Где находятся устройства внешней памяти компьютера. Долговременная память компьютера. Запоминающие устройства

Внешняя память

Внешняя память - это память, реализованная в виде внешних (относительно материнской платы) запоминающих устройств (ВЗУ) с разными принципами хранения информации.

ВЗУ предназначены для долговременного хранения информации любого вида и характеризуются большим объемом памяти и низким по сравнению с ОЗУ быстродействием.

Под внешней памятью компьютера подразумевают обычно как устройства для чтения / записи информации - накопители , так и устройства, где непосредственно хранится информация - носители информации.

Как правило, для каждого носителя информации существует свой накопитель. А такое устройство как винчестер, совмещает в себе и носитель, и накопитель.

Носителями информации во внешней памяти современных компьютеров являются магнитные и оптические диски, магнитные ленты и некоторые другие.

Основными типами устройств внешней (долговременной) памяти по способу записи являются:

В персональных компьютерах к устройствам внешней памяти относятся:

  • Накопители на гибких магнитных дисках, предназначенные для чтения / записи информации на гибкие диски (дискеты);
  • Накопители на жестких магнитных дисках, или винчестеры;
  • дисководы для работы с лазерными (оптическими) дисками;
  • стримеры, предназначенные для чтения / записи информации на магнитные ленты;
  • Магнито-оптические дисководы для работы с магнито-оптическими дисками;
  • Устройства энергонезависимой памяти (флэш-память).

По типу доступа к информации устройства внешней памяти делятся на два класса:

  • Устройства прямого (произвольного) доступа .
    В устройствах прямого (произвольного) доступа время обращения к информации не зависит от места ее расположения на носителе. Например, чтобы прослушать песню, записанную на грампластинке, достаточно установить звукосниматель проигрывателя в место на пластинке, где записана песня.
  • Устройства последовательного доступа .
    В устройствах последовательного доступа такая зависимость существует. Например, время доступа к песне на аудиокассете зависит от местоположения записи. Для ее прослушивания необходимо предварительно перемотать кассету до того места, где записана песня.

  • Емкость (объем) - максимальное количество информации (объем данных), который можно записать на носитель.
  • Быстродействие определяется временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных.
Емкость внешней памяти в сотни и тысячи раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.
Но обращение к внешней памяти требует гораздо большего времени, так как быстродействие внешней памяти существенно меньше, чем оперативной.

Внутренняя и внешняя память

Память ЭВМ содержит обрабатываемые данные и выполняемые программы, поступающие через устройства ввода-вывода. Память делится на 2 части – внутреннюю и внешнюю.

Внутренняя память – это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый адресацией машины. Внутренняя память делится на оперативную и постоянную.

Внешняя память – предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для внешней памяти используют энергонезависимые носители. Емкость внешней памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем к внутренней.

Основной характеристикой модулей оперативной (внутренней ) памяти является малое время доступа к информации (считывания/записи данных).

Основной функцией внешней памяти ПК является способность долговременно хранить большой объем информации (на накопителях или дисководах).

Физические свойства :

Внутренняя память

– электронная (полупроводниковая) память, устанавливаемая на системной материнской плате или на платах расширения. Это память, построенная на электронных элементах (микросхемах), которая хранит информацию только при наличии электропитания (т.е. энергозависима);

– быстрая память (чтение и запись происходят быстро);

– небольшая по объему (по сравнению с внешней памятью).

Внешняя память

– память, реализованная в виде устройств с различными типами хранения информации и обычно с подвижными носителями;

– энергонезависима;

– медленная (по сравнению с оперативной);

– объем гораздо больше.

Информационная структура внутренней памяти – биты-байты. Во внешней памяти все программы и данные хранятся в виде файлов.

Виды внутренней памяти:

По способам хранения информации внутренняя память делится на несколько видов:

1. ОЗУ (Оперативная память) – см. ниже.

2. ПЗУ (BIOS) – см. ниже.

3. ППЗУ (Flash) – перепрограммируемое запоминающее устройство, способное длительно хранить информацию. Конструкция как у ПЗУ, только можно перепрограммировать. Применяется в CMOS, сотовых телефонах, пейджерах и т.п. Эта память энергонезависима.

1. Оперативная память (ОЗУ, RAM)

Этот уровень памяти подобен кратковременной памяти человека. В оперативке на стадии выполнения могут одновременно находится несколько программ. Кроме того, в оперативке могут находиться как обрабатываемые, так и уже обработанные программой данные. По объему оперативная память составляет большую часть внутренней памяти. Объем установленной в компьютере оперативки определяет, с каким программным обеспечением можно на нем работать. При недостаточном объеме оперативки многие программы либо не будут работать совсем, либо будут работать очень медленно.

Оперативная память – это последовательность специальных электронных ячеек, каждая из которых может хранить конкретную комбинацию из нулей и единиц – один байт. Эти ячейки нумеруются порядковыми номерами, начиная с нуля. Номер ячейки называется адресом того байта, который записан в ней в данный момент. Адрес физической ячейки – всегда один и тот же, а содержимое может меняться от 0 до 255 (в десятичном представлении). Содержимое каждого байта памяти может обрабатываться независимым от остальных байтов образом. Указав адрес байта, можно прочитать код, который в нем записан или записать в этот байт другой код. Поэтому оперативку называют еще памятью с прямым или произвольным доступом и обозначают RAM (ОЗУ – оперативное запоминающее устройство). Максимально возможный объем оперативки, который называется адресным пространством, и объем памяти, фактически присутствующий в ЭВМ являются важнейшими характеристиками компьютера в целом. Стандартным для современных компьютеров общего назначения считается объем оперативки 32 – 64 Мб, а во многих случаях рекомендуется 128 – 256 Мб. Последние на сегодняшний день модели компьютеров имеют теоретический предел оперативки 64 Гб.

Особенностью ОЗУ является способность хранить информацию только во время работы машины. Когда вы включаете компьютер, в оперативную память заносятся цепочки байтов, в которых хранится ОС. Далее, туда заносятся различные прикладные программы и данные. Содержимое многих ячеек памяти постоянно изменяется в процессе работы программ. Оперативная память – это черновик, где временно записываются программы, данные и результаты обработки. После загрузки новой программы, прежнее содержимое ОЗУ замещается новым, а после выключения компьютера пропадает вовсе, т.е. оперативная память энергозависима . Особенностью оперативки также является высокая стоимость.

Физически оперативная память выполняется в виде плат, на которых размещаются микросхемы. Плата – прямоугольная пластина стандартных размеров из специального материала, на которой размещаются разъемы для крепления микросхем, а также выполняется монтаж электронных схем питания микросхем и их подсоединения к остальным компонентам компьютера. При наращивании, расширении оперативки приходится учитывать тип уже установленных модулей.

Разновидности ОЗУ:

Современные полупроводниковые микросхемы ОЗУ бывают двух видов: статические и динамические .

Базовым элементом статической памяти служит триггер . Одно из его устойчивых состояний принято за логический 0, другое – за 1. При отсутствии внешних воздействий эти состояния могут храниться сколь угодно долго.

Динамические элементы памяти этим свойством не обладают. Они представляют собой конденсатор, который в заряженном состоянии соответствует 1, в разряженном – 0. Существенным недостатком является наличие постепенного самопроизвольного разряда, что ведет к потере информации. Чтобы этого не происходило, конденсатор надо периодически подзаряжать. Этот процесс называется регенерацией ОЗУ .

Статическая память гораздо проще в эксплуатации, т.к. не требует регенерации и приближается по скорости к быстродействию процессора. Зато статическая память имеет меньший информационный объем, большую стоимость и сильнее нагревается при работе.

Никакой из этих видов ОЗУ не является идеальным.

Управление оперативной памятью. Память состоит из отдельных элементов, каждый из которых предназначен, для хранения минимальной единицы информации – одного байта. Каждому элементу соответствует уникальный числовой адрес. Первому элементу присвоен адрес 0, второму – 1 и т.д, включая последний элемент, адрес которого определяется общим количеством элементов памяти минус единица. Обычно адрес задается шестнадцатеричным.



Сегменты. Процессор компьютера делит память на блоки, называемые сегментами. Каждый сегмент занимает 64 Кбайт и каждому сегменту соответствует уникальный числовой адрес. Процессор имеет четыре регистра сегмента.

Регистр – это участок сверхоперативной памяти процессора, предназначенной для хранения информации. Процессор использует регистры при выполнении расчетов и сохранении промежуточных результатов. После завершения действий результат должен быть переписан из регистра в ячейки ОЗУ. Регистры сегмента предназначены для хранения адресов отдельных сегментов. Они называются CS (сегмент кода), DS (сегмент данных), SS (сегмент стека) и ES (запасной сегмент). Кроме указанных, процессор имеет еще 9 регистров, а именно – регистры IP (указатель команды) и SP (указатель стека).

Доступ к памяти. Доступ к ячейкам памяти осуществляется посредством соединения содержимого регистра сегмента с содержи­мым того или другого регистра. Таким образом определяется адрес требуемого участка памяти.

2. Постоянная память (ПЗУ, ROM)

Отличается тем, что запись информации в ПЗУ осуществляется только 1 раз на заводе-изготовителе. И в дальнейшем из этой памяти возможно только чтение. Эта память энергонезависима, т.е. при выключении компьютера содержимое памяти не исчезает. Используется для хранения наиболее важных и часто используемых служебных программ, присутствие которых постоянно нужно компьютеру. Обычно это компоненты ОС (программа первоначальной загрузки), программы контроля оборудования.

Базовая система ввода-вывода (Base Input Output System), находящаяся в постоянной памяти (ПЗУ) компьютера содержит программы для проверки оборудования ПК, программы для считывания и передачи управления операционной системе и программы для выполнения базовых (низкоуровневых) операций ввода-вывода с монитором, клавиатурой, дисками и принтером. BIOS играет роль своеобразного толкователя приказов программ для аппаратуры. Программы пользователя и ОС выдают такие приказы, а BIOS доводит их до сведения аппаратуры в виде, понятном ей.

Другие виды внутренней памяти:

4. Кэш-память

Для ускорения доступа к оперативной памяти на быстродействующих компьютерах используется специальная сверхоперативная кэш-память, которая располагается между процессором и оперативкой и хранит копии наиболее часто используемых участков оперативки. При обращении процессора к памяти сначала производится поиск нужных данных в кэш-памяти, поскольку время доступа к кэш-памяти в несколько раз меньше, чем к оперативке. Объем кэш-памяти 128-512 Кб. По структуре и принципу работы не отличается от оперативки, но скорость передачи данных значительно выше. Стоит дороже оперативки. В современных машинах предусматривается несколько уровней кэш-памяти. Кэш-память – это статическая память, которая служит для ускорения доступа к медленной динамической памяти.

5. CMOS-RAM – участок памяти для хранения параметров конфигурации компьютера. Называется так в связи с тем, что эта память выполняется по технологии CMOS, обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера, пароль и т.п. Программа настройки вызывается, если при начальной загрузке компьютера нажать Del.

6. Видеопамять – память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран монитора.

Карта памяти DOS:

Conventional – базовая (стандартная) память; от 0 до 640Кб, т.е. полностью находится в пределах адресуемой памяти. Для использования базовой памяти не нужны дополнительные драйверы. Эта память относится к области пользователя, в ней расположены сама MS-DOS и прикладные программы пользователя. UMB – блоки верхней памяти; часть оперативной памяти, находящаяся между 640Кб и 1Мб (системная область). Эта часть памяти используется видеоадаптером, графикой EGA и BIOS; для прикладных программ MS-DOS она недоступна. При указании общего объема ПК область верхней памяти не учитывается. Специальное программное обеспечение позволяет использовать свободные участки верхней памяти для загрузки резидентных программ и установочных драйверов устройств.

Расширенная память – вся память выше 1024 Кб (1Мб). Она делится на две области: HMA (область высокой памяти, объем равен 64Кб) и дополнительная память XMS. XMS память используют только некоторые утилиты MS-DOS, такие как smartdrive и ramdrive. Для работы с этой памятью нужен специальный драйвер himem.sys.

Отображаемая память (EMS) – память, адресуемая микропроцессорами по спецификации EMS. Для инициализации отображаемой памяти нужен специальный драйвер. До его загрузки ПК не "узнает" об установленной плате расширенной памяти. Драйвер EMS отводит определенную часть верхней памяти для того, чтобы поочередно отображать в нее требуемые участки расширенной памяти. Каждый участок расширенной памяти, отображаемый в данный момент, называется страницей, а "окно" в области UMB, через которое микропроцессор просматривает содержимое страниц расширенной памяти – страничным блоком.

Расширяемая память является результатом появления в среде MS-DOS устойчивых традиций использования страничной памяти. При этом подходе большой раздел памяти, который лежит вне адресного пространства процессора, "отображается" малыми областями на многие маленькие разделы памяти, лежащие внутри адресного пространства процессора. В то время как процессор не может адресовать большой раздел памяти непосредственно, он может выбрать или дойти до любой конкретной части, подобно выбору страницы в книге.

В спецификации расширяемой памяти MS-DOS или EMS большая физическая память отображается в 16-килобайтные разделы памяти MS-DOS, называемые страницами. Соответствующее 16-килобайтное адресное пространство в памяти MS-DOS называется страничным блоком. Количество поддерживаемых страничных блоков и размещение их внутри системы MS-DOS изменяется в зависимости от типа платы используемой расширяемой памяти, и существующей конфигурации системы.

Himem.sys

Обеспечивает стандарт XMS для доступа к верхней памяти. Для того, чтобы установить этот драйвер достаточно команды в config.sys: device = c:\путь\himem.sys. DOS = HIGH устанавливают вместе с himem.sys для загрузки ядра MS-DOS в область высокой памяти.

Emm386.exe

Драйвер – диспетчер отображаемой памяти. Он выполняет две основные функции: 1) использует память XMS поставляемую himem.sys для работы отображаемой памяти. 2) обеспечивает программам DOS доступ к страшим адресам памяти UMB.

Для того чтобы загрузить драйвер emm386 достаточно поместить в config.sys 2 команды:

device = c:\путь\himem.sys и device = c:\путь\emm386.exe ram.

Без первой команды вторая работать не будет. Параметр RAM указывает сегментные адреса блоков UMB. Если RAM без адресов, то emm самостоятельно определит адреса для UMB и страничный блок EMS.

Внешняя память

Внешняя память – место длительного хранения данных, не используемых в данный момент в оперативке. Этот уровень памяти похож на вспомогательные средства, используемые человеком для долговременного хранения важных сведений (записные книжки, справочники, фотоальбомы, звуко- и видеозаписи). Эти носители информации считаются внешними по отношению к внутренней памяти человека.

Внешней памятью называется группа устройств, которые предназначены для долговременного хранения больших массивов информации – программ и данных. Во внешней памяти данные могут храниться годами, пока не потребуются.

Программа, находящаяся во внешней памяти, не может в ней выполняться , а данные не могут быть обработаны. В этом и состоит главное отличие внешней памяти от оперативки. Во внешней памяти программы и данные хранятся в «нерабочем состоянии», в оперативной – программы и данные хранятся только во время выполнения. Для того, чтобы выполнить программу с внешней памяти, ее сначала нужно найти на внешнем устройстве и перенести в оперативную память, где она сможет выполниться.

Перенос программы из внешней памяти в оперативную называется загрузкой программы , а инициирование (начало) ее выполнения называют запуском программы .

Важной особенностью внешней памяти является ее энергонезависимость. Кроме того, внешняя память гораздо меньше стоит и имеет значительно больший объем по сравнению с оперативной. Зато скорость передачи данных с внешними запоминающими устройствами значительно меньше.

Необходимость во внешних устройствах хранения данных возникает в двух случаях:

Когда на вычислительной машине обрабатывается больше данных, чем можно разместить на базовом жестком диске;

Когда данные имеют повышенную ценность и нужно выполнять регулярное резервное копирование на внешнее устройство.

Для работы с внешней памятью необходимо наличие накопителя (устройства обеспечивающего считывание и запись информации) и носителя (устройства хранения информации).

Внешние запоминающие устройства по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах).

В настоящее время в качестве внешней памяти в основном используются гибкие магнитные, жесткие магнитные, оптические и магнитооптические диски . Использование магнитных лент стремительно устаревает.

Основные накопители и носители:


Изучив эту тему, вы узнаете:

Что такое память компьютера и как она соотносится с памятью человека;
- каковы характеристики памяти;
- почему память компьютера разделяется на внутреннюю и внешнюю;
- какова структура и особенности внутренней памяти;
- какие наиболее распространенные типы внешней памяти компьютера существуют и в чем состоит их назначение.

Назначение и основные характеристики памяти

В процессе работы компьютера программы, исходные данные, а также промежуточные и окончательные результаты необходимо где-то хранить и иметь возможность обращаться к ним. Для этого в составе компьютера имеются различные запоминающие устройства, которые называют памятью. Информация, хранящаяся в запоминающем устройстве, представляет собой закодированные с помощью цифр 0 и 1 различные символы (цифры, буквы, знаки), звуки, изображения.

Память компьютера - совокупность устройств для хранения информации.

В процессе развития вычислительной техники люди вольно или невольно пытались по образу и подобию собственной памяти проектировать и создавать различные технические устройства хранения информации. Чтобы лучше понять назначение и возможности различных запоминающих устройств компьютера, можно провести аналогию с тем, как хранится информация в памяти человека.

Может ли человек хранить всю информацию об окружающем мире в своей памяти и нужно ли это ему? Зачем, например, помнить названия всех поселков и деревень вашей области, когда при необходимости вы можете воспользоваться картой местности и найти все, что вас интересует? Нет необходимости помнить и цены железнодорожных билетов на разных направлениях, так как для этого есть справочные службы. А сколько существует всевозможных математических таблиц, где рассчитаны значения некоторых сложных функций! В поисках ответа вы всегда можете обратиться к соответствующему справочнику.

Информация, которую человек постоянно хранит в своей внутренней памяти, характеризуется гораздо меньшим объемом по сравнению с информацией, сосредоточенной в книгах, кинолентах, на видеокассетах, дисках и других материальных носителях. Можно сказать, что материальные носители, используемые для хранения информации, составляют внешнюю память человека. Для того чтобы воспользоваться информацией, хранящейся в этой внешней памяти, человек должен затратить гораздо больше времени, чем если бы она хранилась в его собственной памяти. Этот недостаток компенсируется тем, что внешняя память позволяет сохранять информацию сколь угодно длительное время и использовать ее может множество людей.

Существует еще один способ хранения информации человеком. Только что появившийся на свет малыш уже несет в себе внешние черты и, частично, характер, унаследованный от родителей. Это так называемая генетическая память. Новорожденный многое умеет: дышит, спит, ест... Знаток биологии вспомнит о безусловных рефлексах. Эту разновидность внутренней памяти человека можно назвать постоянной, неизменной.

Подобный принцип разделения памяти использован и в компьютере. Вся компьютерная память поделена на внутреннюю и внешнюю. Аналогично памяти человека, внутренняя память компьютера является быстродействующей, но имеет ограниченный объем. Работа же с внешней памятью требует гораздо большего времени, но она позволяет хранить практически неограниченное количество информации.

Внутренняя память состоит из нескольких частей: оперативной, постоянной и кэш-памяти. Это связано с тем, что используемые процессором программы можно условно разделить на две группы: временного (текущего) и постоянного использования. Программы и данные временного пользования хранятся в оперативной памяти и кэш-памяти только до тех пор, пока включено электропитание компьютера. После его выключения выделенная для них часть внутренней памяти полностью очищается. Другая часть внутренней памяти, называемая постоянной, является энергонезависимой, то есть записанные в нее программы и данные хранятся всегда, независимо от включения или выключения компьютера.

Внешняя память компьютера по аналогии с тем, как человек обычно хранит информацию в книгах, газетах, журналах, на магнитных лентах и пр., тоже может быть организована на различных материальных носителях: на дискетах, на жестких дисках, на магнитных лентах, на лазерных дисках (компакт-дисках).

Классификация видов компьютерной памяти по назначению показана на рисунке 18.1.

Рассмотрим общие для всех видов памяти характеристики и понятия.

Существует две распространенные операции с памятью - считывание (чтение) информации из памяти и запись ее в память для хранения. Для обращения к областям памяти используются адреса.

При считывании порции информации из памяти осуществляется передача ее копии в другое устройство, где с ней производятся определенные действия: числа участвуют в вычислениях, слова используются при создании текста, из звуков создается мелодия и т. д. После считывания информация не исчезает и хранится в той же области памяти до тех пор, пока на ее место не будет записана другая информация.

Рис. 18.1. Виды памяти компьютера

При записи (сохранении) порции информации предыдущие данные, хранящиеся на этом месте, стираются. Вновь записанная информация хранится до тех пор, пока на ее место не будет записана другая.

Операции чтения и записи можно сравнить с известными вам в быту процедурами воспроизведения и записи, выполняемыми с обычным кассетным магнитофоном. Когда вы прослушиваете музыку, то считываете информацию, хранящуюся на ленте. При этом информация на ленте не исчезает. Но после записи нового альбома любимой рок-группы ранее хранившаяся на ленте информация будет затерта и утрачена навсегда.

Чтение (считывание) информации из памяти - процесс получения информации из области памяти по заданному адресу.

Запись (сохранение) информации в памяти - процесс размещения информации в памяти по заданному адресу для хранения.

Способ обращения к устройству памяти для чтения или записи информации получил название доступа. С этим понятием связан такой параметр памяти, как время доступа, или быстродействие памяти - время, необходимое для чтения из памяти либо записи в нее минимальной порции информации. Очевидно, что для числового выражения этого параметра используются единицы измерения времени: миллисекунда, микросекунда, наносекунда.

Время доступа, или быстродействие, памяти - время, необходимое для чтения из памяти либо записи в нее минимальной порции информации.

Важной характеристикой памяти любого вида является ее объем, называемый также емкостью. Этот параметр показывает, какой максимальный объем информации можно хранить в памяти. Для измерения объема памяти используются следующие единицы: байты, килобайты (Кбайт), мегабайты (Мбайт), гигабайты (Гбайт).

Объем (емкость) памяти - максимальное количество хранимой в ней информации.

Внутренняя память

Характерными особенностями внутренней памяти по сравнению с внешней являются высокое быстродействие и ограниченный объем. Физически внутренняя память компьютера представляет собой интегральные микросхемы (чипы), которые размещаются в специальных подставках (гнездах) на плате. Чем больше размер внутренней памяти, тем более сложную задачу и с большей скоростью может решить компьютер.

Постоянная память хранит очень важную для нормальной работы компьютера информацию. В частности, в ней содержатся программы, необходимые для проверки основных устройств компьютера, а также для загрузки операционной системы. Очевидно, что изменять эти программы нельзя, так как при любом вмешательстве сразу станет невозможным последующее использование компьютера. Поэтому разрешено только чтение хранимой там постоянно информации. Это свойство постоянной памяти объясняет часто используемое ее английское название Read Only Memory (ROM) - память только для чтения. 

Вся записанная в постоянную память информация сохраняется и после выключения компьютера, так как микросхемы являются энергонезависимыми. Запись информации в постоянную память происходит обычно только один раз - при производстве соответствующих чипов фирмой-изготовителем.

Постоянная память - устройство для долговременного хранения программ и данных.

Существует две основные разновидности микросхем постоянной памяти: однократно программируемые (после записи содержимое памяти не может быть изменено) и многократно программируемые. Изменение содержимого многократно программируемой памяти производится путем электронного воздействия.

Оперативная память хранит информацию, необходимую для выполнения программ в текущем сеансе работы: исходные данные, команды, промежуточные и конечные результаты. Эта память работает только при включенном электропитании компьютера. После его выключения содержимое оперативной памяти стирается, так как микросхемы являются энергозависимыми устройствами.

Оперативная память - устройство для хранения программ и данных, которые обрабатываются процессором в текущем сеансе работы.

Устройство оперативной памяти обеспечивает режимы записи, считывания и хранения информации, причем в любой момент времени возможен доступ к любой ячейке памяти. Часто оперативную память называют RAM (англ. Random Access Memory - память с произвольным доступом).

Если необходимо хранить результаты обработки длительное время, то следует воспользоваться каким-нибудь внешним запоминающим устройством.

ОБРАТИТЕ ВНИМАНИЕ!
При выключении компьютера вся находящаяся в оперативной памяти информация стирается.

Оперативная память характеризуется высоким быстродействием и относительно малой емкостью.

Микросхемы оперативной памяти монтируются на печатной плате. Каждая такая плата снабжена контактами, расположенными вдоль нижнего края, число которых может быть 30, 72 или 168 (рисунок 18.2). Для подключения к другим устройствам компьютера такая плата вставляется своими контактами в специальный разъем (слот) на системной плате, расположенной внутри системного блока. Системная плата имеет несколько разъемов для модулей памяти, суммарный объем которых может принимать ряд фиксированных значений, например 64, 128, 256 Мбайт и более.

Рис. 18.2. Микросхемы (чипы) оперативной памяти

Кэш-память (англ. cache - тайник, склад) служит для увеличения производительности компьютера.

Кэш-память используется при обмене данными между микропроцессором и оперативной памятью. Алгоритм ее работы позволяет сократить частоту обращений микропроцессора к оперативной памяти и, следовательно, повысить производительность компьютера.

Существует два типа кэш-памяти: внутренняя (8-512 Кбайт), которая размещается в процессоре, и внешняя (от 256 Кбайт до 1 Мбайт), устанавливаемая на системной плате. 

Внешняя память

Назначение внешней памяти компьютера заключается в долговременном хранении информации любого вида. Выключение питания компьютера не приводит к очистке внешней памяти. Объем этой памяти в тысячи раз больше объема внутренней памяти. Кроме того, в случае необходимости ее можно «нарастить» так же, как можно купить дополнительную книжную полку для хранения новых книг. Но обращение к внешней памяти требует гораздо большего времени. Как человек затрачивает на поиск информации в справочной литературе гораздо больше времени, чем на ее поиск в собственной памяти, так и скорость обращения (доступа) к внешней памяти существенно больше, чем к оперативной.

Необходимо различать понятия носителя информации и устройства внешней памяти.

Носитель - материальный объект, способный хранить информацию.

Устройство внешней памяти (накопитель)-физическое приспособление, позволяющее производить считывание и запись информации на соответствующий носитель.

Носителями информации во внешней памяти современных компьютеров являются магнитные или оптические диски, магнитные ленты и некоторые другие.

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа.

В устройствах прямого (произвольного) доступа время обращения к информации не зависит от места ее расположения на носителе. В устройствах последовательного доступа такая зависимость существует.

Рассмотрим знакомые всем примеры. Время доступа к песне на аудиокассете зависит от местоположения записи. Для ее прослушивания необходимо предварительно перемотать кассету до того места, где записана песня. Это пример последовательного доступа к информации. Время же доступа к песне на грампластинке не зависит от того, первая эта песня на диске или последняя. Чтобы прослушать любимое произведение, достаточно установить звукосниматель проигрывателя в определенное место на диске, где записана песня, или на музыкальном центре указать ее номер. Это пример прямого доступа к информации.

Дополнительно к введенным ранее общим характеристикам памяти для внешней памяти используют понятия плотности записи и скорости обмена информацией.

Плотность записи определяется объемом информации, записанным на единице длины дорожки. Единицей измерения плотности записи служат биты на миллиметр (бит/мм). Плотность записи зависит от плотности нанесения дорожек на поверхность, то есть числа дорожек на поверхности диска.

ПЛОТНОСТЬ записи - объем информации, записанной на единице длины дорожки.

Скорость обмена информации зависит от скорости ее считывания или записи на носитель, что, в свою очередь, определяется скоростью вращения или перемещения этого носителя в устройстве. По способу записи и чтения устройства внешней памяти (накопители) подразделяются в зависимости от вида носителя на магнитные, оптические и электронные (флэш-память). Рассмотрим основные виды внешних носителей информации.

Гибкие магнитные диски

Одним из наиболее распространенных носителей информации являются гибкие магнитные диски (дискеты) или флоппи-диски (от англ. floppy disk). В настоящее время широко используются гибкие диски с внешним диаметром 3,5" (дюйма), или 89 мм, называемые обычно 3-дюймовыми. Диски называются гибкими потому что их рабочая поверхность изготовлена из эластичного материала и помещена в твердый защитный конверт. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно. 

Поверхность диска покрывается специальным магнитным слоем. Именно этот слой обеспечивает хранение данных, представленных двоичным кодом. Наличие намагниченного участка поверхности кодируется как 1, отсутствие - как 0. Информация записывается с двух сторон диска на дорожках, которые представляют собой концентрические окружности (рисунок 18.3). Каждая дорожка разделяется на секторы. Дорожки и секторы представляют собой намагниченные участки поверхности диска.

Работа с дискетой (запись и чтение) возможна только при наличии на ней магнитной разметки на дорожки и секторы. Процедура предварительной подготовки (разметки) магнитного диска называется форматированием. Для этого в состав системного программного обеспечения включена специальная программа, с помощью которой и производится форматирование диска.

Рис. 18.3. Разметка поверхности гибкого диска

Форматирование диска - процесс магнитной разметки диска на дорожки и секторы.

Для работы с гибкими магнитными дисками предназначено устройство, называемое дисководом, или накопителем на гибких магнитных дисках (НГМД). Дисковод для гибких дисков относится к группе накопителей прямого доступа и устанавливается внутри системного блока.

Гибкий диск вставляется в щель дисковода, после чего автоматически открывается шторка и происходит вращение диска вокруг своей оси. При обращении к нему соответствующей программы магнитная головка записи/чтения устанавливается над тем сектором диска, куда надо записать или откуда требуется считать информацию. Для этого дисковод снабжен двумя шаговыми электродвигателями. Один двигатель обеспечивает вращение диска внутри защитного конверта. Чем выше скорость вращения, тем быстрее считывается информация, а значит, увеличивается скорость обмена информацией. Второй двигатель перемещает головку записи/чтения вдоль радиуса поверхности диска, что и определяет другую характеристику внешней памяти - время доступа к информации.

В защитном конверте имеется специальное окно защиты записи. Это окно может быть открыто или закрыто с помощью бегунка. Для предохранения информации на диске от изменения или удаления это окно открывают. При этом запись на гибкий диск становится невозможна и доступным остается только чтение с диска.

Для обращения к диску, установленному в дисководе, используются специальные имена в виде латинской буквы с двоеточием. Наличие после буквы двоеточия позволяет компьютеру отличить имя дисковода от буквы, поскольку это общее правило. Дисководу для считывания информации с 3-дюймового диска присваивается имя А: или иногда В:.

Запомните правила работы с гибкими дисками.

1. Не дотрагивайтесь до рабочей поверхности диска руками.
2. Не держите диски вблизи источника сильного магнитного поля, например около магнита.
3. Не подвергайте диски нагреванию.
4. Рекомендуется делать копии содержимого гибких дисков на случай их повреждения и выхода из строя.

Существенно увеличить хранимый на магнитном диске объем позволяют технологии, которые при записи дополнительно используют сжатие информации (ZIP-диск).

Жесткие магнитные диски

Одним из обязательных компонентов персонального компьютера являются жесткие магнитные диски. Они представляют собой набор металлических либо керамических дисков (пакет дисков), покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя, обычно называемого винчестером. Накопитель на жестких магнитных дисках (винчестер) относится к накопителям с прямым доступом.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кб (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30"/30" известного охотничьего ружья «Винчестер».

Основные особенности жестких дисков:

♦ жесткий диск относится к классу носителей с произвольным доступом к информации;
♦ для хранения информации жесткий диск размечается на дорожки и секторы;
♦ для доступа к информации один двигатель дисковода вращает пакет дисков, другой устанавливает головки в место считывания/запи си информации;
♦ наиболее распространенные размеры жесткого диска - 5,25 и 3,5 дюйма в наружном диаметре.

Жесткий магнитный диск представляет собой очень сложное устройство с высокоточной механикой чтения/записи и электронной платой, управляющей работой диска. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов, резких толчков.

Производители винчестеров сосредоточили свои усилия на создании жестких дисков большей емкости, надежности, скорости обмена данными и меньшей шумности. Можно выделить следующие основные тенденции развития жестких магнитных дисков:

♦ развитие винчестеров для мобильных приложений (например однодюймовые, двухдюймовые винчестеры для ноутбуков);
♦ развитие областей применения, не связанных с персональными компьютерами (в телевизорах, видеомагнитофонах, автомобилях). 

Для обращения к жесткому диску используется имя, задаваемое любой латинской буквой, начиная с С:. В случае если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D: и т. д. Для удобства работы в операционной системе предусмотрена возможность с помощью специальной системной программы условно разбивать один физический диск на несколько независимых частей, называемых логическими дисками. В этом случае каждой части одного физического диска присваивается свое логическое имя, что позволяет независимо обращаться к ним: С:, D: и т. д.

Оптические диски

Оптические, или лазерные носители - это диски, на поверхности которых информация записана с помощью лазерного луча. Эти диски изготовлены из органических материалов с напылением на поверхность тонкого алюминиевого слоя. Такие диски часто называют компакт-дисками у или CD (англ. Compact Disk - компакт -диск). Лазерные диски в настоящее время являются наиболее популярными носителями информации. При габаритах (диаметр - 120 мм), сопоставимых с флоппи-дисками (диаметр - 89 мм), емкость современного компакт-диска примерно в 500 раз больше, чем у дискеты. Емкость лазерного диска составляет примерно 650 Мбайт, что эквивалентно хранению текстовой информации объемом около 450 книг или звукового файла длительностью 74 минуты.

В отличие от магнитных дисков, лазерный диск имеет одну дорожку в виде спирали. Информация на дорожке-спирали записывается мощным лазерным лучом, выжигающим на поверхности диска углубления, и представляет собой чередование впадин и выпуклостей. При считывании информации выступы отражают свет слабого лазерного луча и воспринимаются как единица (1), впадины поглощают луч и, соответственно, воспринимаются как ноль (0). 

Бесконтактный способ считывания информации с помощью лазерного луча определяет долговечность и надежность ком- пакт-дисков. Как и магнитные, оптические диски относятся к устройствам с произвольным доступом к информации. Оптическому диску присваивается имя - первая свободная буква латинского алфавита, не использованная для имен жестких дисков.

Различают два типа накопителей (оптических дисководов) для работы с лазерными дисками:

♦ устройство для чтения с компакт-дисков, которое позволяет только читать информацию, ранее записанную на диск. Этим обусловлено название оптического дисковода CD-ROM (от англ. Compact Disk Read Only Memory - компакт-диск только для чтения). Невозможность записи информации в этом устройстве объясняется тем, что в нем установлен источник слабого лазерного излучения, мощности которого хватает только для считывания информации;
♦ оптический дисковод, который позволяет не только считывать, но и выполнять запись информации на компакт-диск. Он называется CD-RW (Rewritable). Устройства CD-RW обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности в процессе записи диска и прожигать микроскопические углубления на поверхности диска под защитным слоем, производя тем самым запись непосредственно в дисководе компьютера.

Диски DVD, также как и CD, хранят данные за счет расположенных выпуклостей (насечек) вдоль спиральных дорожек на отражающей металлической поверхности, покрытой пластиком. Используемый в устройствах записи/чтения DVD дисков лазер создает насечки более мелкого размера, что позволяет увеличить плотность записи данных. 

Внедрение полупрозрачного слоя, который прозрачен для света с одной длиной волны и отражает свет другой длины волны, позволяет создавать двухслойные и двухсторонние диски и следовательно увеличить емкость диска при прежних размерах. При этом геометрические размеры DVD и CD одинаковые, что позволило создать устройства, способные воспроизводить и записывать данные как на CD, так и на DVD. Но оказалось, что это не предел. Для записи видео и звука на DVD применяется сложная технология сжатия данных, обеспечивающая возможность разместить еще большие объемы информации в меньшем пространстве

Магнитные ленты

Магнитные ленты представляют собой носитель, аналогичный используемому в аудиокассетах бытовых магнитофонов. Устройство, которое обеспечивает запись и считывание информации с магнитных лент, называется стримером (от англ. stream - поток, течение; струиться). Стример относится к устройствам с последовательным доступом к информации и характеризуется гораздо меньшей скоростью записи и считывания информации по сравнению с дисководами.

Основное назначение стримеров - создание архивов данных, резервное копирование, надежное хранение информации. Многие большие банки, коммерческие фирмы, торговые предприятия в конце плановых периодов переносят важные сведения на магнитные ленты и убирают кассеты в архивы. Кроме того, на кассеты стримеров периодически записывается информация с винчестера, чтобы воспользоваться ею в случае непредвиденного сбоя жесткого диска, когда необходимо срочно восстановить хранившуюся на нем информацию.

Флэш-память

Флэш-память относится к электронному энергонезависимому типу памяти. Принцип работы флэш-памяти аналогичен принципу работы модулей оперативной памяти компьютера.

Главное отличие состоит в том, что она энергонезависима, то есть хранит данные до тех пор, пока вы их сами не удалите. При работе с флэш-памятью используются такие же операции, что и с другими носителями: запись, чтение, стирание (удаление).

Флэш-память имеет ограниченный срок службы, который зависит от объема перезаписываемой информации и от частоты ее обновления.

Сравнительные характеристики

Современные компьютеры, как правило, имеют внешнюю память в составе: винчестер, дисковод для 3,5-дюймовых дискет, CD-ROM, флэш-память. Следует помнить, что магнитные диски и ленты чувствительны к воздействию магнитных полей. В частности, размещение поблизости с ними сильного магнита может разрушить информацию, хранимую на перечисленных носителях. Поэтому, используя магнитные носители, необходимо обеспечить их удаленность от источников магнитных полей.

В таблице 18.1 приведено сравнение объемов памяти наиболее распространенных современных устройств памяти и носителей информации, рассмотренных ранее.

Таблица 18.1. Сравнительная характеристика устройств памяти
персонального компьютера, август 2006


Контрольные вопросы и задания

1. Емкость гибкого диска размером 3,5 дюйма равна 1,44 Мбайт. Лазерный диск может содержать 650 Мбайт информации. Определите, сколько дискет потребуется, чтобы разместить информацию с одного лазерного диска.

2. Диаметр гибких дисков задается в дюймах. Вычислите размеры гибких дисков в сантиметрах (1 дюйм = 2,54 см).

3. Установлено, что для записи одного символа необходим 1 байт памяти. В тетради в клеточку, состоящей из 18 листов, мы пишем по одному символу в каждой клетке. Сколько тетрадей можно записать на один гибкий диск с объем памяти 1,44 Мбайт?

4. Определите объем памяти, необходимой для хранения 2 млн символов. Сколько дисков объемом 1,44 Мбайт понадобится для записи этой информации?

5. Ваш жесткий диск имеет объем 2,1 Гбайт. Устройство распознавания речи воспринимает информацию с максимальной скоростью 200 букв в минуту. Сколько времени надо говорить, чтобы заполнить 90 % объема памяти жесткого диска?

6. Каково назначение устройств хранения информации в компьютере?

7. Какие виды памяти вы знаете и в чем их основное различие?

8. Для чего при работе на персональном компьютере используется внешняя память?

9. В чем суть считывания и записи информации в память?

10. Какие вы знаете характеристики, общие для всех видов памяти?

11. Чем характеризуется внутренняя память компьютера?

12. В чем особенности постоянной памяти?

13. В чем особенности оперативной памяти?

14. В чем особенности кэш-памяти?

15. Укажите отличительные особенности внутренней и внешней памяти компьютера.

16. Какие специфические характеристики внешней памяти вы знаете? 

17. Перечислите известные вам носители информации с древних времен и до наших дней. Расположите их в хронологическом порядке.

18. Дайте краткую характеристику наиболее распространенным накопителям данных, которые используются в компьютере.

19. В чем отличие прямого и последовательного доступа к информации на носителях?

20. Укажите общие свойства и отличительные особенности гибких и жестких дисков.

21. Что такое CD, CD-ROM, CD-R?

22. Когда целесообразно использовать стример?

23. Заполните таблицу 18.1 данными для конкретной модели компьютера.

Внешняя память, которую иногда называют резервное хранилище или вторичная память, позволяет хранить информацию больших объемов. В настоящее время ёмкость внешней памяти высока, обычно измеряется в сотни мегабайт или даже в гигабайтах (миллиард байт). Внешняя память обладает важным свойством, информация хранится и не теряется при отключении питания компьютера.

Внешняя память (ВЗУ) предназначена для длительного хранения программ, результатов расчетов, текстов, вне зависимости включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Это энергонезависимая память.

В состав которой входят:

НЖМД: накопители на жёстких магнитных дисках;

НГМД: накопители на гибких магнитных дисках;

CD-ROM, CD-RW, DVD: накопители на компакт-дисках;

Накопители на магнито-оптических компакт-дисках;

НМЛ: накопители на магнитной ленте (стримеры).

Главная задача внешней памяти персонального компьютера является способность долговременно хранить достаточно большой объем информации (программы, тексты, фотографии, аудио- и видеоклипы). Устройство, которое обеспечивает запись/считывание информации, называется накопителем, или дисководом, а хранится информация на носителях (например, дискетах).

Рисунок 3 - Классификация ВЗУ

Дискета - является самым ранним типом устройств, хранения информации, которые содержат небольшое количество данных. Они были изобретены в 1967 году группой специалистов IBM, предназначенные для распространения программного обеспечения, чтения/записи/переноса данных с одного ПК на другой.

Представляет собой гибкий пластиковый диск в защитной оболочке персонального компьютера. Основными компонентами дискеты являются магнитный диск, хранящий информацию и конверт, выполняющий защитную функцию для диска.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

Магнитная лента была предназначена для хранения данных в течение 50 лет. При хранении достаточно больших объемов информации, было существенно дешевле использовать ленту, чем диск или другие варианты хранения данных. Современное использование ленточных носителей в первую очередь связана с высокой средней мощностью для создания резервного копирования и архивов.

Рисунок 4 - Магнитная лента.

Написание и получение данных идет довольно медленно. Так как магнитная лента использует последовательный доступ для чтения и записи. Она используются для приложений, которые требуют большую емкость памяти, где скорость доступа не является проблемой. Также широко используется для резервного копирования файловых серверов компьютерных сетей в различных приложениях пакетной обработки, например чтение банковских чеков, расчет заработной платы и общий контроль пакета акций.

Наиболее распространенной формой внешней памяти - жесткий диск, который постоянно установлен в компьютере и, как правило, имеет мощность от сотен мегабайт. Информация записывается на диск путем намагничивания оксидного покрытия на концентрических круговых дорожек. Это означает, что перед обращением или изменения данных головок чтения / записи следует установить правильный путь.

Жесткий диск содержит все программное обеспечение, необходимое для работы компьютера. Все пользовательские данные и программы также могут быть сохранены на жестком диске. Кроме того, большинство компьютеров имеют некоторые формы съемные устройства хранения данных, которые могут быть использованы для сохранения копии важных файлов.

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки -- на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

В накопителях на оптических дисках в качестве носителя используется диск, покрытый отражающим веществом со специальными оптическими свойствами.

Наиболее распространенные типы оптических носителей являются Blu-Ray , компакт-диски и DVD-диски . Компьютеры могут читать и записывать на компакт-диски и DVD-диски использовать записи компакт-дисков или DVD Writer диск и Blu-ray для чтения с Blu-Ray дисков.

Существуют три основных типа оптических носителей: CD, DVD, и Blu-Ray дисков. Компакт-диски могут хранить до 700 мегабайт (МБ) данных и DVD-диски могут хранить до 8,4 Гб данных. Blu-Ray диски, которые являются новейшими типами оптического носителя, могут хранить до 50 Гб данных. Этот объем памяти явное преимущество перед (магнитными носителями), которая имеет емкость 1,44 Мб. Еще одно преимущество, это то, что оптические носители имеют более гибкий диск, он может длиться до 7 раз дольше, благодаря своей долговечностью.

Стандартный компакт-диск состоит из основы, отражающего и защитного слоев. Основа выполнена из прозрачного поликарбоната, на котором методом прессования сформирован информационный рельеф. Поверх рельефа напыляется металлический отражающий слой. Отражающий слой покрывается сверху защитным слоем лака -- так, чтобы вся металлическая поверхность была защищена от контакта с внешней средой.

Информация записана на диске в виде спиральной дорожки, идущей от центра к краю диска, на которой расположены углубления (так называемые питы). Лазерный луч головки привода проходит по дорожке и по характеру отраженного луча считывает информацию.

USB (Universal Serial Bus) флэш-диск, представляет собой небольшое, портативное устройство, которое подключается к USB порту компьютера. Как и жесткий диск, он хранит информацию, но как правило намного меньше, чем большинство жестких дисков. USB флэш-накопители различаются по размеру, форме которые содержат гигабайты информации. Иногда их называют флэш-накопителями, поскольку они по размеру и форме напоминают пальца человека. Главное преимущество заключается в том, что флэш-накопители можно легко носить с собой, что является максимально удобным для передачи информации с одного компьютера на другой.

память жесткий диск носитель

Рисунок 5 - USB флэш-накопитель.

ПлохоОтлично

Персональный компьютер: внешняя память

Внешняя память - это память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя, предназначенных для долговременного хранения информации. В частности, в внешней памяти хранится все программное обеспечение компьютера. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах. Физически, внешняя память реализована в виде накопителей. Накопители - это запоминающие устройства, предназначенные для продолжительного (что не зависит от электропитания) хранения больших объемов информации. Емкость накопителей в сотни раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.

Накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители с сменными и постоянными носителями. Привод - это объединение механизма чтения-записи с соответствующими электронными схемами управления. Его конструкция определяется принципом действия и видом носителя. Носитель - это физическая среда хранения информации, по внешнему виду может быть дисковым или ленточным. По принципу запоминания различают магнитные, оптические и магнитооптичческие носители. Ленточные носители могут быть лишь магнитными, в дисковых носителях используют магнитные, магнитооптические и оптические методы записи-считывания информации.

Самыми распространенными являются накопители на магнитных дисках, которые делятся на накопители на жестких магнитных дисках (НЖМД) и накопители на гибких магнитных дисках (НГМД), и накопители на оптических дисках, такие как накопители CD-ROM, CD-R, CD-RW и DVD-ROM.

Накопители на жестких магнитных дисках (НЖМД)

НЖМД - это основное устройство для долговременного хранения больших объемов данных и программ. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive). Внешне, винчестер представляет собой плоскую, герметически закрытую коробку, внутри которой находятся на общей оси находятся несколько жестких алюминиевых или стеклянных пластинок круглой формы. Поверхность любого из дисков покрыта тонким ферромагнитным слоем (вещество, которое реагирует на внешнее магнитное поле), собственно на нем хранятся записанные данные. При этом запись проводится на обе поверхности каждой пластины (кроме крайних) с помощью блока специальных магнитных головок. Каждая головка находится над рабочей поверхностью диска на расстоянии 0,5-0,13 мкм. Пакет дисков вращается непрерывно и с большой частотой (4500-10000 об/мин), поэтому механический контакт головок и дисков недопустим.

Запись данных в жестком диске осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля в щели между поверхностью и головкой, что приводит к изменению стационарного магнитного поля ферромагнитных частей покрытия диска. Операция считывания происходит в обратном порядке. Намагниченные частички ферромагнитного покрытия являются причиной электродвижущей силы самоиндукции магнитной головки. Электромагнитные сигналы, которые возникают при этом, усиливаются и передаются на обработку.

Работой винчестера руководит специальное аппаратно-логическое устройство - контроллер жесткого диска. В прошлом это была отдельная дочерняя плата, которую подсоединяли через слоты к материнской плате. В современных компьютерах функции контроллера жесткого диска выполняют специальные микросхемы, расположенные в чипсете.

В накопителе может быть до десяти дисков. Их поверхность разбивается на круги, которые называются дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт: 512 отведено для записи нужной информации, остальные под заголовок (префикс), определяющий начало и номер секции и окончание (суффикс), где записана контрольная сумма, нужная для проверки целостности хранимых данных. Секторы и дорожки образуются во время форматирования диска. Форматирование выполняет пользователь с помощью специальных программ. На неформатированный диск не может быть записана никакая информация. Жесткий диск можно разбить на логические диски. Это удобно, поскольку наличие нескольких логических дисков упрощает структуризацию данных, хранящихся на жестком диске.

Существует огромное количество разных моделей жестких дисков многих фирм, таких как Seagate, Maxtor, Quantum, Fujitsu и т.д. Для обеспечения совместимости винчестеров, разработаны стандарты на их характеристики, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов. Распространенными являются стандарты интерфейсов IDE (Integrated Drive Electronics) или ATA и более продуктивные EIDE (Enhanced IDE) и SCSI (Small Computer System Interface). Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков.

Среди других параметров, которые влияют на быстродействие HDD следует отметить следующие:

  • скорость обращения дисков - в наше время выпускаются накопители EIDE с частотой обращения 4500-7200 об/мин, и накопители SCSI - 7500-10000 об/мин;
  • емкость кэш-памяти - во всех современных дисковых накопителях устанавливается кэш-буфер, ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт;
  • среднее время доступа - время (в миллисекундах), на протяжении которого блок головок смещается с одного цилиндра на другой. Зависит от конструкции привода головок и составляет приблизительно 10-13 миллисекунд;
  • время задержки - это время от момента позиционирования блока головок на нужный цилиндр до позицирования конкретной головки на конкретный сектор, другими словами, это время поиска нужного сектора;
  • скорость обмена - определяет объемы данных, которые могут быть переданы из накопителя к микропроцессору и в обратном направлении за определенные промежутки времени; максимальное значение этого параметра равно пропускной способности дискового интерфейса и зависит от того, какой режим используется: PIO или DMA; в режиме PIO обмен данными между диском и контроллером происходит при непосредственном участии центрального процессора, чем больше номер режима PIO, тем выше скорость обмена; работа в режиме DMA (Direct Memory Access) разрешает передавать данные непосредственно в оперативную память без участия процессора; скорость передачи данных в современных жестких дисках колеблется в диапазоне 30-60 Мбайт/с.

Накопители на гибких магнитных дисках (НГМД)

НГМД или дисковод вмонтирован в системный блок. Гибкие носители для НГМД выпускают в виде дискет (другое название флоппи-диск). Собственно, носитель - это плоский диск со специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем и помещенной в защитный конверт с подвижной задвижкой в верхней части. Дискеты используются, в основном, для оперативного переноса небольших объемов информации с одного компьютера на другой. Данные, записанные на дискете можно защитить от стирания или перезаписи. Для этого нужно передвинуть маленькую защитную задвижку в нижней части дискеты таким образом, чтобы образовалось открытое окошко. Для того, чтобы разрешить запись, эту задвижку следует переместить назад и закрыть окошко.

Лицевая панель дисковода выведена на переднюю панель системного блока, на ней расположены карман, закрытый шторкой, куда вставляют дискету, кнопка для вынимания дискеты и лампочка-индикатор. Дискета вставляется в дисковод верхней задвижкой вперед, ее нужно вставить в карман накопителя и плавно продвинуть вперед до щелчка. Правильное направление вставления дискеты помечено стрелкой на пластиковом корпусе. Чтобы вынуть дискету из накопителя, нужно нажать на его кнопку. Световой индикатор на дисководе показывает, что устройство занято (если лампочка горит, вынимать дискету не рекомендуется). В отличие от жесткого диска, диск в НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.

Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки получаются во время форматирования дискеты. Сейчас дискеты поставляются отформатироваными.

Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. По размерам различают 3,5-дюймовые дискеты и 5,25-дюймовые дискеты (сейчас уже не используются). Плотность записи может быть простой SD (Single Density), двойной DD (Double Density) и высокой HD (High Density). Стандартная емкость 3,5-дюймовой дискеты - 1,44 Мбайт, возможно использование дискет емкостью 720 Кбайт. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.

Во время пользования дискетой следует придерживаться таких правил:

  • не касаться рабочей поверхности дискеты;
  • не выгибать дискету;
  • не снимать металлическую задвижку, загрязненная дискета может повредить головки;
  • сохранять дискеты подальше от источника магнитных полей;
  • перед использованием проверить дискету на наличие вирусов с помощью антивирусной программы.

Накопители на оптических дисках

Накопитель CD-ROM

Начиная с 1995 года в базовую конфи-гурацию персонального компьютера вместо дисководов на 5,25 дюймов начали включать дисковод CD-ROM. Аббревиатура CD-ROM (Compact Disk Read Only Memory) переводится как постоянное запоминающее устройство на основе компакт-дисков. Принцип действия этого устройства состоит в считывании цифровых данных с помощью лазерного луча, который отражается от поверхности диска. В качестве носителя информации используется обычный компакт-диск CD. Цифровая запись на компакт-диск отличается от записи на магнитные диски высокой плотностью, поэтому стандартный CD имеет емкость порядка 650-700 Мбайт. Такие большие объемы характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относятся к аппаратным средствам мультимедиа. Кроме мультимедийних изданий (электронные книги, энциклопедии, музыкальные альбомы, видеофильмы, компьютерные игры) на компакт-дисках распространяется разнообразное системное и прикладное программное обеспечения больших объемов (операционные системи, офисные пакеты, системы программирования и т.д.)

Компакт-диски изготовляют из прозрачного пластика диаметром 120 мм. и толщиной 1,2 мм. На пластиковую поверхность напыляется слой алюминия или золота. В условиях массового производства запись информации на диск происходит путем выдавливания на поверхности дорожки, в виде ряда углублений. Такой подход обеспечивает двоичную запись информации. Углубление (pit - пит), поверхность (land - лэнд). Логический нуль может быть представлен как питом, так и лэндом. Логическая единица кодируется переходом между питом и лэндом. От центра к краю компакт-диска нанесена единственная дорожка в виде спирали шириной 4 микрона с шагом 1,4 микрона. Поверхность диска разбита на три области. Начальная (Lead-In) расположена в центре диска и считывается первой. В ней записано содержимое диска, таблица адресов всех записей, метка диска и другая служебная информация. Средняя область содержит основную информацию и занимает большую часть диска. Конечная область (Lead-Out) содержит метку конца диска.

Для штамповки существует специальная матрица-прототип (мастер-диск) будущего диска, которая выдавливает дорожки на поверхности. После штамповки, на поверхность диска наносят защитную пленку из прозрачного лака.

Накопитель CD-ROM содержит:

  • электродвигатель, который вращает диск;
  • оптическую систему, состоящую из лазерного излучателя, оптических линз и датчиков и предназначенную для считывания информации с поверхности диска;
  • микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.
  • Компакт-диск раскручивается электродвигателем. На поверхность диска с помощью привода оптической системы фокусируется луч из лазерного излучателя. Луч отражается от поверхности диска и сквозь призму подается на датчик. Световой поток превращается в электрический сигнал, который поступает в микропроцессор, где он анализируется и превращается в двоичный код.

Основные характеристики CD-ROM:

  • скорость передачи данных - измеряется в кратных долях скорости проигрывателя аудио компакт-дисков (150 Кбайт/сек) и характеризует максимальную скорость с которой накопитель пересылает данные в оперативную память компьютера, например, 2-скоростной CD-ROM (2x CD-ROM) будет считывать данные с скоростью 300 Кбайт/сек., 50-скоростной (50x) - 7500 Кбайт/сек.;
  • время доступа - время, нужное для поиска информации на диске, измеряется в миллисекундах.
  • Основной недостаток стандартных CD-ROM - невозможность записывания данных, но существуют устройства однократной записи CD-R и многоразовой записи CD-RW.

Накопитель CD-R (CD-Recordable)

Внешне похожи на накопители CD-ROM и совместимые с ними по размерам дисков и форматам записи. Позволяют выполнить одноразовую запись и неограниченное количество считываний. Запись данных осуществляется с помощью специального программного обеспечения. Скорость записи современных накопителей CD-R составляет 4х-8х.

Накопитель CD-RW (CD-ReWritable)

Используются для многоразовой записи данных, причем можно как просто дописать новую информацию на свободное пространство, так и полностью перезаписать диск новой информацией (предудущие данные уничтожаются). Как и в случае с накопителями CD-R, для записи данных необходимо установить в системе специальные программы, причем формат записи совместимый с обычным CD-ROM. Скорость записи современных накопителей CD-RW составляет 2х-4х.

Накопитель DVD (Digital Video Disk)

Устройство для чтения цифровых видеозаписей. Внешне DVD-диск похож на обычный CD-ROM (диаметр - 120 мм, толщина 1,2 мм), однако отличается от него тем, что на одной стороне DVD-диска может быть записано до 4,7 Гбайт, а на двух - до 9,4 Гбайт. В случае использования двухслойной схемы записи на одной стороне можно разместить уже до 8,5 Гбайт информации, соответственно на двух сторонах - около 17 Гбайт. DVD-диски допускают перезапись информации.

Важнейшим фактором, сдерживающим широкое применение накопителей CD-R, CD-RW и DVD, является высокая стоимость как их самих, так и сменных носителей.

Контрольные вопросы

Что такое внешняя память? Какие разновидности внешней памяти вы знаете?

Что такое жесткий диск? Для чего он предназначен? Какую емкость имеют современные винчестеры?

Каким образом осуществляются операции чтения и записи в НЖМД?

В чем состоит операция форматирования магнитных дисков?

Какие есть типы стандартных дисковых интерфейсов?

Какие параметры влияют на быстродействие винчестера? Каким образом?

Что такое флоппи-диск? Что общее и различное между ним и жестким диском?

Каких правил следует придерживаться во время пользования дискетой?

Какие вы знаете разновидности накопителей на оптических дисках? Чем они различаются между собою?

Каким образом происходит считывание информации с компакт-дисков?

В чем измеряется скорость передачи данных в накопителях на оптических носителях?