Image Processing Toolbox. Краткий курс теории обработки изображений. И.М.Журавель. Исследование методов сегментации изображений

В статье описано исследование методов сегментации изображений на различных примерах. Целью исследования является обнаружение достоинств и недостатков некоторых известных методов.


Методы, которые будут рассмотрены в данной статье:

  1. Метод выращивания регионов ;
  2. Метод водораздела ;
  3. Метод нормальных разрезов .

Исследование методов сегментации на модельных изображениях

Исследование методов сегментации первоначально проводилось моделях изображений. В качестве моделей использовались девять видов изображений.




Результаты исследования показали:

  • Метод выращивания регионов локализует дефекты текстуры как резко отличающиеся от фона, так и образованные поворотом и изменением яркости текстуры;
  • Метод выращивания регионов в различной степени локализует дефекты при разных углах поворота текстуры;
  • Рассмотренный метод сегментации водораздела в исходном виде не обеспечивает локализацию текстурных дефектов;
  • Метод нормальных разрезов хорошо локализует наличие текстуры отличной от фона, но не выделяет изменение яркости и поворот текстуры.

Исследование методов сегментации на изображениях объекта

Для исследования методов сегментации было подготовлена база изображений различных объектов. Полученные изображения прошли сегментацию с помощью различных методов, результат которой представлен на рисунках в таблице


Исходное изображение Метод выращивания регионов Метод нормальных разрезов Метод водораздела

Результаты:

  • Метод выращивания регионов не обеспечивает локализацию сегментов на изображениях объекта;
  • Рассмотренные методы водораздела и нормальных разрезов в исходном виде не обеспечивают локализацию представленных объектов;
  • Метод нормальных разрезов обеспечивает локализацию объектов на изображениях объектов.

Результаты

Результаты проведенного исследования:

  • Метод выращивания регионов не обеспечивает локализацию сегментов как на модельных изображениях, так и на изображениях объекта, а также обеспечивает локализацию элементов дорожно-транспортной инфраструктуры.
  • Рассмотренные методы водораздела и нормальных разрезов в исходном виде не полностью обеспечивают локализацию представленных объектов.
  • Метод нормальных разрезов обеспечивает локализацию объектов как на модельных изображениях, так и на изображениях объектов, а также обеспечивает локализацию элементов дорожно-транспортной инфраструктуры.
  • Метод выращивания регионов и метод нормальных разрезов могут быть рекомендованы для использования в автоматизированных системах визуального контроля.
Одной из основных задач обработки и анализа изображений является сегментация, т.е. разделение изображения на области, для которых выполняется определенный критерий однородности, например, выделение на изображении областей приблизительно одинаковой яркости. Понятие области изображения используется для определения связной группы элементов изображения, имеющих определенный общий признак (свойство).
Один из основных и простых способов - это построение сегментации с помощью порога. Порог - это признак (свойство), которое помогает разделить искомый сигнал на классы. Операция порогового разделения заключается в сопоставлении значения яркости каждого пикселя изображения с заданным значением порога.
Бинаризация

Операция порогового разделения, которая в результате дает бинарное изображение, называется бинаризацией. Целью операции бинаризации является радикальное уменьшение количества информации, содержащейся на изображении. В процессе бинаризации исходное полутоновое изображение, имеющее некое количество уровней яркости, преобразуется в черно-белое изображение, пиксели которого имеют только два значения – 0 и 1

Пороговая обработка изображения может проводиться разными способами.

Бинаризация с нижним порогом
Бинаризация с нижним порогом
Бинаризация с нижним порогом является наиболее простой операцией, в которой используется только одно значение порога:

Все значения вместо критерия становятся 1, в данном случае 255 (белый) и все значения(амплитуды) пикселей, которые больше порога t - 0 (черный).

Бинаризации с верхним порогом
Иногда можно использовать вариант первого метода, который дает негатив изображения, полученного в процессе бинаризации. Операция бинаризации с верхним порогом:

Бинаризация с двойным ограничением
Для выделения областей, в которых значения яркости пикселей может меняться в известном диапазоне, вводится бинаризация с двойным ограничением (t 1
Так же возможны другие вариации с порогами, где пропускается только часть данных (средне полосовой фильтр).

Неполная пороговая обработка
Данное преобразование дает изображение, которое может быть проще для дальнейшего анализа, поскольку оно становится лишенным фона со всеми деталями, присутствующими на исходном изображении.

Многоуровневое пороговое преобразование
Данная операция формирует изображение, не являющееся бинарным, но состоящее из сегментов с различной яркостью.

Что касается бинаризации, то по сути все. Хотя можно добавить, что есть глобальная, которая используется для всего изображения и так же существует локальная, которая захватывает часть картинки (изображения).

Локальная пороговая обработка
Метод Отса
Метод использует гистограмму распределения значений яркости пикселей растрового изображения. Строится гистограмма по значениям p i =n i /N, где N – это общее кол-во пикселей на изображении, n i – это кол-во пикселей с уровнем яркости i. Диапазон яркостей делится на два класса с помощью порогового значения уровня яркости k,k - целое значение от 0 до L. Каждому классу соответствуют относительные частоты ω 0 ω 1:

Средние уровни для каждого из двух классов изображения:
Далее вычисляется максимальное значение оценки качества разделения изображения на две части:
где (σ кл)2=ω 0 ω 1 (μ 1 -μ 0) 2 , – межклассовая дисперсия, а (σ общ) 2 – это общая дисперсия для всего изображения целиком.

Определение порога на основе градиента яркости изображения
Предположим, что анализируемое изображение можно разделить на два класса – объекты и фон. Алгоритм вычисления порогового значения состоит из следующих 2 шагов:
1. Определяется модуль градиента яркости для каждого пикселя
изображения

2. Вычисление порога:
Итого
Что нашел с радостью выложил вам, в дальнейшем, если получится и будет время, постараюсь реализовать часть алгоритмов. Это лишь малая часть всего, что сегодня существует, но я рад поделится и этим.
Спасибо за внимание.

Cегментация означает выделение областей однородных по какому-либо критерию, например по яркости. Математическая формулировка задачи сегментации может иметь следующий вид .

Пусть -функция яркости анализируемого изображения; X – конечное подмножество плоскости на котором определена
;
- разбиение X на K непустых связных подмножеств
LP – предикат, определенный на множестве S и принимающий истинные значения тогда и только тогда, когда любая пара точек из каждого подмножества удовлетворяет критерию однородности.

Сегментацией изображения
по предикату LP называется разбиение
, удовлетворяющее условиям:

а)
;

б)
;

в)
;

г) смежные области.

Условия а) и б) означают, что каждая точка изображения должна быть единственным образом отнесена к некоторой области, в) определяет тип однородности получаемых областей и, наконец, г) выражает свойство “максимальности” областей разбиения.

Предикат LP называется предикатом однородности и может быть записан в виде:

(1)

где
-отношение эквивалентности;
- произвольные точки из .Таким образом, сегментацию можно рассматривать как оператор вида:

где
-функции, определяющие исходное и сегментированное изображение соответственно; -метка i- й области.

Существуют два общих подхода к решению задачи сегментации , которые базируются на альтернативных методологических концепциях. Первый подход основан на идее “разрывности” свойств точек изображения при переходе от одной области к другой. Этот подход сводит задачу сегментации к задаче выделения границ областей. Успешное решение последней позволяет, вообще говоря, идентифицировать и сами области, и их границы. Второй подход реализует стремление выделить точки изображения, однородные по своим локальным свойствам, и объединить их в область, которой позже будет присвоено имя или смысловая метка. В литературе первый подход называют сегментацией путем выделения границ областей , а второй – сегментацией путем разметки точек области . Данное выше математическое определение задачи позволяет характеризовать эти подходы в терминах предиката однородности LP . В первом случае в качестве LP должен выступать предикат, принимающий истинные значение на граничных точках областей и ложные значения на внутренних точках. Однако можно отметить существенное ограничение этого подхода, состоящее в том, что разбиение является здесь двухэлементным множеством. В практическом плане это означает, что алгоритмы выделения границ не позволяют идентифицировать разными метками разные области.

Для второго подхода предикат LP может иметь вид, определяемый соотношением (5.1). Указанные выше подходы порождают конкретные методы и алгоритмы решения задачи сегментации.

Метод сегментации на основе пороговой обработки

Пороговая обработка изображения означает преобразование его функции яркости оператором вида

где s(x,y) – сегментированное изображение; K – число областей сегментации;
- метки сегментированных областей;
- величины порогов, упорядоченные так, что
.

В частном случае при K= 2 пороговая обработка предусматривает использование единственного порога T . При назначении порогов применяют, как правило, гистограмму значений фунции яркости изображения.

Алгоритм сегментации на основе пороговой обработки на псевдокоде

Вход: mtrIntens – исходная матрица полутонового изображения;

l, r – пороги по гистограмме

Выход: mtrIntensNew – матрица сегментированного изображения

for i:=0 to l-1 do

for i:=l to r do

for i:=r+1 to 255 do

LUT[i]=255;

for i:=1 to 100 do

for j:=1 to 210 do

mtrIntensNew:=LUT]

Сегментация методом управляемого водораздела

Довольно часто при анализе изображений возникает задача разделения пикселей изображений на группы по некоторым признакам. Такой процесс разбиения на группы называется сегментацией. Наиболее известными являются два вида сегментации - сегментация по яркости для бинарных изображений и сегментация по цветовым координатам для цветных изображений. Методы сегментации можно рассматривать как формализацию понятия выделяемости объекта из фона или понятий связанных с градиентом яркости. Алгоритмы сегментации характеризуются некоторыми параметрами надежности и достоверности обработки. Они зависят от того, насколько полно учитываются дополнительные характеристики распределения яркости в областях объектов или фона, количество перепадов яркости, форма объектов и др.

Существует много изображений, которые содержат исследуемый объект достаточно однородной яркости на фоне другой яркости. В качестве примера можно привести рукописный текст, ряд медицинских изображений и т.д. Если яркости точек объекта резко отличаются от яркостей точек фона, то решение задачи установления порога является несложной задачей. На практике это не так просто, поскольку исследуемое изображение подвергается воздействию шума и на нем допускается некоторый разброс значений яркости. Известно несколько аналитических подходов к пороговому ограничению по яркости. Один из методов состоит в установлении порога на таком уровне, при котором общая сумма элементов с подпороговой яркостью согласована с априорными вероятностями этих значений яркости.

Аналогичные подходы можно применить для обработки цветных и спектрозональных изображений. Существует также такой вид сегментации как контурная сегментация. Довольно часто анализ изображений включает такие операции, как получение внешнего контура изображений объектов и запись координат точек этого контура. Известно три основных подхода к представлению границ объекта: аппроксимация кривых, прослеживание контуров и связывание точек перепадов. Для полноты анализа следует отметит, что есть также текстурная сегментация и сегментация формы.

Наиболее простым видом сегментации является пороговая сегментация. Она нашла очень широкое применение в робототехнике. Это объясняется тем, что в этой сфере изображения исследуемых объектов, в своем большинстве, имеют достаточно однородную структуру и резко выделяются их фона. Но кроме этого, для достоверной обработки нужно знать, что изображение состоит из одного объекта и фона, яркости которых находятся в строго известных диапазонах и не пересекаются между собой.

Развитие технологий обработки изображений привело к возникновению новых подходов к решению задач сегментации изображений и применении их при решении многих практических задач.

В данной работе рассмотрим относительно новый подход к решению задачи сегментации изображений - метод водораздела. Коротко объясним название этого метода и в чем его суть.

Предлагается рассматривать изображение как некоторую карту местности, где значения яркостей представляют собой значения высот относительно некоторого уровня. Если эту местность заполнять водой, тогда образуются бассейны. При дальнейшем заполнении водой, эти бассейны объединяются. Места объединения этих бассейнов отмечаются как линии водораздела.

Разделение соприкасающихся предметов на изображении является одной из важных задач обработки изображений. Часто для решения этой задачи используется так называемый метод маркерного водораздела. При преобразованиях с помощью этого метода нужно определить "водосборные бассейны" и "линии водораздела" на изображении путем обработки локальных областей в зависимости от их яркостных характеристик.

Метод маркерного водораздела является одним из наиболее эффективных методов сегментации изображений. При реализации этого метода выполняются следующие основные процедуры:

    Вычисляется функция сегментации. Она касается изображений, где объекты размещены в темных областях и являются трудно различимыми.

    Вычисление маркеров переднего плана изображений. Они вычисляются на основании анализа связности пикселей каждого объекта.

    Вычисление фоновых маркеров. Они представляют собой пиксели, которые не являются частями объектов.

    Модификация функции сегментации на основании значений расположения маркеров фона и маркеров переднего плана.

    Вычисления на основании модифицированной функции сегментации.

В данном примере среди функций пакета Image Processing Toolbox наиболее часто используются функции fspecial, imfilter, watershed, label2rgb, imopen, imclose, imreconstruct, imcomplement, imregionalmax, bwareaopen, graythresh и imimposemin.

  • Шаг 1: Считывание цветного изображения и преобразование его в полутоновое.
  • Шаг 2: Использование значения градиента в качестве функции сегментации.
  • Шаг 3: Маркировка объектов переднего плана.
  • Шаг 4: Вычисление маркеров фона.
  • Шаг 6: Визуализация результата обработки.

Шаг 1: Считывание цветного изображения и преобразование его в полутоновое.

Считаем данные из файла pears.png rgb=imread("pears.png"); и представим их в виде полутонового изображения. I=rgb2gray(rgb); imshow(I) text(732,501,"…",... "FontSize",7,"HorizontalAlignment","right")

Шаг 2: Использование значения градиента в качестве функции сегментации.

Для вычисления значения градиента используется оператор Собеля, функция imfilter и другие вычисления. Градиент имеет большие значения на границах объектов и небольшие (в большинстве случаев) вне границ объектов.

Hy=fspecial("sobel"); hx=hy"; Iy=imfilter(double(I), hy, "replicate"); Ix=imfilter(double(I), hx, "replicate"); gradmag=sqrt(Ix.^2+Iy.^2); figure, imshow(gradmag,), title("значение градиента")

Таким образом, вычислив значения градиента, можно приступить к сегментации изображений с помощью рассматриваемого метода маркерного водораздела.

L=watershed(gradmag); Lrgb=label2rgb(L); figure, imshow(Lrgb), title("Lrgb")

Однако, без проведения еще дополнительных вычислений, такая сегментация будет поверхностной.

Шаг 3: Маркировка объектов переднего плана.

Для маркировки объектов переднего плана могут использоваться различные процедуры. В этом примере будут использованы морфологические технологии, которые называются "раскрытие через восстановление" и "закрытие через восстановление". Эти операции позволяют анализировать внутреннюю область объектов изображения с помощью функции imregionalmax.

Как было сказано выше, при проведении маркировки объектов переднего плана используются также морфологические операции. Рассмотрим некоторые из них и сравним. Сначала реализуем операцию раскрытия с использованием функции imopen.

Se=strel("disk", 20); Io=imopen(I, se); figure, imshow(Io), title("Io")

Ie=imerode(I, se); Iobr=imreconstruct(Ie, I); figure, imshow(Iobr), title("Iobr")

Последующие морфологические операции раскрытия и закрытия приведут к перемещению темных пятен и формированию маркеров. Проанализируем операции морфологического закрытия. Для этого сначала используем функцию imclose:

Ioc=imclose(Io, se); figure, imshow(Ioc), title("Ioc")

Iobrd=imdilate(Iobr, se); Iobrcbr=imreconstruct(imcomplement(Iobrd), imcomplement(Iobr)); Iobrcbr=imcomplement(Iobrcbr); figure, imshow(Iobrcbr), title("Iobrcbr")

Сравнительный визуальный анализ Iobrcbr и Ioc показывает, что представленная реконструкция на основе морфологических операций открытия и закрытия является более эффективной в сравнении с стандартными операциями открытия и закрытия. Вычислим локальные максимумы Iobrcbr и получим маркеры переднего плана.

Fgm=imregionalmax(Iobrcbr); figure, imshow(fgm), title("fgm")

Наложим маркеры переднего плана на исходное изображение.

I2=I; I2(fgm)=255; figure, imshow(I2), title("fgm, наложенное на исходное изображение")

Отметим, что при этом некоторые скрытые или закрытые объекты изображения не являются маркированными. Это свойство влияет на формирование результата и многие такие объекты изображения не будут обработаны с точки зрения сегментации. Таким образом, маркеры переднего плана отображают границы только большинства объектов. Представленные таким образом границы подвергаются дальнейшей обработке. В частности, это могут быть морфологические операции.

Se2=strel(ones(5, 5)); fgm2=imclose(fgm, se2); fgm3=imerode(fgm2, se2);

В результате проведения такой операции пропадают отдельные изолированные пиксели изображения. Также можно использовать функцию bwareaopen, которая позволяет удалять заданное число пикселей.

Fgm4=bwareaopen(fgm3, 20); I3=I; I3(fgm4)=255; figure, imshow(I3) title("fgm4, наложенное на исходное изображение")

Шаг 4: Вычисление маркеров фона.

Теперь проведем операцию маркирования фона. На изображении Iobrcbr темные пиксели относятся к фону. Таким образом, можно применить операцию пороговой обработки изображения.

Bw=im2bw(Iobrcbr, graythresh(Iobrcbr)); figure, imshow(bw), title("bw")

Пиксели фона являются темными, однако нельзя просто провести морфологические операции над маркерами фона и получить границы объектов, которые мы сегментируем. Мы хотим "утоньшить" фон таким образом, чтобы получить достоверный скелет изображения или, так называемый, передний план полутонового изображения. Это вычисляется с применением подхода по водоразделу и на основе измерения расстояний (до линий водораздела).

D=bwdist(bw); DL=watershed(D); bgm=DL==0; figure, imshow(bgm), title("bgm")

Шаг 5: Вычисление по методу маркерного водораздела на основании модифицированной функции сегментации.

Функция imimposemin может применяться для точного определения локальных минимумов изображения. На основании этого функция imimposemin также может корректировать значения градиентов на изображении и таким образом уточнять расположение маркеров переднего плана и фона.

Gradmag2=imimposemin(gradmag, bgm | fgm4);

И наконец, выполняется операция сегментации на основе водораздела.

L=watershed(gradmag2);

Шаг 6: Визуализация результата обработки.

Отобразим на исходном изображении наложенные маркеры переднего плана, маркеры фона и границы сегментированных объектов.

I4=I; I4(imdilate(L==0, ones(3, 3))|bgm|fgm4)=255; figure, imshow(I4) title("Маркеры и границы объектов, наложенные на исходное изображение")

В результате такого отображения можно визуально анализировать месторасположение маркеров переднего плана и фона.

Представляет интерес также отображение результатов обработки с помощью цветного изображения. Матрица, которая генерируется функциями watershed и bwlabel, может быть конвертирована в truecolor-изображение посредством функции label2rgb.

Lrgb=label2rgb(L, "jet", "w", "shuffle"); figure, imshow(Lrgb) title("Lrgb")

Также можно использовать полупрозрачный режим для наложения псевдоцветовой матрицы меток поверх исходного изображения.

Figure, imshow(I), hold on himage=imshow(Lrgb); set(himage, "AlphaData", 0.3); title("Lrgb, наложенное на исходное изображение в полупрозрачном режиме")

Сегментация изображений

Сегментация устанавливает характерные подмножества пикселов или разбиение изображения на связные области, каждая из которых в некотором смысле “однородна”. Процессы сегментации и выделения признаков можно рассматривать как присваивание пикселам меток, определяющих специальные классы, к которым эти пикселы принадлежат. Таким образом, на выходе процесса сегментации находится символьное изображение, в котором значениями пиксела являются метки, а не уровни яркости.

Классификация моделей изображений

Для сегментации изображений используют ту или иную модель, обеспечивающую более или менее адекватное описание реальных изображений. Выделяют два основных класса моделей изображений: статистические и пространственные. Статистические модели описывают совокупность точечных элементов изображения или его области. Пространственные модели описывают декомпозицию изображения на составные части или области.

Статистические модели первого порядка описывают совокупность точечных элементов изображения без учета их расположения в пространстве. Простейшее описание такого типа - плотность вероятности распределения значений яркости, которая рассчитывается с помощью гистограммы значений яркости. Часто считают, что плотность вероятности распределения значений реального изображения аппроксимируется некоторой стандартной, например, гауссовой функцией плотности вероятности или смесью таких функций.

В моделях первого порядка не учитывается, что изображение состоит из каких-либо согласованных частей (элементов текстуры, объектов и т. д.). Взаимное расположение элементов в пространстве учитывают модели совокупностей точечных элементов изображения более высокого порядка. Одной из моделей является матрица смежности значений яркости, элементы которой представляют собой частоты пар значений яркости при выбранном смещении. Величина смещения на практике выбирается достаточно малой, т. к. при большом смещении значения яркости становятся независимыми друг от друга.

Другой метод описания пространственных отношений между точечными элементами изображения состоит в рассмотрении плотности вероятности распределения значений локального признака, что зачастую более эффективно, чем использование плотности вероятности распределения значений яркости высших порядков. При сегментации изображения особенно полезны локальные признаки, обусловленные наличием краев, например, значения различных дифференциальных операторов измерения градиента яркости.

К статистическим моделям изображения относятся также модели случайных полей и временных рядов , использующиеся, в основном, при моделировании текстур.

Пространственные модели описывают изображение в терминах областей. Изображение может быть представлено как совокупность объектов на фоне, как расчлененное на области некоторым регулярным или случайным способом, как модель формы областей. Пространственные модели позволяют в общем случае извлечь больше информации из изображения, чем модели статистик распределения яркости. Однако пока используются только достаточно простые модели, а их математический аппарат требует дальнейшей разработки.

Сегментация изображений методами пороговой обработки

Наиболее простым и широко распространенным методом сегментации изображений является пороговая обработка. В ряде стандартных методов выделения частей изображения по порогу величины порогов определяются непосредственно по гистограммам изображения (статистическая модель изображения первого порядка). Исторически первым методом этой группы методов является метод мод. Метод вытекает из предположения, что изображение содержит известное число однородных по яркости классов точек. Кроме того, считается, что граничные участки между замкнутыми областями занимают сравнительно небольшую площадь изображения. Поэтому на гистограмме им должны соответствовать межмодовые впадины, в пределах которых устанавливаются пороги сегментации.

Однако реальные изображения плохо удовлетворяют выдвинутым предположениям. Как правило, границы между областями размыты и модальная структура гистограммы выражена недостаточно. Кроме того, даже когда гистограмма имеет различимые моды, ее впадины могут быть настолько широкими и плоскими, что оказывается трудно локализовать дно впадины.

Если реальное изображение не удовлетворяет условиям метода мод, применяются следующие четыре подхода. Во-первых, улучшение гистограммы, в том числе, на основе локальных свойств изображения с использованием градиентной информации, статистик второго порядка, анализа кривизны интегральной функции распределения. Во-вторых, аппроксимация гистограммы смесью нормальных распределений и применение статистических методов для оптимального разделения этой смеси. Недостатком этого подхода является большая вычислительная сложность, кроме того, зачастую гауссоиды плохо аппроксимируют реальные моды. В-третьих, введение эмпирической меры качества сегментированного изображения и максимизация соответствующей критериальной функции - дискриминантный подход, энтропийный подход, моментный подход и др. В-четвертых, переход к использованию иных статистик для выбора порога, в частности, выбор порога непосредственно по локальным признакам. Использование локальных признаков позволяет сегментировать сложные реальные изображения более качественно.

Гистограммный анализ обеспечивает удовлетворительное качество сегментации тех изображений, которые состоят из однородных по яркости областей. Однако, при выделении малоразмерных объектов на сложном фоне, точки объектов не дают заметных пиков на гистограмме яркости. Поэтому применяется обработка с переменным порогом: для небольших фрагментов изображения осуществляется построение гистограмм, которые проверяются на бимодальность, а найденные локальные пороги интерполируются на оставшуюся часть изображения.

Ряд алгоритмов, основанных на дискриминантом анализе, предложен в работах Осту. Пусть G ={0,1,...,L }- возможные значения яркости изображения. Порог разделяет распределение значений яркости изображения на два класса C 0={0,1,...,t } и C 1={t +1,t +2,...,L }, t ÎG . Оптимальный порог t * определяется как

где - дисперсия распределения значений яркости изображения в целом, w0 - вероятность принадлежности наугад взятой точки к фону, https://pandia.ru/text/80/299/images/image004_46.gif" width="21" height="24">- средний уровень яркости фона (класса C 0).

Если площади объекта и фона резко отличаются друг от друга, гистограмма критериальной функции может быть мультимодальной. Поэтому необходимо определять все локальные пики, что серьезно снижает конкурентоспособность метода.

Энтропийный критерий для выбора оптимального порога. Пользуясь введенными ранее определениями, гистограмму значений яркости можно рассматривать как L -символьный источник информации с энтропией

,

где pi – вероятность яркости со значением i .

Энтропия источника складывается из энтропии объекта H 0 и энтропии фона H 1, а оптимальный порог должен давать максимальное значение этой суммы:

, (2)

при этом .

Поскольку каждое из слагаемых H 0 и H 1 характеризует равномерность распределения яркостей на соответствующих интервалах и резко уменьшается при попадании в данный интервал "чужого" фрагмента гистограммы максимум энтропийного критерия будет соответствовать наилучшему варианту сегментации. Недостатком этого метода является то, что критериальная функция может иметь несколько близких по значению максимумов.

В отличие от дискриминантного подхода в методе сохранения моментов вводятся все моменты изображения до (2k +1) порядка включительно:

.

Оптимальным считается порог, обеспечивающий равенство соответствующих моментов сегментированного и исходного изображений. Однако если k >3, то возникают трудности, связанные с отсутствием аналитического решения задачи.

Переход от выбора порога по гистограмме яркости к использованию иных статистик, несомненно, усложняет алгоритмы сегментации, но обеспечивает более качественную сегментацию сложных изображений. Для выделения малоразмерных объектов перспективным представляется выбор порога непосредственно по локальным свойствам точек изображения.

Метод максимума среднего контраста. В основу метода положено простое эвристическое определение оптимального порога: оптимальным для сегментации изображений считается порог, выделяющий больше высококонтрастных и меньше низкоконтрастных перепадов яркости, чем любой другой порог. Количественным выражением критерия является средний контраст всех перепадов яркости, выделяемых данным порогом. Порог, соответствующий максимальному среднему контрасту, является оптимальным. Если две смежные точки Х 1=(х 1,y 1) и X 2=(x 2,y 2) имеют значения яркости f (Х 1) и f (X 2) (без потери общности f (X 1)£f (X 2)), то количество перепадов, выделяемых порогом t , равно:

где

Полный контраст, соответствующий порогу t , равен:

где DIV_ADBLOCK169">

. (3)

На основе предложенных Хараликом матриц смежности значений яркости рассмотрен следующий метод сегментации. Для изображения строятся матрицы совместного появления уровней яркостей пар смежных точек в горизонтальном P 1,0 и вертикальном P 1,90 направлениях, а также суммарная матрица переходов, размером (L +1)´(L +1):

P vh = P 1,0 + P 1,90.

Произвольный порог t разбивает точки изображения на два класса С 0 и С 1, а матрицу переходов - на 4 блока.