регулирует и стабилизирует выходное напряжение, одновременно заряжая батареи. Иногда ИБП дополняют автотрансформаторами, что позволяет расширить диапазон регулирования напряжения без перехода на батарею.

Преимущества данной технологии - стабилизация напряжения, меньшее время переключения на батареи и хорошо аппроксимированная синусоидальная форма напряжения на выходе ИБП. Существуют и более дешевые разновидности линейно-интерактивных ИБП со «ступенчатой» синусоидой.


Линейно-интерактивный ИБП: нормальная работа.


Линейно-интерактивный ИБП: аварийный режим.

Линейно-интерактивные ИБП:

Линейно-интерактивные ИБП можно использовать для защиты профессиональных рабочих станций, серверов среднего уровня, коммутаторов, маршрутизаторов и другого сетевого оборудования, но они не подходят для защиты сложного и дорогостоящего оборудования, чувствительного к электромагнитным помехам, колебаниям напряжения питания и нестабильности частоты питания, например, медицинского.

Линейно-интерактивные ИБП не годятся и для защиты непрерывных технологических процессов, а также для построения централизованных систем гарантированного электропитания, где важно обеспечить полную независимость электрических параметров на выходе ИБП от параметров на входе.

Разновидность линейно-интерактивных систем - ИБП с дельта-преобразованием напряжения. Благодаря усовершенствованной обратной связи напряжение на нагрузке у них регулируется плавно, а не ступенчато, обеспечивается стабилизация частоты выходного напряжения.


ИБП с дельта-преобразованием в штатном и автономном режимах.

Главное достоинство ИБП с дельта-преобразованием - высокий КПД. Однако достигается он, когда параметры напряжения сети соответствуют номинальным значениям, входной импеданс нагрузки имеет только активную составляющую, а сам ИБП нагружен на полную мощность. В противном случае повышается нагрузка на основной и дельта-инвертор, или снижается эффективность использования входного трансформатора, что ухудшает КПД. К тому же эффекту приводит расширение диапазона входных напряжений для нормального режима работы. В итоге, имея преимущество по КПД (2-3%) в идеальных условиях, ИБП с дельта-преобразованием проигрывают линейно-интерактивным в условиях реальных.

ИБП с дельта-преобразованием:


Линейно-интерактивный ИБП APC BR1000G дает на выходе не совсем чистую синусоиду, но такой аппроксимации достаточно для большинства устройств.

Самый технически совершенный класс источников бесперебойного питания - системы с двойным преобразованием - гарантируют выходные электрические характеристики, близкие к идеальным, как по напряжению, так и по частоте. За это приходится платить усложнением и удорожанием конструкции.

Системы с двойным преобразованием обеспечивают очень малое время переключения на работу от батарей и имеют высокие выходные электрические характеристики. Такие ИБП подходят для критически важных приложений, защиты мощных серверов и кластеров, телекоммуникационного оборудования и локальных сетей. Они имеют высокий КПД в режиме двойного преобразования (95-96%) и синусоидальную форму выходного напряжения.

На российском рынке присутствует более двух десятков моделей ИБП с двойным преобразованием. Примерно половина этих устройств предназначена для монтажа в стойку. Технология двойного преобразования позволяет гарантировать максимальную защиту от перебоев в электросети.

В таких ИБП входное переменное напряжение преобразуется выпрямителем в постоянное, а затем инвертором - обратно в переменное. Даже при больших отклонениях входного напряжения ИБП питает нагрузку чистым синусоидальным стабилизированным напряжением. Инвертор включен последовательно с основным источником электроснабжения и всегда находится во включенном состоянии. При пропадании входного напряжения он переходит на питание от батарей.

В обычном режиме при питании от сети электроэнергия поступает через выпрямитель и инвертор, одновременно подзаряжая батареи. В случае пропадания или сбоя питания на входе ИБП инвертер запитывается от аккумуляторных батарей. Переключение происходит без использования статического переключателя, поэтому переход на работу от батарей мгновенен. Статический ключ в данной схеме используется только для перехода на режим автоматического байпаса для питания нагрузки в случае существенного сбоя в работе ИБП.


ИБП с двойным преобразованием отличает надежная защита нагрузки по электропитанию.


ИБП с двойным преобразованием: аварийный режим, питание от батареи.

В ИБП с двойным преобразованием поддерживается точная регулировка напряжения и частоты на выходе ИБП, бесперебойно осуществляется переход в байпас. Ручной байпас можно использовать для обслуживания и «горячей» замены батарей и самого ИБП.

Такие ИБП отличают постоянная стабилизация напряжения и частоты, непрерывность фазы выходного напряжения, отсутствие влияние нагрузки на сеть, полная фильтрация питания. Но есть и отрицательные стороны - сложность конструкции и высокая цена, относительно невысокий КПД. Диапазон мощностей выпускаемых устройств очень широк - от 600 ВА до нескольких сотен кВА.

ИБП с двойным преобразованием:

Краткое сравнение ИБП разных классов


Резервные
Линейно-интерактивные
С двойным преобразованием
Мощность ИБП
менее 1,5 кВА
менее 4 кВА
не ограничена
Режим работы от сети
Стабилизация напряжения
нет
ступенчатая
полная
Стабилизация частоты
нет
Нет
есть
Фильтрация помех
слабая
средняя
максимальная
Батарейный режим
Частота переходов
частая
средняя
редкая
Время перехода на батареи
5-15 мс
2-6 мс
нет
Форма синусоиды
часто трапецеидальная
синусоидальная
синусоидальная
режим «байпас»
нет
нет
есть
гальваническая развязка
Нет
нет
возможна

Между тем отрасль давно нуждалась в более точной классификации ИБП. Согласно стандарту IEC 32040, введены три буквенных обозначения: VFI, VI и VFD.
  • Класс VFI (Voltage & Frequency Independent) - выходные напряжение и частота ИБП не зависят от входных параметров.
  • Класс VI (Voltage Independent) - выходная частота совпадает с входной, напряжение на выходе регулируется в заданных пределах.
  • Класс VFD (Voltage & Frequency Dependent) - выходное напряжение и частота совпадают с входными.
Вот как это соотносится с топологией ИБП:

В классификации учитывается также степень несинусоидальности выходного напряжения ИБП в нормальном (при работе от сети) и автономном режиме (при работе от батарей). Первая буква соответствует характеристике формы напряжения для нормального режима, вторая - для автономного.
  • S соответствует синусоидальному выходному напряжению с коэффициентом нелинейных искажений (КНИ) менее 8% как при линейной, так и при нелинейной нагрузке.
  • X соответствует несинусоидальному сигналу с КНИ более 8% при нелинейной нагрузке.
  • Y соответствует несинусоидальному сигналу при любой нагрузке, КНИ превышает установленные в IEC 61000-2-4 пределы.
Наконец, во внимание принимаются динамические характеристики ИБП - колебания амплитуды выходного напряжения при изменении режима работы и 100% скачкообразном изменении величины нагрузки. Первый символ в этой классификации - колебания выходного напряжения при изменении режима работы ИБП (нормальный, автономный, байпас).

Второй символ характеризует колебания выходного напряжения при 100% изменении линейной нагрузки. Тестирование проводится в нормальном и автономном режимах, выбирается наихудший показатель. Третий символ характеризует колебания выходного напряжения при 100% изменении нелинейной нагрузки. Конечно, ИБП имеют и другие характеристики, и их немало.

Характеристики ИБП

Перечислим кратко главные характеристики ИБП^
Диапазон изменения входного напряжения, при котором ИБП не переключаются на батареи.
Чем он больше, тем меньше количество переходов на батарею, что увеличивает срок ее службы. Это особенно актуально для электросетей в российских регионах, где нередки «просадки» напряжения.
Изменение выходного напряжения при изменении входного.
ИБП должен обеспечивать выходное напряжение для нормальной работы оборудование. Выход за допустимый диапазон может вызвать сбои в работе оборудования или даже вывести его из строя.
Параметры выходного напряжения при работе от батареи.
Эти параметры определяют качество питания, обеспечиваемое ИБП.
Процесс переключения ИБП на батарею и обратно.
Для защищаемого оборудования все переходные процессы должны быть «незаметны», выполняться быстро и корректно.
Поведение ИБП при перегрузке.
При перегрузке в режиме работы от батарей ИБП выключается, то есть при пропадании напряжения в сети оборудование будет обесточено. Некоторые ИБП обеспечивают индикацию (в том числе звуковую) перегрузки и/или защиту от перегрузки.
Наличие «холодного» старта.
Возможность включить ИБП при отсутствии напряжения в сети может пригодиться, например, если во время длительного пропадания питания нужно на короткое время включить компьютер, или требуется протестировать систему.
Стабилизация частоты питания.
Некоторые виды оборудования требуют стабильной частоты питающего напряжения.
Поддержка программного обеспечения и наличие интерфейса для подключения к ПК.
«Интеллектуальные» ИБП поддерживают программируемое отключение наименее критичных нагрузок в моменты перегрузки. Многие современные ИБП поставляются также со специальными программами, позволяющими сохранять файлы статистики работы устройства.
Выходная мощность, измеряемая в вольт-амперах (ВА) или ваттах (Вт).
Мощность считается одной из основных характеристик. Если суммарная мощность нагрузки будет превышать мощность ИБП, то это может привести к выходу последнего из строя, или постоянным перезагрузкам. Нужно знать, какую мощность потребляет ПК и все подключаемые к нему устройства. Активная мощность ИБП должна быть как минимум на 10-15% больше суммы мощностей блока питания ПК и монитора.
Время автономной работы при питании нагрузки.
Оно определяется емкостью батарей и мощностью подключенного к ИБП оборудования. У большинства офисных ИБП равняется 4-15 минутам.
Срок службы аккумуляторных батарей.
Обычно свинцовые аккумуляторные батареи значительно теряют свою емкость уже через 3-4 года. Срок их эксплуатации зависит от цепи зарядки батареи. В современных ИБП применяются технические решения, продлевающие жизнь батареи и допускающие ее замену. Появляются ИБП малой мощности с десятилетними аккумуляторными батареями емкостью 9–18 А*ч (которые в реальности работают пять-семь лет) вместо пятилетних (которые реально служат три года).
Количество разъемов питания (розеток).
Нужно подсчитать, сколько устройств требуют защиты по питанию. Наряду с разъемами бесперебойного питания в ИБП часто имеются дополнительные розетки просто с защитой от скачков напряжения. Учитывайте тип розеток - евро (CEE 7/4) или компьютерные (C-13 или C-14).
Индикация режима работы.
ИБП способны не только подавать звуковые сигналы в случае переключения режима, но и выдавать информацию с помощью светодиодов или выводить ее на ЖК-экран, где могут отображаться до 20 различных состояний, а также дополняются средствами управления (например, через SNMP). Некоторые модели способны информировать о необходимости замены батареи.
Форма напряжения на выходе.
Форма выходного напряжения может быть синусоидальной или аппроксимированной. Блоки питания ПК с активным PFC «плохо дружат» с ИБП, у которых ступенчатая аппроксимация синусоиды. С другой стороны, инвертор синусоидального сигнала более сложен, имеет более низкий КПД.
AVR
ИБП с хорошей работой автоматического регулятора напряжения (AVR) нужны тем, у кого напряжение в сети нестабильно.
Фильтр питания.
Правильный фильтр питания состоит из четырех конденсаторов и двух дросселей, в фильтре попроще дроссели заменяются на резистор или специальные перемычки. В некоторых ИБП нет фильтра - они снабжаются только варисторным ограничителем. Хотя для современной техники фильтр не является необходимостью, если его нет, то стоит внимательнее присмотреться выбираемой модели. Возможно, производитель экономит не только на фильтре.
Акустический шум.
Все ИБП издают шум при работе от батареи, но некоторые еще и при зарядке батарей. В общем случае лучше выбрать ИБП без вентилятора, если он не будет устанавливаться в серверной комнате.
Зарядка батареи.
Зарядная схема ИБП должна обеспечить оптимально быструю зарядку батареи до нужного напряжения. Однако слишком быстрая зарядка, как и зарядка до повышенного напряжения приводит к преждевременному износу батареи, а медленная не обеспечивает своевременной повторной готовности ИБП.

Некоторые блоки питания ПК используют функцию активной коррекции коэффициента мощности (PFC) и не всегда корректно работают с приближенной, не «чистой» синусоидой питания. Это может приводить к периодической перезагрузке системы.

Мощность ИБП может указываться в вольт-амперах (ВА) или в ваттах (Вт). ВА представляет максимальную теоретическую мощность на выходе ИБП, однако доступная мощность в Вт меньше - 60% от номинала в ВА. То есть ИБП на 1000 ВА соответствует ИБП на 600 Вт.

Не стоит перегружать ИБП. Например, для защиты нагрузки в 300 Вт лучше применять ИБП на 400-600 Вт. Такой вариант надежнее и обеспечивает большее время автономной работы. Учтите также, что емкость батареи со временем падает. И не подключайте к ИБП оборудование с пиковым потреблением мощности, способное вызвать перегрузку источника питания, такое как лазерные принтеры. Некоторые ИБП имеют защиту от перегрузки.

Задача электропитания при длительном отсутствии напряжения обычно решается с помощью установки бензиновых или дизельных генераторов. Но зачастую шум, выхлопные газы, необходимость периодического обслуживания, а также высокие требования к качеству электропитания делают использование генератора неприемлемым. В таких случаях рекомендуется применение специализированных ИБП с внешним батарейным комплектом большой емкости.

Под защитой ИБП

Перебои в работе информационных систем нередко ведут к большим финансовым убыткам, поэтому приходится принимать во внимание угрозу некачественного электроснабжения, возможные перебои и даже долговременное отключение электропитания.

В мире более 40% проданных систем бесперебойного питания используется для защиты серверов, систем хранения данных, сетевого оборудования. Около 60% потребления ИБП приходится на локальные сети, телекоммуникации и ЦОД, значительное количество применяется в промышленности, поскольку многие производственные процессы требуют качественного энергообеспечения.

Около четверти мировых продаж ИБП приходится на устройства мощностью менее 1 кВА, и примерно половина продаж - на устройства мощностью до 5 кВА. Обычно их используют для защиты ПК и серверов начального уровня. В России свои ПК с помощью ИБП защищают не более 15% пользователей - большинство довольствуются сетевым фильтром.

Увеличение популярности ноутбуков также спросу на ИБП не способствует, однако серверы любого класса и сетевое оборудование, учрежденческие АТС все же нуждаются в подобной защите.

В отличие от мощных ИБП (свыше 20 кВА), жизненный цикл которых достигает 20 лет, маломощные источники питания рассчитаны на пятилетний срок службы, однако сменный блок аккумуляторов (самой недолговечной части устройства) позволяет продлить их эксплуатацию.

В небольших офисах обычно используются резервные или линейно-интерактивные ИБП. Последние относительно недороги, обладают приемлемой функциональностью и достаточным классом защиты. Более половины производителей выпускают ИБП малой и даже средней мощности в Юго-Восточной Азии по OEM-контрактам.

Для недорогих «простых» ИБП тенденцией развития стало приближение их по функциональности и эффективности (таким как ремонтный байпас для «горячей» замены или ремонта оборудования, управляемые розетки и расширенная комплектация) к «большим» ИБП.

При выборе ИБП нужно учитывать сроки гарантии на само устройство и его компоненты, например, аккумуляторы. Отдавайте предпочтение известным производителям, которые специализируются на изготовлении подобного оборудования. Определитесь с максимальным количеством и типом розеток для подключаемых устройств. В тех случаях, когда помимо периодического отключения электричества существуют проблемы параметрами электропитания, необходимо устанавливать линейно-интерактивные устройства.

В общем случае не следует гнаться за временем работы от АКБ, оно составляет обычно до 5 минут при 100% нагрузке. Лучше выбрать модель с дополнительными батарейными модулями или купить генератор. Это дешевле, чем тратится на герметичные необслуживаемые АКБ.

Источники бесперебойного питания берегут компьютерную технику от сбоев в электрической сети. Хороший ИБП надежно защитит электронные устройства от перегрузок, позволит сохранить все данные и корректно завершить работу системы при аварии в электросети. Лучше не экономить на цене устройства, и купить как минимум линейно-интерактивный ИБП, а для защиты критичных систем использовать ИБП с двойным преобразованием.

ИБП в ЦОД

Перебои в работе ЦОД наносят серьезный урон их клиентам и имиджу самих компаний. Поэтому владельцам важно находить эффективные решения для повышения надежности электропитания своих дата-центров. Мировые производители систем бесперебойного питания для дата-центров предлагают свои варианты реализации ИБП.

Какие основные требования предъявляются к «ИБП для ЦОД»? Это высокая надежность (с учетом времени восстановления системы, т.е. важен не параметр MTBF, а коэффициент готовности); высокий КПД при неполной нагрузке (50-80%), что непосредственно отражается на тепловыделении и экономичности оборудования; поддержку параллельной работы с наращиванием мощности или повышением степени резервирования; масштабируемость; высокий входной и выходной коэффициент мощности и малый коэффициент гармонических искажений входного тока, что особенно важно при организации резервного питания от ДГУ.

Другие важные факторы - компактность систем, поддержка параллельной работы, низкое тепловыделение, интеллектуальная система управления зарядом АКБ, простое техническое обслуживание и поддержка, усовершенствованные возможности выключения серверов (есть версии ПО, позволяющие осуществлять корректное завершение работы виртуальных машин), средства управления/мониторинга, в том числе дистанционного, возможность простого и интуитивно понятного переключения на внешний байпас с защитой от неверных действий персонала, хорошая поддержка со стороны производителя оборудования.

При отсутствии системы резервного электропитания от ДГУ увеличить время автономной работы можно за счет внешних аккумуляторных шкафов. В числе обязательных функций ИБП старшего класса - интеллектуальные системы управления зарядом АКБ, средства оповещения оборудования о низком заряде аккумуляторных батарей. Применение в ЦОД энергоэффективных ИБП помогает снизить потребление электроэнергии, при этом мощность и надежность источников бесперебойного питания остаются неизменными.

ИБП с двойным преобразованием обеспечивают наивысшую степень защиты от различных сбоев в электросети, так как ИТ-системы полностью ограждены от воздействия электросети и запитываются от ИБП напрямую. При использовании такого ИБП оборудование защищено от проблем, связанных с перепадами напряжения, исчезновения питания и другими возможными сбоями электросети. По этой причине ИБП с двойным преобразованием используются для обеспечения питания серверов, чувствительного к состоянию сети оборудования и других критичных устройств, от которых зависит функционирование ЦОД. Кроме того, ИБП с двойным преобразованием имеют большой арсенал функций, а также гибкие возможности масштабируемости.

FSP Group уже некоторое время назад уловила тренды растущего рынка ЦОД и начала выпуск специализированного оборудования, которое призвано снабдить провайдеров телеком-услуг необходимыми источниками энергии. Источники бесперебойного питания с двойным преобразованием серии CUSTOS 9X компании FSP перекрывают диапазон мощностей от 1K до 10K.


ИБП с двойным преобразованием FSP Custos 9X+ 10K.

Например, ИБП Custos 9X+ 10K имеет следующие особенности конструкции:

  • Выходной коэффициент мощности 0,9
  • Информативный и понятный ЖК-дисплей сменной ориентации
  • Исполнение Rack/Tower
  • Программируемые выходы
  • Режим преобразования частоты 50/60Гц
  • Режимы энергосбережения ECO и Advanced ECO
  • Функция экстренного отключения питания (EPO)
В комплект поставки с ИБП входит программное обеспечение ViewPower с поддержкой русского языка, которое позволяет удаленно контролировать параметры работы источников бесперебойного питания, устанавливать график включения и отключения, а также получать уведомления о тревожных событиях по почте или SMS.

ИБП с двойным преобразователем напряжения серии FSP Custos 9X+ могут быть использованы в комплекте с дополнительными батарейными блоками, есть возможность горячей замены источников питания.

Именно эти ИБП применяет для обеспечения бесперебойной работы оборудования в своем ЦОД