Фар фазированная антенная решетка. Как происходит фазирование

Возбуждения каждого излучающего элемента антенной решётки. Отличие фазированной антенной решётки заключается в том, что амплитудно-фазовое распределение не является фиксированным, оно может регулироваться (управляемо изменяться) при эксплуатации . Благодаря этому можно перемещать луч (главный лепесток диаграммы направленности) антенной решётки в определённом секторе пространства (антенная решётка с электрическим сканированием луча как альтернатива антенне с механическим сканированием, то есть альтернатива механически вращающейся антенне ) или изменять форму диаграммы направленности.

Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и вычислительной техники обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиотехнических систем. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Энциклопедичный YouTube

    1 / 4

    ✪ Диаграмма направленности диполя

    ✪ Phased Array Antenna Beam Steering Animation (Beamforming)

    ✪ Видеоурок CADFEM VL1306 - Обзор возможностей ANSYS HFSS для анализа антенных решёток ч.2

    ✪ Beamforming by Phased Array Antennas

    Субтитры

Преимущества

    Антенная решётка из N излучающих элементов позволяет увеличить приблизительно в N раз коэффициент направленного действия (КНД) и, следовательно, коэффициент усиления антенны по сравнению с одиночным излучателем, а также сузить луч для повышения помехозащищенности, разрешающей способности по угловым координатам, точности пеленгации источников радиоизлучения в радиолокации и радионавигации .

  • В антенной решётке возможно увеличение электрической прочности по сравнению с апертурной антенной, оснащённой одиночным облучателем.
  • Важным преимуществом ФАР является возможность быстрого обзора (сканирования) пространства за счёт «качания» луча диаграммы направленности электрическими методами (по сравнению с антеннами с механическим сканированием луча). Такая ФАР является антенной с электрическим сканированием луча .
  • Функциональные возможности ФАР расширяются при использовании совместно с каждым излучающим элементом активного приёмопередающего модуля [см. Активная фазированная антенная решётка (АФАР)].
  • Имеется ряд конструктивно-технологических преимуществ по сравнению с другими классами антенн. Например, улучшаются массогабаритные характеристики бортовой аппаратуры благодаря использованию антенных решёток в печатном исполнении (выполненных в виде печатных плат). Снижение стоимости больших радиоастрономических телескопов достигается благодаря применению зеркальных антенных решёток.
  • История

    Такие радары не устанавливались на самолётах главным образом из-за их большого веса, поскольку первое поколение технологии фазированных решёток использовало обычную радарную архитектуру. В то время как антенна изменилась, всё остальное ещё оставалось прежним, но были добавлены дополнительные вычислители, чтобы управлять фазовращателями антенны. Это привело к увеличению массы антенны, числа вычислительных модулей, нагрузки на систему электропитания.

    Однако сравнительно высокая стоимость ФАР окупалась теми преимуществами, которые обеспечивало их применение. Фазированные антенные решётки могли в единственной антенне совместить работу нескольких антенн, почти одновременно. Широкие лучи могли использоваться для поиска цели, узкие - для сопровождения, плоские лучи в форме веера для определения высоты, узкие направленные лучи для полёта по ландшафту (B-1B , Су-34). Во враждебной зоне электронного противодействия выгода становится ещё больше, так как ФАР позволяют системе размещать «ноль» диаграммы направленности антенны (то есть область, где антенна не чувствительна к электромагнитному излучению, «слепа») в направлении источника помех и таким образом блокировать их попадание в приёмник. Другое преимущество - отказ от механического поворота антенны при сканировании луча, что повышает скорость обзора пространства на порядки, а также увеличивает срок службы системы, так как с введением фазирования частично отпала потребность в громоздких механизмах ориентации антенного полотна в пространстве. ФАР, состоящая из трёх-четырёх плоских полотен, может обеспечить круговой обзор пространства, вплоть до всей верхней полусферы.

    Эта технология также предоставляла менее очевидные выгоды. Она могла быстро «осмотреть» маленький участок неба, чтобы увеличить вероятность обнаружения маленькой и скоростной цели, в отличие от медленно вращающейся антенны, которая может сканировать специфический сектор только однажды за оборот (обычно период обзора РЛС с вращающейся по азимуту антенной составляет от 5 до 20 секунд). Цель с малой эффективной площадью рассеяния (ЭПР) (например, низко летящую крылатую ракету) почти невозможно засечь вращающейся антенной. Способность фазированной решётки к почти мгновенному изменению направления и формы луча фактически добавляют целое новое измерение к сопровождению целей, поскольку разные цели могут быть отслежены разными лучами, каждый из которых переплетается во времени с периодически сканирующим лучом обзора пространства. Например, луч обзора пространства может охватывать 360 градусов периодически, тогда как сопровождающие лучи могут следить за индивидуальными целями независимо от того, куда в это время направлен луч обзора пространства.

    Применение ФАР имеет ограничения. Одно из них - размеры сектора пространства, в пределах которого возможно сканирование луча без существенного ухудшения других показателей качества работы ФАР. Практически для плоской ФАР предел составляет 45-60 градусов от геометрической нормали к антенному полотну. Отклонение луча на большие углы значительно ухудшает основные характеристики антенной системы (УБЛ, КНД, ширину и форму основного лепестка диаграммы направленности). Это объясняется двумя эффектами. Первый из них - уменьшение эффективной площади антенны (апертуры) с ростом угла отклонения луча. В свою очередь, сокращение длины решётки в сочетании со снижением коэффициента усиления антенны уменьшает способность обнаружения цели на расстоянии.

    Наибольшими возможностями управления характеристиками обладают активные ФАР , в которых к каждому излучателю или модулю подключён управляемый по фазе (иногда и по амплитуде) передатчик или приёмник. Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т. п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

    В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

    Структура ФАР

    Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения. Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

    В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов:

    • вдоль линии (прямой или дуги);
    • по поверхности (например, плоской - в т. н. плоских ФАР; цилиндрической; сферической)
    • в заданном объёме (объёмные ФАР).

    Иногда форма излучающей поверхности ФАР - раскрыва, определяется конфигурацией объекта, на котором устанавливается ФАР. ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне) до направления вдоль раскрыва (как в антенне бегущей волны). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах - вплоть до 4 стерадиан без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

    По способу изменения фазовых сдвигов различают ФАР:

    • с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода;
    • частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями или дисперсии волн в радиоволноводе;
    • с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей , управляемых электрическими сигналами с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

    Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка микросекунд и потерями мощности ~ 20 %). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных - каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

    Помехозащищённость

    Помехозащищённость системы зависит от уровня боковых лепестков антенны и возможности подстройки (адаптации) его по помеховой обстановке. Антенная решётка - необходимое звено для создания такого динамического пространственно-временного фильтра, или просто для уменьшения УБЛ . Одной из важнейших задач современной бортовой радиоэлектроники является создание комплексированной системы, совмещающей несколько функций, например радионавигации , РЛС , связи и т. д. Возникает необходимость создания антенной решётки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещённой) и имеющей различные характеристики.

    Классификация

    Антенные решётки могут быть классифицированы по следующим основным признакам:

    • Геометрия расположения излучателей в пространстве:
      • линейные
      • дуговые
      • кольцевые
      • плоские
        • с прямоугольной сеткой размещения
        • с косоугольной сеткой размещения
      • выпуклые
        • цилиндрические
        • конические
        • сферические
      • пространственные
    • Способ возбуждения:
      • с последовательным питанием
      • с параллельным питанием
      • с комбинированным (последовательно-параллельным)
      • с пространственным (оптическим, «эфирным») способом возбуждения
    • закономерность размещения излучающих элементов в самой решётке
      • эквидистантное размещение
      • неэквидистантное размещение
    • Способ обработки сигнала
    • Амплитудо-фазовое распределение токов (поля) по решётке
    • Тип излучателей

    Обработка сигнала

    В питающем антенную решётку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решётке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности . Такие решётки называют фазированными антенными решётками (ФАР). Если к каждому излучателю ФАР, или к группе подключается усилитель мощности, генератор сигналов , или преобразователь частоты , то такие решётки называются активными фазированными антенными решётками (АФАР).

    Адаптивные АР

    Приёмные антенные решётки с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называют адаптивными . Приёмные антенные решётки с обработкой сигнала методами когерентной оптики называются радиооптическими . Приёмные антенные решётки, в которых обработка ведётся цифровыми процессорами, называются цифровыми антенными решётками .

    Совмещённые антенные решётки

    Совмещённые антенные решётки имеют в своём раскрыве два, или более типа излучателей, каждый из которых работает в своём

Активные фазированные антенные решетки (АФАР) уже в течении ряда лет применяются в различных РЛС наземного базирования. Целесообразность использования АФАР для бортовых РЛС требует убедительных обоснований, так как замена существующих бортовых фазированных антенных решеток на активные приводит к существенному увеличению стоимости антенных систем, что должно быть оправдано расширением функциональных возможностей, улучшением характеристик и параметров АФАР по сравнению с ФАР. Созданные в последнее время приемопередающие модули (ППМ) АФАР, включают фазовращатели, аттенюаторы, усилители, а также возможность управления поляризацией, и позволяют рассматривать построение бортовой АФАР с новых позиций и аргументировать целесообразность перехода к АФАР.

Остановимся на целесообразности использования АФАР для РЛС. На борту летательных аппаратов (ЛА) имеется значительное число антенн различных радиосистем. Поэтому возникла задача о создании ФАР, обеспечивающей совместную работу различных бортовых радиосистем (радиоэлектронной борьбы (РЭБ), опознавания, РЛС, связи, навигации и др.). Такая совмещенная антенна носит в литературе название антенны интегрированного радиокомплекса, многофункциональной антенны или АФАР. Создание подобных бортовых совмещенных систем ФАР пока удалось осуществить только для РЛС и опознавания. Это привело к значительным потерям характеристик, особенно по УБЛ.

Построение совмещенных антенных систем возможно на базе АФАР, так как:

в АФАР, в отличии от ФАР, возможно осуществление широкоугольного сканирования с обзором более полусферы; большая надежность системы;

независимая оптимизация характеристик в режиме передачи и приема, а также в помеховой обстановке, благодаря наличию в каждом элементе решетки ППМ с фазовращателем и аттенюатором;

осуществление формирования нескольких независимых управляемых лучей с потерей усиления и без потери усиления при использовании одной излучающей поверхности или различных ее частей в режиме приема и передачи;

наличие в ППМ возможности управления поляризацией излучателей в ФАР и устройств коммутации позволяет реализовать конформные антенные решетки с широкоугольным сканированием;

построение выпуклой АФАР позволяет сделать антенну более широкополосной;

реализация АФАР в виде конформной антенной решетки позволяет использовать поверхность

Одновременно отметим трудности и недостатки, связанные с применением АФАР:

резко возрастает стоимость антенны;

низкий КПД -25%, в отличии от электровакуумных электронных приборов - КПД -50%;

конструктивные трудности, связанные с теплоотводом и размещением модулей, их соединительной системы возбуждения и линий управления, насчитывающих тысячи проводников;

необходимость значительных разработок по метрологическому обеспечению для определения входных и выходных характеристик ППМ, частотных зависимостей электрических длин ППМ;

значительно больший разброс параметров в модулях, состоящих из излучателей, ППМ и устройств возбуждения;

дополнительные внеполосные и побочные излучения в силу разброса характеристик различных усилителей , которыми будут обладать характеристики излучаемых сигналов;

частичная корреляция шумов в отдельных усилителях в режиме приема, что может ухудшить шумовые свойства системы .

Отмеченные недостатки требуют специальной проработки. Для этого необходимо знать параметры отдельных модулей с допусками.

Рис. 5.1. Вариант построения МБАФАР под обтекателем с плоской ФАР радиусом и двумя дополнительными плоскими решетками (450 мм)

Целью настоящей работы является поиск путей построения многофункциональной бортовой активной фазированной антенной решетки (МБАФАР) для перспективного самолета пятого поколения, обеспечение максимального усиления и выявление возможности совмещения систем опознавания,

связи, навигации и РЛС. Ранее рассмотрен возможный вариант построения антенны, состоящей из одной большой ФАР и двух дополнительных ФАР (рис. 5.1). Такое размещение связано с дальностью действия и сектором обзора (рис. 5.2).

Многофункциональная бортовая АФАР должна иметь следующие характеристики:

желаемый сектор сканирования ±135° в угломестной плоскости и 360° в азимутальной плоскости;

рабочий диапазон - 8-10,5 ГГц (диапазон работы ППМ);

диаметр решетки в носовой части - 760 мм;

диаметр боковых решеток - 450 мм (в варианте рис. 5.1);

требуемая дальность и сектор обзора показаны на рис. 5.2.

Рис. 5. 2. Требования к МБАФАР по дальности действия и сектору обзора в плоскости поверхности Земли


Фазированная антенная решётка (ФАР), фазированная решётка, антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при весьма разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) ФАР (например, остронаправленную ДН – луч); изменять направление луча неподвижной ФАР и т. о. осуществлять быстрое, в ряде случаев практически безынерционное, сканирование – качание луча (см., например, Сканирование в радиолокации); управлять в определённых пределах формой ДН – изменять ширину луча, интенсивность (уровни) боковых лепестков и т.п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей). Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и ЭВМ обусловили их перспективность и широкое использование в радиосвязи , радиолокации , радионавигации , радиоастрономии и т.д. ФАР, содержащие большое число управляемых элементов (иногда 10 4 и более), входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Структура ФАР. Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения (рис. 1 ). Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы , часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов , щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны . Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов: вдоль линии (прямой или дуги); по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической) или в заданном объёме (объёмные ФАР). Иногда форма излучающей поверхности ФАР – раскрыва (см. Излучение и приём радиоволн ), определяется конфигурацией объекта, на котором устанавливается ФАР (например, формой ИСЗ). ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне ) до направления вдоль раскрыва (как в бегущей волны антенне ). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – вплоть до 4(стер ) без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

Управление фазовыми сдвигами. По способу изменения фазовых сдвигов различают ФАР с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода (рис. 2 , а); частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями (рис. 2, б) или дисперсии волн в радиоволноводе; с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей , управляемых электрическими сигналами (рис. 2 , в) с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка мксек и потерями мощности 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Особенности построения ФАР. Возбуждение излучателей ФАР (рис. 3 ) производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие возбуждение всех излучателей от нескольких входов, что позволяет создать в пространстве соответствующие этим входам одновременно сканирующие лучи (в многолучевых ФАР). Квазиоптические ФАР в основном бывают двух типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат несколько облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные выше ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник (рис. 4 ). Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т.п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Перспективы развития ФАР. К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп ), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления

ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.

Лит.: Вендик О. Г., Антенны с немеханическим движением луча, М., 1965; Сканирующие антенные системы СВЧ, пер. с англ., т. 1–3, М., 1966–71.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Электронное управление лучом превращает антенну в активное средство обработки сигналов. Наиболее распространенная форма такой антенны - фазированная антенная решетка (ФАР). Рассматриваются различные способы управления электромагнитными волнами в ФАР, в частности управление с помощью полупроводниковых диодов.

Представим себе высоконаправленную антенну, обеспечивающую связь с искусственным спутником Земли (ИСЗ). Такая антенна имеет остросфокусированный луч, точно направленный на объект связи. Примером такой антенны может служить наземная антенна станции "Орбита", которая использовалась в первых советских системах передачи телевидения и обеспечения многоканальной телефонной связи через ИСЗ. Такая антенна представляет собой параболический рефлектор диаметром порядка десяти метров. Для того чтобы осуществить слежение за объектом связи или радионаблюдения с помощью такой антенны, необходимо поворачивать всю эту довольно тяжелую механическую систему.

Очевидно, что во многих случаях нужна антенна, у которой направление луча не было бы связано с ориентацией всей антенны как механической конструкции. Нужна антенна с немеханическим движением луча или, другими словами, антенна с электронным сканированием. Под сканированием здесь понимается движение луча антенны, осуществляющее обзор пространства в заданном пространственном угле. Такая антенна нужна не только в системах связи с ИСЗ, но и в системе управления движением в районе большого аэропорта. Особую роль антенны с электронным сканированием играли и продолжают играть в системах противоракетной обороны (ПРО). С начала 90-х годов антенны с электронным сканированием стали объектом внимания автомобильных компаний. В этой связи такие антенны могут стать предметом массового спроса, как цветной телевизор или персональный компьютер . Сложившееся к настоящему времени техническое решение антенны с электронным сканированием представлено в виде решетки, в узлах которой расположены простейшие излучатели электромагнитной волны. Цепи питания этих излучателей организованы так, что излучение, испускаемое каждым излучателем, когерентно с излучением всех излучателей, в то время как фаза излучаемых волн изменяется по заданному закону. Изменение распределения фаз на излучателях позволяет сформировать луч антенны в заданном направлении. Такая решетка излучателей с управляемым распределением фаз волн, излучаемых элементарными излучателями, получила название фазированной антенной решетки (ФАР). Таким образом, термины антенна с немеханическим движением луча, антенна с электронным сканированием или фазированная антенная решетка практически являются синонимами.

Идея, что лучом системы когерентных излучателей можно управлять, изменяя распределение фаз на излучателях, была высказана уже давно. Одна из первых антенн с немеханическим управлением диаграммой направленности была построена для трансатлантической радиотелефонной линии связи в 1937 году. Эта антенна, обладая довольно высокой направленностью, позволяла изменять направление приема лучей в вертикальной плоскости и таким путем выбирать направление прихода лучей, наименее ослабленных при отражении от ионосферы. Так как благодаря направленным свойствам антенны осуществлялся прием только одного отраженного луча, то резко уменьшались замирания сигнала. Эта антенна представляла собой систему ромбических антенн, расположенных вдоль прямой на участке длиной около 1,5 км. Управление диаграммой направленности осуществлялось изменением фазовых соотношений между токами в отдельных ромбах. Высокой скорости управления лучом системы ромбических антенн не требовалось. Развитие радиолокации поставило задачу управления диаграммой направленности антенны в течение интервалов времени, измеряемых вначале миллисекундами, а затем микросекундами и даже долями микросекунды.

Насколько можно судить по известным публикациям, первая антенна с электронным сканированием для применения в радиолокации была осуществлена в Ленинградском электротехническом институте (ЛЭТИ) в 1955 году в группе под руководством проф. Ю.Я. Юрова (1914-1955). В основу принципа действия антенны было положено управление фазами волн в нескольких излучателях антенны с помощью фазовращателей, содержащих ферритовые элементы. Как раз в те годы в электронике различных частот началось широкое применение ферритов - железосодержащих окислов металлов, которые являются диэлектриками, но обладают магнитными свойствами, близкими к свойствам железа. Работы по радиолокационному использованию антенн с электронным сканированием велись и в США. Первая публикация о фазовращателе на основе феррита, предназначенном для применения в антенне с электронным сканированием, появилась в конце 1954 года, а публикации по самой антенне - в 1956-1957 годах.

Проблема разработки антенны с электронным сканированием слагается из двух составных частей:

  • 1) выбор числа излучателей и конфигурации их размещения;
  • 2) разработка фазовращателей, управляющих фазой электромагнитной волны в излучателях.

макет антенны, разработанной в 1954-1955 годах и испытанной в июне 1955 года. Антенна представляла собой решетку из четырех диэлектрических излучателей, сверхвысокочастотная (СВЧ) волна к которым подается через фазовращатели, представляющие собой отрезки прямоугольных волноводов, частично заполненных ферритом. Ферритовые вкладыши находятся в переменном поле электромагнитов. Внешнее магнитное поле изменяет магнитную проницаемость феррита. Изменение магнитной проницаемости среды, в которой распространяется волна, изменяет фазовую скорость волны, в результате возникает требуемый фазовый сдвиг.

Как устроена антенна с электронным сканированием Следует различать антенны с

  • одномерным
  • двумерным сканированием

или, другими словами, антенны с движением луча в одной плоскости и антенны с движением луча в двух плоскостях. Антенны с одномерным сканированием нужны при работе с объектами, лежащими в одной плоскости. Примером может служить антенна радиолокатора, обеспечивающего управление движением в акватории морского порта, где все объекты, с которыми устанавливается связь или за которыми ведется наблюдение, находятся на водной поверхности. Иначе обстоит дело при обеспечении связи с искусственным спутником Земли или при управлении движением в районе большого аэропорта. В этих случаях направления на объекты, с которыми устанавливается связь или за которыми ведется наблюдение, могут находиться под разными углами как в горизонтальной, так и в вертикальной плоскости, поэтому луч антенны должен перемещаться в двух плоскостях.

С одномерным сканированием. Антенна представляет собой линейку излучателей, которые на рисунке схематически представлены в виде рупорных излучателей. Вход антенны представлен одним волноводом или коаксиальным кабелем, который соединяется с приемником, передатчиком или другой радиотехнической системой. Между входом антенны и излучателями расположен делитель мощности, и в цепи питания каждого излучателя включен фазовращатель. Фазовращатели управляются от единого устройства управления (компьютера) и формируют требуемое распределение фаз на излучателях. плоский фазовый фронт, расположенный под углом qk по отношению к плоскости расположения излучателей. Очевидно, что главный луч антенны формируется вдоль нормали по отношению к фазовому фронту волны, заданной излучателями, и, таким образом, главный луч антенны отклонен от оси симметрии антенны также на угол qk . Напомним, что из законов дифракции электромагнитных волн следует, что ширина луча антенны определяется отношением длины волны излучаемых электромагнитных колебаний к размеру антенны: где Dq - ширина луча, l - длина волны, L - размер антенны. Достаточно хорошо направленная антенна должна иметь ширину луча порядка одного углового градуса: Dq = 1. Пусть Dqk = 90, тогда N = 90, то есть конструкция линейки излучателей оказывается достаточно сложной. Рассмотрим антенну в виде решетки излучателей, обеспечивающей электронное сканирование луча в двух плоскостях. Решетка состоит из системы параллельных линеек излучателей, расположенных в одной плоскости. Число излучателей в составе одной линейки назовем числом излучателей в горизонтальной плоскости Nг, а само число линеек - числом излучателей в вертикальной плоскости Nв. Таким образом, общее число излучателей в рассматриваемой решетке

УСТРОЙСТВА ФОРМИРОВАНИЯ ФАЗОВЫХ СДВИГОВ Как было показано выше, в цепи питания каждого излучателя ФАР должно находиться устройство, обеспечивающее требуемый фазовый сдвиг, - фазовращатель. Фазовращатели для ФАР можно разделить на две большие группы:

  • 1) аналоговые фазовращатели, фазовый сдвиг в которых представляет собой непрерывную функцию управляющего воздействия (напряжения или тока);
  • 2) цифровые (дискретные) фазовращатели, фазовый сдвиг в которых задается двоичным кодом:

В основе аналоговых фазовращателей лежит материал, магнитная или диэлектрическая проницаемость которого изменяется под внешним воздействием. Таким материалом может служить феррит, о котором кратко говорилось выше, или сегнетоэлектрик, диэлектрическая проницаемость которого зависит от напряженности электрического поля Дискретность задания фаз хорошо вписывается в структуру команд управляющей ЭВМ, хотя и порождает некоторые ошибки в задании координат луча антенны, а также приводит к незначительному увеличению уровня боковых лепестков диаграммы направленности антенны. Однако при большом числе элементов ФАР возникшие таким путем погрешности усредняются и выходят на уровень, которым можно пренебречь.

Посвященная антеннам. Продолжая тему, хочу рассказать хабраобществу о принципах работы фазированных антенных решеток (ФАР). ФАР нашли широкое применение в радиолокационных комплексах, противоракетной обороне, космической связи; применение в гражданских объектах (коммерческих) затруднено сложностью изготовления и дороговизной. Возможно кто-то заинтересуется тематикой и придумает эффективное применение ФАР для коммерческого применения.

Что это?

ФАР это группа излучателей (фазовращателей, ФВ), в которых относительные фазы сигналов изменяются комплексно по определенному закону так, что эффективное излечение ФАР усиливается в желаемом направлении и подавляется во всех остальных. ФАР это матрица, где элементом матрицы является ФВ, но конечно же ФВ в пространстве могут иметь и другие конфигурации. На рисунке 1 показана РЛС секторного обзора «Имбирь», входит в состав зенитно-ракетного комплекса С300В. Можно увидеть и ФАР, и облучающий рупор.

Рисунок 1.

Как происходит фазирование?

Есть простая формула из курса физики: V = c/sqrt(mu*eps). В этой формуле V – фазовая скорость электромагнитной волны, с c – скорость света в вакууме, mu – магнитная проницаемость, eps – диэлектрическая проницаемость. Из этой формулы видно, что фазовая скорость зависит от мю и эпсилон, и меняя эти величины мы можем вводить задержку ЭМ волны через ФВ. Поэтому ФВ бывают ферритовые (можем менять их магнитную проницаемость) и сегнетоэлектрические (можем менять их диэлектрическую проницаемость). Питание к фазовращателям осуществляется по воздушному тракту (как на рис. 1) или посредством волноводов (например, в малогабаритных зенитно-ракетных комплексах, рис. 2).



Рисунок 2. ЗРК «Тор».

Схема ФАР на рис. 4 : антенна представляет собой линейку излучателей, между разделителем мощности и излучателями включены ФВ. Ферритовый ФВ представляет собой аналоговый феррит цилиндрической формы, на который намотаны обмотки управления. Изменяя ток в обмотках управления (задается блоком управления ФВ) изменяется магнитная проницаемость и соответственно фазовая скорость ЭМ волны в ФВ. Таким образом, последовательно изменяя уровень сигнала управления в обмотках процесс формирования волнового фронта может представлен как показано на рисунке 3, 4 (одномерный случай). Можно провести аналогию с камешками, которые последовательно кидаем в воду. Еще одной аналогией работы ФАР может служить линза. На рисунке 5 показано изменение формы волнового фронта с помощью линзы .


Рисунок 3. Формирование волнового фронта.



Рисунок 4. Схема ФАР.


Рисунок 5.


Рисунок 6. Типичная диаграмма направленности.

Электрическое сканирование обеспечивает создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР .