Интел пентиум 4 какой сокет. Процессоры Intel Pentium4 LGA775

С одной стороны, время в IT-индустрии летит настолько быстро, что не успеваешь замечать новые продукты и технологии, а с другой… ну-ка, вспомним — сколько лет мы не видели нового ядра от Intel? Не старого с переделками: тут частоту FSB подняли, там виртуальную многопроцессорность с серверного процессора на десктопный перенесли (на самом деле — просто разрешили последнему честно рассказать, что она у него есть), но действительно полностью нового? Если не с нуля разработанного, то хотя бы не латаного, а заново по тем же лекалам сшитого, но с другими рюшечками и по последней моде? А ведь целых два года, оказывается! Даже с хвостиком небольшим. И все это время горячие головы рассуждали на излюбленную тему: а каким же оно будет, новое ядро? Чего только не предсказывали — вплоть до полной анафемы архитектуре NetBurst и воцарения сплошного Banias на декстопной платформе. Правда (как часто бывает), оказалась менее сказочной: новое ядро оказалось честным и последовательным продолжателем Northwood. Разумеется, с некоторыми архитектурными нововведениями, но стремления «до основанья, а затем…» в нем не прослеживается. Поэтому чисто эмоционально Prescott можно оценивать по-разному: кто-то похвалит инжереров Intel за последовательность и целеустремленность, кто-то, наоборот — посетует на отсутствие свежих идей. Однако эмоции — личное дело каждого, мы же обратимся к фактам. Теория

Основные изменения в ядре (Prescott vs. Northwood)

Для начала мы предлагаем вам небольшую табличку, в которой сведены воедино наиболее существенные различия между ядрами Prescott и Northwood во всем что касается «железа» (а точнее — кремния, и прочих «минеральных составляющих»).

Остается только добавить, что новое ядро содержит 125 миллионов транзисторов (куда там бедному Northwood с его 55 миллионами!), и его площадь равна 112 кв. мм (немного меньше площади Northwood — 146/131 кв. мм, в зависимости от ревизии). Произведя несложный арифметический подсчет, видим, что увеличив количество транзисторов в ~2,3 раза, за счет нового техпроцесса инженерам Intel удалось, тем не менее, уменьшить площадь ядра. Правда, не так значительно — «всего» в 1,3 (1,2) раза.

Что же касается технологии «напряженного» (некоторые предпочитают термин «растянутый») кремния — то она, если объяснять на пальцах, довольно проста: с целью увеличения расстояния между атомами кремния, он помещается на подложку, расстояние между атомами у которой больше. В результате, для того чтобы «хорошо усесться», атомам кремния приходится растягиваться по предложенному формату. Выглядит это примерно вот так:

Ну а понять, почему электронам проще проходить через напряженный кремний, вам поможет вот этот простенький рисунок:

Как видите, геометрическая ассоциация в данном случае вполне уместна: путь электрона просто становится короче.

Ну а теперь рассмотрим гораздо более интересные отличия: в логике ядра. Их тоже немало. Однако для начала будет нелишним напомнить об основных особенностях архитектуры NetBurst как таковой. Тем более что не так уж и часто мы это делали в последнее время.

Немного предыстории

Итак, одним из основных отличий ядер, разработанных в рамках архитектуры NetBurst, сама компания Intel считает уникальную особенность, выражающуюся в разделении собственно процесса декодирования x86-кода во внутренние инструкции, исполняемые ядром (uops), и процедуры их выполнения. Между прочим, такой подход породил в свое время немало споров относительно корректности подсчета стадий конвейера у Pentium 4: если подходить к данному процессору с классической точки зрения (эпохи до-NetBurst), то стадии декодера следует включать в общий список. Между тем, официальные данные Intel о длине конвейера процессоров Pentium 4 содержат информацию исключительно о количестве стадий конвейера исполняющего блока, вынося декодер за его рамки. С одной стороны — «крамола!», с другой — это объективно отражает особенность архитектуры, поэтому Intel в своем праве: она же ее и разработала. Спорить, можно, разумеется, до посинения, однако… какая, собственно, разница? Главное — понимать суть подхода. Не нравится вам, что декодер исключен? Ну так прибавьте его стадии к «официальным» — и получите искомую величину конвейера по классической схеме, вместе с декодером.

Таким образом, основная идея NetBurst — асинхронно работающее ядро, в котором декодер инструкций работает независимо от Execution Unit. С точки зрения Intel, существенно бо льшая, чем у конкурентов, частота работы ядра, может быть достигнута только при асинхронной модели т.к. если модель синхронная, то расходы на синхронизацию декодера с исполняющим блоком возрастают пропорционально частоте. Именно поэтому вместо обычного L1 Instructions Cache, где хранится нормальный x86-код, в архитектуре NetBurst применяется Execution Trace Cache, где инструкции хранятся уже в декодированном виде (uops). Trace — это и есть последовательность uops.

Также в историческом экскурсе хотелось бы окончательно развеять мифы, связанные с излишне упрощенной формулировкой, согласно которой ALU у Pentium 4 работает на «удвоенной частоте». Это и так… и не так. Однако для начала взглянем на условную блок-схему процессора Pentium 4 (уже Prescott):

Легко заметить, что ALU состоит из нескольких частей: в нем присутствуют блоки Load / Store, Complex Instructions, и Simple Instructions. Так вот: с удвоенной скоростью (0,5 такта на операцию) обрабатываются лишь те инструкции, что поддерживаются исполняющими блоками Simple Instructions. Блок ALU Complex Instructions, исполняющий команды, отнесенные к сложным — наоборот, может тратить до четырех тактов на исполнение одной инструкции.

Вот, собственно, и все, что хотелось бы напомнить относительно внутреннего устройства процессоров сконструированных на базе архитектуры NetBurst. Ну а теперь перейдем к нововведениям в самом свежем NetBurst-ядре — Prescott.

Увеличение длины конвейера

Вряд ли это изменение можно назвать усовершенствованием — ведь общеизвестно, что чем длиннее конвейер, тем бо льшие накладные расходы вызывает ошибка механизма предсказания ветвлений, и, соответственно, уменьшается средняя скорость выполнения программ. Однако, видимо, другого способа увеличить разгонный потенциал ядра, инженеры Intel найти не смогли. Пришлось прибегнуть к непопулярному, но проверенному. Итог? Конвейер Prescott увеличен на 11 стадий, соответственно, общее их количество равняется 31. Честно говоря, мы намеренно вынесли эту «приятную новость» в самое начало: фактически, описание всех последующих нововведений можно условно назвать «а вот теперь мы вам расскажем, как инженеры Intel боролись с последствиями одного-единственного изменения, чтобы оно окончательно не угробило производительность»:).

Усовершенствования в механизме предсказания ветвлений

В основном, тонкий тюнинг коснулся механизма предсказания переходов при работе с циклами. Так, если ранее по умолчанию обратные переходы считались циклом, то теперь анализируется длина перехода, и исходя из нее механизм пытается предсказать: цикл это, или нет. Также было обнаружено, что для ветвей с определенными типами условных переходов, независимо от их направления и расстояния, использование стандартного механизма предсказания ветвлений чаще всего неактуально — соответственно, теперь в этих случаях он не используется. Однако кроме теоретических изысканий, инженеры Intel не побрезговали и голой эмпирикой т.е. просто-напросто отслеживанием эффективности работы механизма предсказания ветвлений на примере конкретных алгоритмов. С этой целью было исследовано количество ошибок механизма предсказания ветвлений (mispredictions) на примерах из теста SPECint_base2000, после чего по факту были внесены изменения в алгоритм с целью их уменьшения. В документации приводятся следующие данные (количество ошибок на 100 инструкций):

Подтест SPECint_base2000 Northwood (130 nm) Prescott (90 nm)
164.gzip 1.03 1.01
175.vpr 1.32 1.21
176.gcc 0.85 0.70
181.mcf 1.35 1.22
186.crafty 0.72 0.69
197.parser 1.06 0.87
252.eon 0.44 0.39
253.perlbmk 0.62 0.28
254.gap 0.33 0.24
255.vortex 0.08 0.09
256.bzip2 1.19 1.12
300.twolf 1.32 1.23

Ускорение целочисленной арифметики и логики (ALU)

В ALU был добавлен специализированный блок для исполнения инструкций shift и rotate, что позволяет теперь исполнять данные операции на «быстром» (двухскоростном) ALU, в отличие от ядра Northwood, где они исполнялись в блоке ALU Complex Instructions, и требовали бо льшего количества тактов. Кроме того, ускорена операция целочисленного умножения (integer multiply), ранее исполнявшаяся в блоке FPU. В новом ядре для этого выделен отдельный блок.

Также есть информация о присутствии некоторого количества мелких усовершенствований, позволяющих увеличить скорость обработки инструкций FPU (и MMX). Впрочем, ее мы лучше проверим в практической части — при анализе результатов тестов.

Подсистема памяти

Разумеется, одним из основных плюсов нового ядра являются увеличенные размеры L1-кэша данных (в 2 раза т.е. до 16 килобайт) и кэша второго уровня (также в 2 раза т.е. до 1 мегабайта). Однако есть и еще одна интересная особенность: в ядро введена специальная дополнительная логика, обнаруживающая page faults в инструкциях software prefetch. Благодаря этому нововведению, инструкции software prefetch теперь имеют возможность осуществлять не только предвыборку данных, но и предвыборку page table entries т.е., другими словами, prefetch умеет не останавливаться на загруженной странице, но еще и обновлять страницы памяти в DTLB. Разбирающиеся в вопросе наверняка заметят на этом примере, что Intel внимательно следит за отзывами программистов, пусть даже и не кается прилюдно по поводу каждого обнаруженного ими негативного фактора, влияющего на производительность.

Новые инструкции (SSE3)

Кроме всего прочего, в Prescott добавлена поддержка 13 новых инструкций. Назван этот набор, по устоявшейся традиции, SSE3. В их числе присутствуют команды преобразования данных (x87 to integer), работы с комплексной арифметикой, кодирования видео (правда, всего одна), новые команды, предназначенные для обработки графической информации (массивов вершин), а также две инструкции, предназначенные для синхронизации потоков (явно последствия появления Hyper-Threading). Впрочем, о SSE3 мы в скором времени выпустим отдельную статью, поэтому рассматривать возможности данного набора в этом материале воздержимся, чтобы не портить излишней популяризацией серьезную и интересную тему.

Ну а теперь, пожалуй, довольно с нас теории и спецификаций. Попытаемся, как говорилось в одном известном анекдоте, «вместе со всем этим взлететь»:). Тестирование

Конфигурации стендов и ПО

Тестовый стенд

  • Процессоры:
    • AMD Athlon 64 3400+ (2200 МГц), Socket 754
    • Intel Pentium 4 3,2 ГГц «Prescott» (FSB 800/HT), Socket 478
    • Intel Pentium 4 2,8A ГГц «Prescott» (FSB 533/нет HT), Socket 478
    • Intel Pentium 4 3,4 ГГц «Northwood» (FSB 800/HT), Socket 478
    • Intel Pentium 4 3,2 ГГц «Northwood» (FSB 800/HT), Socket 478
  • Материнские платы:
    • ABIT KV8-MAX3 (версия BIOS 17) на чипсете VIA K8T800
    • ASUS P4C800 Deluxe (версия BIOS 1014) на чипсете Intel 875P
    • Albatron PX875P Pro (версия BIOS R1.00) на чипсете Intel 875P
  • Память:
    • 2x512 МБ PC3200 DDR SDRAM DIMM TwinMOS (тайминги 2-2-2-5)
  • Видеокарта: Manli ATI Radeon 9800Pro 256 МБ
  • Жесткий диск: Western Digital WD360 (SATA), 10000 об/мин



Pentium 4 2,8A ГГц «Prescott»
Единственный Prescott с частотой FSB 533 МГц
и без поддержки Hyper-Threading



Pentium 4 3,4 ГГц «Northwood»
Просто еще один Northwood…

Системное ПО и драйверы устройств

  • Windows XP Professional SP1
  • DirectX 9.0b
  • Intel Chipset Installation Utility 5.0.2.1003
  • VIA Hyperion 4.51
  • VIA SATA Driver 2.10a
  • Silicon Image Driver 1.1.0.52
  • ATI Catalyst 3.9
Плата ABIT KV8-MAX3 ASUS P4C800 Deluxe Albatron PX875P Pro
Чипсет VIA K8T800 (K8T800 + VT8237) Intel 875 (RG82004MC + FW82801ЕB) Intel 875 (RG82875 + FW82801ЕB)
Поддержка процессоров Socket 754, AMD Athlon 64 Socket 478, Intel Pentium 4, Intel Celeron
Разъемы памяти 3 DDR 4 DDR 4 DDR
Слоты расширения AGP/ 5 PCI AGP Pro/ 5 PCI AGP/ 5 PCI
Порты ввода/вывода 1 FDD, 2 PS/2 1 FDD, 2 COM, 1 LPT, 2 PS/2 1 FDD, 2 COM, 1 LPT, 2 PS/2
USB 4 USB 2.0 + 2 разъема по 2 USB 2.0 2 USB 2.0 + 3 разъема по 2 USB 2.0
FireWire 1 порт + 2 разъема на 2 порта (планка в комплекте), Texas Instruments TSB43AB23 1 порт + 1 разъем на 1 порт (нет планки в комплекте), VIA VT6307 —
Интегрированный в чипсет ATA-контроллер ATA133 + SATA RAID (0, 1) ATA100 + SATA ATA100 + SATA
Внешний ATA-контроллер Silicon Image Sil3114CT176 (SATA RAID 0, 1, 0+1, Spare) Promise PDC20378 (ATA133+SATA RAID 0, 1, 0+1) —
Звук AC"97-кодек Avance Logic ALC658 AC"97-кодек Analog Devices AD1985 AC"97-кодек Avance Logic ALC655
Сетевой контроллер 3Com Marvell 940-MV00 (Gigabit Ethernet) 3Com Marvell 920-MV00 (Fast Ethernet)
I/O-контроллер Winbond W83627HF-AW Winbond W83627THF-A Winbond W83627THF
BIOS 4 Мбит Award BIOS v6.00PG 4 Мбит AMI BIOS v2.51 3 Мбит Phoenix AwardBIOS v6.00
Форм-фактор, размеры ATX, 30,5x24,5 см ATX, 30,5x24,5 см ATX, 30,5x24,5 см
Средняя текущая цена (количество предложений) Н/Д(0) Н/Д(0) Н/Д(0)

В завершение описания, хотелось бы разъяснить алгоритм подбора участников тестирования. С одной стороны, полностью исключить из тестов процессоры AMD было бы неправильно, ведь эта платформа — основной конкурент Intel, как сейчас, так и в обозримом будущем. С другой стороны — совмещать в одной статье сравнение двух поколений Pentium 4 с процессорами другого производителя, означало бы не сравнить толком ни то, ни другое. Поэтому мы решили в первом материале, посвященном Prescott, пойти на определенный компрормисс: во-первых, полностью исключить всевозможные «экстремальные» варианты в виде Pentium 4 eXtreme Edition и Athlon 64 FX, во-вторых же, взять в качестве представителя альтернативной платформы только один, но быстрый из обычных десктопных процессоров AMD: Athlon 64 3400+.

Да и то, по большому счету, его результаты здесь приводятся лишь в качестве опции. В этом материале нас более всего интересует сравнение нового ядра Intel со старым. Если кто-то желает получить одновременно информацию о том, как производительность Prescott соотносится с ближайшим конкурентом — что ж, она представлена на диаграммах. Комментарии? Пожалуй, они просто излишни. Вы сами в этом убедитесь. Зная, какова производительность Prescott и Northwood, работающих на одинаковой частоте, и то, как соотносятся производительность Northwood и топовых процессоров AMD (а этот вопрос мы уже неоднократно освещали) — вы знаете вполне достаточно для того, чтобы самостоятельного сделать все остальные выводы.

Кроме того, хотелось бы разъяснить наличие на диаграммах двух столбиков для Prescott 3,2 ГГц. Дело просто в том, что мы решили… подстраховаться. Всем известно, что с выходом процессора на другом ядре, среди производителей системных плат сразу же начинается суматоха с обновлением BIOS, всяческих microcode update, и прочего «железно-ориентированного» ПО. Нам показалось логичным использовать такой ресурс нашей тестовой лаборатории как «официально Prescott-ready» системные платы максимально полно, чтобы уберечься от возможных последствий некорректной работы конкретной модели. Впрочем, как вы увидите далее, опасения оказались напрасными: в большинстве случаев новый процессор вел себя на обеих платах совершенно одинаково.

Все характеристики Prescott 2,8A ГГц программа
CPU-Z определяет вполне корректно:
как наличие SSE3, так и шину 533 МГц

Разумеется, не ошиблась она и в случае с
Prescott 3,2E ГГц

Низкоуровневые тесты в CPU RightMark

Для начала, мы решили проверить функционирование нового ядра в двух режимах — традиционно самом лучшем для процессоров Pentium 4 и самом худшем: SSE/SSE2 и MMX/FPU. Начнем с вычислительного блока (Math Solving).

Результаты неутешительные. Новое ядро медленнее старого, более того — в режиме MMX/FPU его отставание даже больше, чем при использовании SSE/SSE2. Делаем первый вывод: если что-то в FPU и «подкручивали», то явно в CPU RightMark используются другие команды. Ну а что у нас с рендерингом?

Во-первых, рассмотрим варианты работы модуля рендеринга в однопоточном и двухпоточном режимах с максимальной производительностью (SSE/SSE2). Картина достаточно интересная: если используется один поток — преимущество Prescott минимально, а больший по частоте Northwood его легко обгоняет. Однако стоит нам задействовать Hyper-Threading, как Prescott тут же резко вырывается вперед, причем настолько, что обгоняет всех других участников. Возникает впечатление, что некая работа над ядром в плане улучшения обработки параллельно выполняющихся потоков, была проведена, и заключалась она не только в расширении набора команд. Посмотрим теперь, как себя ведут те же процессоры в режиме MMX/FPU.

Абсолютно аналогичная картина. Причем если сопоставить ее с предыдущей — хорошо видно, что тщательность анализа себя оправдала: если бы, к примеру, мы ограничились рассмотрением лучшего (двухпотокового) результата, можно было бы ошибочно сделать вывод о том, что ядро Prescott быстрее в плане исполнения инструкций, причем даже в режиме MMX/FPU. Сейчас же хорошо видно, что быстродействие возросло исключительно благодаря оптимизации использования ресурсов виртуальных CPU.

Тесты в реальных приложениях

Перед тем как начать рассмотрение результатов тестов в реальных приложениях, сделаем небольшое вводное разъяснение. Дело в том, что процессор Pentium 4 на ядре Prescott с частотой 3,4 ГГц, к сожалению, до сих пор для нас недоступен, поэтому то, что вы видите на диаграммах под названием "Virtual" Prescott 3,4 ГГц — это не более чем аппроксимация результатов Prescott 3,2 ГГц, рассчитанная исходя из идеальных условий роста производительности пропорционально частоте. Кто-то может заметить, что это слишком топорный подход. Дескать, намного корректнее было бы, к примеру, разогнать имеющийся Prescott 3,2 ГГц с помощью выставления большей частоты FSB, или хотя бы выстроить кривую аппроксимации по трем точкам: Prescott 2,8 ГГц -> 3,0 ГГц -> 3,2 ГГц. Разумеется, так было бы корректнее. Однако «на всякого мудреца довольно простоты», и… просто обратите внимание на то, какие поправки вносит в общую картину наличие на диаграммах даже «идеального» Prescott 3,4 ГГц (а реальный будет либо таким же, либо медленнее — третьего не дано). Рискуя навлечь на себя немилось преждевременным разглашением тайны, скажем сразу: да практически никаких. Где ядро Prescott выигрывает — там это и так видно. А где проигрывает — не помогают ему даже идеализированные 3,4 ГГц…

Работа с графикой

Самые предсказуемые результаты у Northwood 3,4 ГГц (немного лучше, чем у Northwood 3,2 ГГц) и Prescott 2.8 ГГц (отсутствие поддержки Hyper-Threading сразу же выбросило его в аутсайдеры). Prescott 3,2 ГГц пытается быть хотя бы наравне с одночастотным Northwood, но у него не получается даже это. Ну а наш «виртуальный Prescott 3,4 ГГц», в свою очередь, не смог обогнать реальный Northwood 3,4 ГГц — что тоже естественно. C другой стороны, можно заметить, что все процессоры кроме Prescott 2,8 ГГц почти равны. Вряд ли это будет аргументом для апгрейда на Prescott, но хотя бы не станет существенным доводом против его покупки для тех, кто задумывается над приобретением новой системы.

В Lightwave ситуация аналогичная, только Prescott отстает еще больше. Здесь уместно будет вспомнить, что Lightwave (судя по сравнению результатов 6-й ветки с 7-й), затачивался под Pentium 4 очень тщательно и скрупулезно. Можно предположить, что именно поэтому он оказался так чувствителен к малейшим архитектурным изменениям в ядре. Также отметим, что впервые протестированный нами в этой программе Athlon 64 3400+ демонстрирует пусть и не лучший, но вполне приличный результат.

Для Photoshop в современных процессорных архитектурах, видимо, самым главным параметром является размер кэша. Мы уже неоднократно обращали внимание на то, что эта программа весьма «кэшелюбива», и результаты Prescott это подтверждают.

Кодирование медиаданных

Вообще, поскольку мы тестируем новую (или существенно модифицированную, если вам так больше нравится) архитектуру — то для нас любое приложение может стать маленьким открытием. По сути, сейчас количество даже важнее качества, потому что нам просто необходимо набрать как можно больше данных о том, как старые (еще не оптимизированные под Prescott) программы ведут себя с новым процессорным ядром. Вот, тот же LAME: оказывается, для него Prescott по всем статьям новый процессор — результаты совершенно не ложатся на то, что мы ранее знали про Northwood. Правда, они стали хуже. Что ж, бывает. Продолжаем коллекционировать…

Ogg Encoder демонстрирует практически идентичную картину: Prescott существенно проигрывает всем остальным процессорам без исключения, несмотря на удвоенный кэш данных первого уровня и L2. Остается предположить, что виновато увеличение длины конвейера при оставшемся неизменным объеме Trace Caсhe.

Даже тяготеющий к архитектуре NetBurst кодек DivX невзлюбил новое ядро. Не то что бы очень сильно, но все-таки оно ему не понравилось. Впрочем, тут есть определенная надежда на SSE3 — разработчики DivX просто обожают различные оптимизации (во всяком случае, судя по анонсам), поэтому весьма велик шанс, что единственная и неповторимая инструкция, предназначенная для ускорения кодирования видео, найдет свое место в будущем релизе данного кодека. Однако это все в будущем, а пока — увы…

А вот результаты XviD мы опять не приводим по причине совершенно невообразимого «фортеля», который в очередной раз выкинула эта нежно нами любимая программа. Дело в том, что прирост производительности Prescott по отношению к Northwood в ней составил… 232% ! Такие тесты, пардон, мы использовать просто отказываемся. Похоже, что их результаты могут зависеть вообще от чего угодно…

Ну, вот и первая победа. Впрочем, возвращаясь к теме о предпочтениях различного ПО, можно заметить, что Windows Media Video 9 весьма неплохо поддерживает Hyper-Threading, а данные низкоуровневых тестов показали, что эффективность задействования виртуальных CPU в случае с новым ядром возрастает. Похоже, что это первый положительный результат, достигнутый за счет качественного, а не количественного изменения в Prescott. Во всех предыдущих случаях он «выезжал» исключительно за счет большого объема кэша…

Очень, очень интересный результат. Mainconcept MPEG Encoder, которому мы пеняли за «корявую» работу с Hyper-Threading при кодировании в формат MPEG1 — вполне адекватно работает с виртуальными процессорами, если они эмулируются Prescott, а не Northwood! Впору даже задуматься: быть может, программисты не виноваты, просто «затык» был в процессорном ядре, которое некорректно распараллеливало потоки? Вполне возможно, по крайней мере, глядя на результаты Prescott, понимаешь, что и это предположение имеет право на жизнь. C другой стороны вполне неплохо себя показал Prescott 2,8A ГГц, про Hyper-Threading и слыхом не слыхавший. Забавная ситуация. Пожалуй, мы находимся на пороге интересного открытия: напрашивается предположение, что вся «оптимизация работы Hyper-Threading в Prescott» сводится всего лишь к тому… что этой технологии в Northwood не хватало объема кэша, чтобы развернуться в полную силу!

И снова можно порадоваться за новое ядро: в Mainconcept MPEG Encoder не только пропал «глюк» с кодированием MPEG1, но и преобразование в MPEG2 стало работать существенно быстрее. Имея в виду результаты предыдущих тестов, можно почти однозначно утверждать, что основным виновником торжества является улучшенная работа Hyper-Threading (и не забываем о том, за счет чего она могла стать лучше — если наши предположения верны). Что самое интересное — не понадобились даже специальные команды для управления потоками из набора SSE3, процессор сам отлично разобрался (поддержку SSE3 в данной версии кодировщика предполагать не приходится — она вышла довольно давно).

А вот Canopus ProCoder просто почти ничего не заметил. В принципе, небольшая разница в производительности присутствует, и она даже в пользу Prescott. Но, по сути, это копейки, мелочь. Учитывая «кэшелюбивость» ProCoder, можно даже сказать так: весь большой кэш, судя по всему, ушел на компенсацию других недостатков нового ядра. Он просто вытянул Prescott на ту же высоту, что и Northwood, но, увы — не более.

Архивирование

Традиционно, мы протестировали 7-Zip как со включенной поддержкой многопоточности, так и без нее. Ожидаемый эффект достигнут в этой программе не был: не заметно, чтобы многопоточность на Prescott давала намного больший эффект, чем на Northwood. Да и вообще — особой разницы между старым и новым ядром не видно. Похоже, что мы наблюдаем упомянутый выше эффект: все, что смогли сделать количественные показатели Prescott (объемы кэша L1 Data и L2) — это компенсировать его же удлиненный конвейер.

К слову: один из немногих тестов, где хоть как-то видна разница между платами. В остальном — все та же картина: Prescott и Northwood одинаковой частоты идут рядом, практически не отличаясь по скорости. Пессимисты скажут: «плохо», оптимисты: «могло быть и хуже»:). Мы — просто промолчим…

Игры

Картина во всех трех играх схожая, поэтому особенно расписываться нет нужды: Prescott все же медленнее. Правда, ненамного.

Обобщая результаты

Что ж, если делать какие-то выводы на основании тех тестов, что присутствуют в статье, то ситуация выглядит следующим образом: ядро Prescott в целом медленнее Northwood. Иногда это удается компенсировать бо льшим объемом кэша, вытянув производительность на уровень старого ядра. Ну а если программа особенно чувствительна к объему L2, Prescott даже способен выиграть. Кроме того, несколько улучшилась эффективность Hyper-Threading (но похоже, что причина снова кроется в увеличении объема L2-кэша). Соответственно, если программа умеет использовать обе сильные стороны нового ядра — большой кэш и виртуальную многопроцессорность — то выигрыш получается ощутимым. В целом же, производительность Prescott примерно такая же, как у Northwood, а применительно с старому, неоптимизированному ПО — даже более низкая. Ожидаемой революции, увы, не получилось. С другой стороны… а был ли мальчик? Но об этом — ниже.

Что же касается Prescott 2,8A ГГц с 533-мегагерцевой системной шиной и без поддержки Hyper-Threading, то как раз тут все предельно ясно. Во-первых, для Intel это просто очень хороший способ сделать хотя бы что-то из тех экземпляров, которые в «настоящем Prescott"овском» режиме банально не заработали. Этакий «Celeron среди Prescott"ов» (хотя будет, судя по всему, на базе этого ядра и официальный Celeron). Во-вторых — отсутствие Hyper-Threading скорее всего свидетельствует о принципиальном нежелании Intel видеть HT на устаревшей, низкоскоростной шине. Действительно: единственным представителем 533 МГц FSB + HT так и остался первый процессор с поддержкой этой технологии — Pentium 4 3,06 ГГц. Да и то по вполне понятной, извиняющей его причине: не было еще на тот момент CPU с 800-мегагерцевой шиной.

Таким образом, да простят нам инженеры Intel эту вольность, Pentium 4 2,8A ГГц — это «как бы не Prescott». А просто сравнительно недорогой (другим его выпускать нельзя — не купит ведь никто…), но высокочастотный Pentium 4. И совершенно неважно, на каком он сделан ядре, не в этом суть. Честно говоря, было искушение его в этот материал вообще не включать, но потом мы решили поступить наоборот: дать ему один раз «засветиться», и более к данному чу дному процессору не возвращаться. Из простого сравнения одночастотных ядер Prescott и Northwood понятно, что без Hyper-Threading Prescott 2.8 ГГц даже с Pentium 4 2.8C (800 МГц FSB + HT) по усредненным показателям производительности соперничать не сможет. Версии

Да, именно «версии», а не «выводы». Слишком неоднозначным получился этот материал. Проще было бы ограничиться анализом диаграмм и сделать напрашивающийся, лежащий на поверхности вывод: «если новое не быстрее (а то и медленнее) старого — значит, оно хуже». Списать, так сказать, в расход. Однако самый простой ответ — не всегда самый правильный. Поэтому мы решили коснуться аналитики, и рассмотреть выход Prescott в исторически-рыночной перспективе. Получилось, что ответов на вопрос «в чем для Intel состоит смысл выпуска Pentium 4 на ядре Prescott?» на самом деле несколько, и каждый из них можно логично аргументировать.

Версия первая или Большая ошибка

Почему бы и нет? Жила-была компания Intel, и появилась у нее идея: сделать процессорное ядро, ориентированное не на максимальный КПД (если рассматривать КПД как соотношение производительности к частоте), а на легкую масштабируемость. Дескать, если наши 2000 МГц проигрывают 1000 МГц от конкурента — не беда, догоним частоту до 4 ГГц и оставим всех позади. Между прочим, с чисто инженерной точки зрения, это вполне адекватное решение. Не все ли равно? Пользователя-то (грамотного) все равно интересуют не мегагерцы, а производительность, какая ему разница, за счет чего она достигается? Главное чтобы масштабируемость оказалась именно такой, какую предполагалось достичь. И вот, выясняется, что с масштабируемостью начались большие проблемы. Догнали до 3,4 ГГц, остановились… и пришлось придумывать новое ядро, у которого КПД еще ниже… и неизвестно, какими темпами будет расти у него частота… и так далее. Напомним, что это версия. Рассмотрим ее внимательнее в сопоставлении с реальными фактами.

Факт, свидетельствующий в пользу данной версии — рост частоты Pentium 4 за прошедший 2003 год. Все-таки 200 МГц, да еще и по отношению к такой «частотолюбивой» архитектуре как NetBurst — явно мало. Однако… как общеизвестно, рассматривать какой-то факт в отрыве от других — не очень хорошая практика. Был ли смысл в активном наращивании частоты Pentium 4 в прошлом году? Вроде бы нет… Основной конкурент решал другие вопросы — у него новая архитектура, новое ядро, ему нужно наладить массовое производство процессоров на базе этого ядра, обеспечить им соответствующую обвязку в виде чипсетов, системных плат, программного обеспечения, в конце концов! Поэтому один из вариантов ответа на вопрос «почему практически не росла частота (и производительность) Pentium 4 в 2003 году» звучит просто: не было особого смысла ее наращивать. Ни догонять, ни перегонять — вроде некого. Стало быть, можно особенно не торопиться.

Получить ответ на главный вопрос мы, увы, пока не можем: как будет «гнаться» новое ядро? Пока что, если судить по внешним признакам, фактов, подтверждающих хорошую масштабируемость Prescott — нет. Впрочем, равно как и опровергающих ее. Анонсированы 3,4-гигагерцевые версии как Prescott, так и Northwood. Northwood 3,4 ГГц, наверное, будет последним процессором на этом ядре (хотя, официальных подтверждений этого предположения нет). А то, что Prescott стартовал с 3,4 ГГц, а не с 3,8 или 4,0 тоже легко объяснимо: зачем прыгать через ступеньки? Подводя итог: версия «Большой ошибки», в принципе, имеет право на существование. Но если частота (а еще точнее, — производительность) Prescott будет быстро расти, это однозначно подтвердит ее несостоятельность.

Версия вторая или Переходное ядро

Ни для кого не секрет, что иногда производителю требуется выпустить некое устройство, достаточно ординарное само по себе (в другой ситуации совершенно не заслуживающее звания релизного продукта). Но в том-то и дело, что выпуск данного устройства необходим для продвижения на рынок других, анонсируемых одновременно с ним или чуть позже. Таким был Pentium 4 Willamette, вряд ли достойный звания «хорошего и быстрого процессора», однако явно обозначивший факт перехода одного из самых крупных игроков на процессорном рынке, на новое ядро, и под конец своего существования сменивший «промежуточный» Socket 423 на «долгоиграющий» Socket 478. Что, если аналогичная роль уготована Prescott?

Уже всем известно, что с выходом Grantsdale-P, нас ждет появление еще одного процессорного разъема для Pentium 4 (Socket T / Socket 775 / LGA775), и поначалу устанавливаться в него будут именно CPU на ядре Prescott. Лишь впоследствии Pentium 4 «Tejas» начнет постепенно их замещать. И тут вполне логично задаться вопросом: а насколько быстро будет происходить это замещение? Поскольку мы все равно лишь выдвигаем версии, ограничивать свою фантазию не будем, и предположим, что Intel желает этот процесс максимально ускорить. С помощью чего? Скорее всего — оставив Socket 478 мирно почивать в нижних строчках на диаграммах производительности, и сделав Socket 775 символом обновленной, мощной и скоростной платформы для Pentium 4. Тогда все становится ясно: Prescott нужен для того, чтобы на рынке присутствовал процессор, способный работать как в платах с разъемом Socket 478, так и с новым Socket 775. Tejas же, если наши предположения верны, будет устанавливаться только в Socket 775, и станет, таким образом, могильщиком как для Prescott, так и для устаревшей платформы Socket 478. Логично? Нам кажется, что да. В таком случае, правдоподобно смотрится и следующее предположение: жизнь Prescott’у уготована весьма недолгая…

Версия третья или «Кто с мечом к нам придет…»

Не секрет, что соперничество между двумя основными конкурентами — Intel и AMD, почти всегда строилось на противопоставлении двух основных аргументов. Intel: «наши процессоры — самые быстрые!», AMD: «зато у наших лучше соотношение цены и производительности!». Соперничество давнее, аргументы тоже. Причем, они не изменились даже с выходом процессоров AMD на ядрах K7/K8, — несмотря на то, что у последних с производительностью дела обстоят намного лучше, чем у K6. Ранее Intel не делала исключений из основного своего правила: продавать свои CPU с производительностью, аналогичной процессорам конкурента, немного дороже. Рынок местами очень прост, поэтому причина такого поведения понятна: если их и так покупают — то зачем снижать цену? Опять-таки: хоть участвовать в ценовых войнах Intel и приходилось, но развязывала их всегда AMD, это уже стало традицией. Третья версия базируется на очевидном предположении: а что если на этот раз Intel решила повести себя агрессивнее, чем обычно, и развязать ценовую войну первой?

В списке достоинств нового ядра Prescott числится не только новизна, объемы кэшей, и потенциально хорошая (правда, пока не подтвержденная) масштабируемость, но и… цена! Это сравнительно дешевое в производстве ядро: если при использовании 90-нанометровой технологии будет достигнут показатель выхода годных чипов хотя бы такой же, как у Northwood — то, ничуть не теряя в абсолютных показателях прибыли, Intel сможет продавать свои процессоры за гораздо меньшую цену. Напомним одну очевидную зависимость: такую характеристику CPU как «соотношение цена / производительность», можно улучшать, не только повышая производительность, но и снижая цену. Вообще-то, никто не мешает быстродействие даже понизить (!) — главное, чтобы цена упала еще больше:). Судя по появляющимся в Сети неофициальным анонсам цен на Pentium 4 Prescott, стоить они будут намного дешевле Pentium 4 Northwood. Таким образом, мы можем предположить, что Intel решила осуществить своего рода «обход с флангов»: пока основной конкурент, по старинке, все гонится и гонится за производительностью, ему будет нанесен удар в секторе middle-end систем, где пользователи тщательно анализируют именно такой показатель как price / performance.

Версия четвертая или Тайное оружие

Здесь следует сделать небольшое лирическо-историческое отступление для тех, кто «во времена оные» не очень активно отслеживал разные мелкие нюансы в процессорном секторе. Так, к примеру, можно вспомнить, что сразу после появления первых процессоров с поддержкой Hyper-Threading (а ими были вовсе не Pentium 4 «Northwood» + HT, а Xeon «Prestonia»), многие задались вопросом: «если ядра Prestonia и Northwood настолько похожи, что практически не отличаются по основным характеристикам, но у Prestonia поддержка Hyper-Threading присутствует, а у Northwood ее нет — то не логично ли предположить, что и у Northwood она тоже есть, просто искусственно заблокирована?». Впоследствии это предположение косвенно подтвердилось — анонсом Pentium 4 3,06 ГГц на все том же ядре Northwood, но уже с Hyper-Threading. Более того, самые смелые выдвигали и вовсе крамольную мысль: Hyper-Threading была даже в Willamette!

А теперь вспомним: что у нас в последнее время известно по части новых технологических инициатив Intel. Сразу всплывают два названия: «La Grande» и «Vanderpool». Первое — технология аппаратной защиты приложений от вмешательства извне, которую вкратце можно описать словами «сделать так, чтобы одно ПО не могло вмешиваться в функционирование другого». Впрочем, о La Grande вы можете почитать на нашем сайте . Об Vanderpool информации меньше, но исходя из обрывков доступной на сегодня, можно сделать вывод, что она представляет собой вариацию на тему полной виртуализации PC, включая все без исключения аппаратные ресурсы. Таким образом (самый простой, но и самый эффектный пример), на одном компьютере смогут работать параллельно две операционные системы, причем одна из них может быть даже перезагружена — но это совершенно не отразится на работе другой.

Так вот: есть очень большие подозрения, что и La Grande и Vanderpool в ядре Prescott уже реализованы, но (как было ранее с Hyper-Threading) пока не активированы. Если это предположение истинно, то многое относительно самого ядра становится понятным. В частности — то, почему оно такое большое, почему так долго разрабатывалось, но, несмотря на это, не выирывает в скорости у предыдущего. Если исходить из гипотезы «Тайного оружия», можно предположить, что основные ресурсы команды разработчиков были направлены вовсе не на достижение быстродействия, а на отладку новых функций. Частично данная версия перекликается со второй — так или иначе, но мы имеем дело с переходным ядром. Соответственно, быть совершенным оно вовсе не обязано, ибо не в том его основное предназначение. Между прочим, также удачно вторую и четвертую версии дополняет третья: низкая цена в данном случае является именно той конфеткой, что подсластит для конечного пользователя пилюлю «переходности».

Подводя итоги

Мы не зря назвали эту статью «полшага вперед». Prescott получился более сложным и неоднозначным, чем ожидаемый «Northwood с увеличенным объемом кэша и более высокой частотой» (как многие его воспринимали). Разумеется, можно обвинить производителя в том, что прирост скорости в среднем близок к нулю (а местами и отрицательный), в очередной чехарде с поддержкой процессоров на базе нового ядра системными платами… И, между прочим, вполне справедливо это сделать. Это, в конце концов, не наши проблемы — а между тем, именно мы с ними и столкнемся. Поэтому просто поставим в конце статьи «жирное троеточие». На стоп-кадре видно только начало шага: нога, зависшая в воздухе, или, если угодно, лайнер на взлете. Что нас ждет дальше? Благоприятным ли окажется «приземление» (Tejas?..) Пока можно только догадываться.

Семейство процессоров Pentium 4 производства компании Intel долгое время было, без преувеличения, самым популярным в мире настоль­ных компьютеров. Даже само слово «Pentium» в устах не сильно разбирающихся в компьютерах людей означало скорость и мощность их компьютера. Среди преимуществ Pentium 4 - низкая цена, высокая производительность и относительно малое энергопотребление (в зависимости от рабочей тактовой частоты процессора). Pentium 4 устанавливаются в гнездо Socket 478 или LGA755

Процессоры Pentium 4 созданы на базе микро архитектуры Intel NetBurst, обеспечивающей поддержку ряда возможностей, таких как технологии HyperThreading (о ней мы поговорим немного позже), системной шины FSB с частотой 400/533/800 МГц, потоковых инструкций SSE2, функций расширенного динамического выполнения и оптимизированной передачи данных кеш-памяти. Кроме того, процессоры Pentium 4, созданные с помощью 0,09-микронной технологии, поддерживают потоковые инструкции SSE3.

Инструкции SSE, SSE2 и SSE3 являются расширением технологии ММХ и содержат ряд команд для работы с графикой и звуком, вычислений с плавающей запятой и целыми числами, управления кеш-памятью. Эти инструкции позволяют более эффективно работать с трехмерной графикой потоковыми аудио- и видео данными (например, при воспроизведении DVD), декодировать файлы форматов MPEG2 и MPEG3 (MP3). При этом наилучший результат использования SSE достигается в том случае, если поддержка SSE реализована на уровне приложения.

В настоящее время на рынке представлены самые разнообразные процессоры Pentium 4, в многообразии которых легко запутаться. Существует два основных семейства Pentium 4 - 5хх и 6хх , где х - это номерное обозначение типа процессора.

В семейство 5хх входят процессоры 570, 560, 550, 540, 530 и 520, с поддержкой технологии НТ и кеш-памятью второго уровня объемом 1 Мбайт. В свою очередь, в семейство 6хх входят процессоры 672, 662, 660, 650, 640, также поддерживающие технологию НТ и оснащенные кеш-памятью второго уровня объемом 2 Мбайт, а также обеспечивающие поддержку технологий Intel Enhanced SpeedStep, ЕМ64Т и Execute Disable Bit (NX бит).

Технологии intel Pentium 4

Технология Enhanced SpeedStep позволяет сократить энергопотребление системы методом автоматического снижения тактовой частоты процессора для рабочих приложений. Благодаря этой технологии решаются проблемы энергосбережения и охлаждения современных настольных компьютеров. Технология Intel Enhanced SpeedStep поддерживается семейством процессоров Pentium 4 бхх и Pentium D.

Все процессоры Pentium 4 являются 32-разрядными . Тем не менее благодаря технологии ЕМ64Т , доступной в новом семействе процессоров Pentium 4 бхх, в этих процессорах реализована поддержка 64-разрядных приложений. О том, чем отличаются 32- и 64-разрядные приложения, можно узнать в разделе «Athlon 64». Основное преимущество технологии ЕМ64Т - это возможность установки на компьютере оперативной памя­ти, общий объем которой будет больше 4 Гбайт (поскольку 4 Гбайт - это максимальный объем оперативной памяти, который можно адресовать в 32-разрядной операционной системе).

Технология Execute Disable Bit (NX-бит) позволяет запретить выполнение программного кода, который расположен в областях памяти, предназначенных для размещения данных. Многие вирусы, обычные и «троянские», могут вызвать программную ошибку, известную как переполнение буфера, в и замаскировать разрушительный программный код под данные, которые могут быть использованы операционной системой. Для предотвращения подобного сценария и нужен NX-бит , который усиливает защиту системы и снижает вероятность успешного внедрения вируса. Аналогичная технология существует и для Athlon 64; она называется Enhanced Virus Protection.

В приведенной ниже таблице содержатся характеристики основных процессоров Pentium 4. Следует отметить, что в табл. представлены лишь некоторые модели Pentium 4. Для получения более полного списка всех доступных моделей можно посетить Web-узел Intel по адресу www.intel.ru

Таблица. Процессоры Pentium 4

Тактовая

процессора,

Тактовая частота шины FSB, МГц

Объем кеш- памяти L2, Кбайт

Поддержка

Поддержка

Для гнезда LGA775

Для гнезда Socket 478

Как видите, наиболее производительными являются процессоры семейства Pentium 4 6хх, обладающие кеш-памятью L2 объемом 2 Мбайт, повсеместной поддержкой технологий HyperThreading, Enhanced SpeedStep, ЕМ64Т и NX-бита . Кроме того, обратите внимание на то, что процессоры для гнезда Socket 478, обладающие одинаковой тактовой частотой, имеют различные значения тактовой частоты шины FSB и объема кеш-памяти L2.

В прошлом году Intel выпустила новое ядро - Prescott - для Pentium 4 , особенностью которого стал 90 -нм техпроцесс, кэш 2-го уровня возрос до 1 Мбайт, кроме того, появился набор инструкций SSE3 . Одновременно на суд общественности был представлен Pentium 4 Extreme Edition 3,4 ГГц с 2 Мбайт кэша 3-го уровня. Летом была объявлена платформа Socket 775 , которая заинтересовала нас тем, что ножки с процессора “перешли” на сокет. Вместе с новым разъемом мы получили и чипсеты i915 и i925 , набор функций которых приятно порадовал всех: DDR2 SDRAM , PCI Express для графики и периферии, звук HDA , WLAN , Matrix RAID и т.д. Примерно в то же время Intel ввела модельные номера, до этого этим баловалась только AMD . И нам пришлось привыкать к линейке Celeron 3xx , Pentium 4 5xx .

Однако у нового ядра Prescott были проблемы с высоким тепловыделением, которое достигало 115 Вт для топовых моделей. При этом производительность по сравнению с ядром Northwood практически не увеличилась. Конкуренты меж тем не спали, AMD представила ядро Winchester , которое отличалось низким тепловыделением. Кроме того, компания подкупала пользователей технологиями Cool"n"Quiet (снижение частоты и напряжения при малых нагрузках), NX-bit (запрет выполнения кода на переполнение буфера) и x86-64 (64-битные расширения).

В итоге Prescott дорабатывали много раз и на свет появилось очень много степпингов процессора. Спустя некоторое время инженеры Intel представили хорошо сбалансированные процессоры со степпингом E0 . Появившаяся технология Thermal Monitoring 2 улучшила защиту от перегрева - процессор стал снижать частоту и напряжение, если тепловыделение достигнет критического предела. Подобный подход лучше троттлинга (Throttling), когда процессор в той же ситуации пропускал тактовые импульсы. Впрочем, он по-прежнему включается, но в экстремальных случаях. Технология Thermal Monitoring 2 может работать и в режиме бездействия для снижения тепловыделения, но для этого нужно установить Service Pack 2 . В новом степпинге появился XD-bit , выполняющий функцию запрета выполнения вредоносного кода, для этого SP2 также необходим. Процессоры с поддержкой этой фишки получили суффикс J . Появление 64 -битных расширений EM64T в степпинге E0 для 500-й линейки мы так и не увидели.

Однако вспомним про AMD, которая к тому времени представила процессоры Athlon 64 4000+ и FX-55 . Последний оказался лучшим процессором для геймеров, показывая экстремальную производительность в играх. На этот выпад Intel ответила выпуском чипсета i925XE и Pentium 4 Extreme Edition 3,46 ГГц с системной шиной 1066 МГц. Другие характеристики нового P4 EE не изменились: кэш L2 512 Кбайт, L3 - 2 Мбайт (ядро Gallatin ). Увы, при экстремальной цене $999 новичок проигрывал FX-55 в большинстве игровых тестов.

Вот, вкратце, ситуация на начало 2005 года.

Speedstep в действии

Технология SpeedStep позволяет Windows программно использовать интерфейс ACPI для уменьшения тактовой частоты процессора до 2,8 ГГц при низкой нагрузке. Для работы SpeedStep необходимы следующие условия:

  • процессор должен поддерживать SpeedStep;
  • материнская плата и BIOS должны поддерживать SpeedStep;
  • должна быть установлена система Windows XP Service Pack 2;
  • необходимо выбрать мобильную схему энергопотребления под Windows.

Наша материнская плата ASUS P5AD2-E Platinum (i925XE) обеспечивает полную поддержку SpeedStep.

Итог по SpeedStep будет таков: для игр его лучше вообще отключать, а для офисной и другой работы - включать. Тогда процессор будет работать на меньших частотах и выделять меньше тепла.

Новая страница в жизни Pentium 4: шестисотые модели

Самое главное отличие новых Pentium 6xx - увеличение кэша L2 до 2 Мбайт. Вся новая серия процессоров поддерживает XD-bit. Технология управления энергопотреблением еще улучшилась: если степпинг E0 мог похвастаться Thermal Monitoring 2, то у новых процессоров добавилась технология Enhanced SpeedStep , которая ранее использовалась только в мобильных процессорах компании. Она позволяет снижать напряжение и частоту, если нагрузка на процессор невелика. Главное отличие между двумя технологиями заключается в том, что “инициатором” снижения частоты в последнем случае выступает операционная система, а не процессор.

Все Pentium 6xx поддерживают 64-битные расширения EM64T (аналог расширений x86-64 от AMD). Впрочем, эта особенность может быть полезна только при использовании Windows XP 64-bit Edition . Но даже после официального появления этой ОС проблемы для пользователей AMD и Intel не закончатся: дело в том, что прирост производительности вы получите, только если ОС, драйвера и программы будут 64-битными. А вот с этим большие проблемы и даже сложно сказать, когда мы сможем воспользоваться плодами новой технологии. С другой стороны, если Intel взялась за это дело, то процесс пойдет гораздо быстрее.

Стоит еще сказать, что технология EM64T будет встречаться и в некоторых моделях серии 5xx (с “единичками” в конце номера), а вот Enhanced Speed Step останется эксклюзивной чертой линейки 6xx.

Физически кристалл линейки Pentium 4 6xx существенно больше, чем у 5xx: 169 миллионов транзисторов и 135 мм 2 против 125 миллионов и 112 мм 2 .

Достаточно интересна новая модель P4 Extreme Edition. К сожалению, Pentium 4 Extreme Edition 3,46 ГГц, вышедший в ноябре 2004-го, так и не оправдал надежд, поэтому был списан в утиль. На смену ему пришел новый P4 Extreme Edition 3,73 ГГц, который представляет из себя обычный процессор линейки 6xx, но с частотой системной шины 1066 МГц. Кэш 2-го уровня составляет все те же 2 Мбайт, а вот с кэшем 3-го уровня пришлось распрощаться.

Стоит отметить, что линейка 6хх будет дороже 500-х моделей при равных тактовых частотах.

Тестовый стенд
Процессоры Intel Pentium 4 560 (3,6 ГГц, 1 Мбайт кэша L2)
Intel Pentium 4 660 (3,6 ГГц, 2 Мбайт кэша L2)
Intel Pentium 4 Extreme Edition 3,73 ГГц (2 Мбайт кэша L2)
Материнская плата ASUS P5AD2-E Platinum (i925XE)
Память 2x512 Мбайт DDR2 SDRAM Corsair TwinX CM2X512A-5400C4 533 МГц
Общее аппаратное обеспечение
Видеокарта NVIDIA GeForce 6800 GT 256 Мбайт (PCIE x16)
Жесткий диск Western Digital WD740 Raptor (74 Гбайт, 8 Мбайт, 10 000 об/мин, SATA)
Оптический привод MSI MS-8216
Программное обеспечение
Драйвер для видеокарты NVIDIA Detonator 66.93
Драйвера для чипсета Intel Chipset Installation Utility 6.3.0.1007
DirectX 9.0c
ОС Windows XP Professional SP2
Стоимость процессоров в партиях от 1000 шт.
Процессор Тактовая частота Цена (доллары США)
Pentium 4 EE 3,73 ГГц 999
Pentium 4 EE 3,43 ГГц 999
Pentium 4 660 3,6 ГГц 605
Pentium 4 650 3,4 ГГц 401
Pentium 4 640 3,2 ГГц 273
Pentium 4 630 3,0 ГГц 224
Pentium 4 570 3,8 ГГц 637
Pentium 4 560 3,6 ГГц 417
Pentium 4 550 3,4 ГГц 278
Pentium 4 540 3,2 ГГц 218
Pentium 4 530 3,0 ГГц 178
PC Mark04 1.30
CPU Memory
AMD Athlon 64 4000+ 4535 5684
Intel Pentium 4 EE 3,73 ГГц 5743 6294
5525 5705
5495 5494

Гонка частот окончена

На протяжении многих лет мы привыкли к тому, что производители процессоров регулярно радовали нас увеличением тактовых частот - этот показатель стоял во главе угла. К концу 2004 года Intel планировала выпустить Pentium 4 с частотой 4 ГГц, но он так и не появился. Инженеры и руководство компании осознали, что не в гигагерцах счастье да и просто невозможно гнать частоту постоянно, тем более что ее увеличение не ведет к пропорциональному росту производительности системы.

У AMD ситуация похожа: вряд ли в этом году мы увидим процессор, который перешагнет порог в 3 ГГц. Да и зачем это нужно, если современные Athlon 64 со скоростями до 2,6 ГГц успешно конкурируют с продукцией Intel.

Обе компании сегодня работают над повышением эффективности и производительности своих процессоров за счет использования новых технологий, расширения их функций. Гонка за тактовыми частотами окончена. Собственно, 6хх-серия стала прекрасным тому примером.

Технические характеристики процессоров
Номер процессора Частота, ГГц FSB, МГц Кэш L2, Мбайт Технологии Intel
HT SS EM64T XD
Линейка Extreme Edition
Pentium 4 EE 3,73 ГГц 1066 2 + + + +
Pentium 4 EE 3,43 ГГц 1066 512 Кбайт + 2 Мбайт кэш L3 + - - -
Линейка 6xx
670 3,8 800 2 + + + +
660 3,6 800 2 + + + +
650 3,4 800 2 + + + +
640 3,2 800 2 + + + +
630 3 800 2 + + + +
Линейка 5xx
571 3,8 800 1 + - + +
570 J 3,8 800 1 + - - +
561 3,6 800 1 + - + +
560 J 3,6 800 1 + - - +
560 3,6 800 1 + - - -
551 3,4 800 1 + - + +
550 J 3,4 800 1 + - - +
550 3,4 800 1 + - - -
541 3,2 800 1 + - + +
540 J 3,2 800 1 + - - +
540 3,2 800 1 + - - -
531 3 800 1 + - + +
530 J 3 800 1 + - - +
530 3 800 1 + - - -
520 J 2,8 800 1 + - - +
520 2,8 800 1 + - - -
Far Cry (Cooler01)
Разрешение 1280x1024
AMD Athlon 64 4000+ 197,8
Intel Pentium 4 EE 3,73 ГГц 176,0
Intel Pentium 4 660 (3,8 ГГц) 167,7
Intel Pentium 4 560 (3,8 ГГц) 164,0
Doom 3 (demo1)
Разрешение 1024x768
AMD Athlon 64 4000+ 94,7
Intel Pentium 4 EE 3,73 ГГц 94,2
Intel Pentium 4 660 (3,8 ГГц) 90,0
Intel Pentium 4 560 (3,8 ГГц) 87,1
Wolfenstein - Enemy Territory
Разрешение 1024x768
AMD Athlon 64 4000+ 182,2
Intel Pentium 4 EE 3,73 ГГц 178,3
Intel Pentium 4 660 (3,8 ГГц) 168,7
Intel Pentium 4 560 (3,8 ГГц) 166,1

Заключение

Если сравнивать линейки 5хх и 6хх, то заключение будет вполне определенным: новые версии процессоров лучше, хотя удвоенный размер кэша не особо влияет на производительность. Зато благодаря функциям EM64T, XD-bit, Thermal Monitoring 2, Enhanced SpeedStep новые Pentium 4 выглядят очень перспективно. Большая производительность, внушительный набор дополнительных функций и разумное энергопотребление существенно меняют картину. Тем более что новинки полностью совместимы с уже привычными материнскими платами под Socket 775, единственное, что вам может потребоваться сделать, так это обновить BIOS.

До этого момента Intel можно было обвинить в некоторой медлительности внедрения новых технологий: AMD гораздо раньше реализовала 64-битные расширения, хотя реальное преимущество от нее до сих пор не очевидно. NX-bit и Cool"n"Quiet владельцы AMD также увидели довольно давно.

Впрочем, остается непонятным, почему Intel объявила столь высокую цену на новые процессоры: они существенно дороже старых версий.

Так или иначе, но в ближайшие месяцы от Intel стоит ждать куда более кардинальных обновлений линейки Pentium 4 - двухъядерные процессоры, технология виртуализации Vanderpool (VT) и многое другое.

Через несколько дней после официального представления AMD своего последнего процессора Athlon64 FX-53, Intel решила объявить о выпуске на рынок 3,4-ГГц версии Prescott, которая позиционируется на конкуренцию с Athlon64, а не с Athlon64 FX-53, несмотря на одинаковый размер кэша.

Хотя стратегия Intel по гонке тактовых частот пока оказывалась вполне успешной, сегодня становится всё труднее находить аргументы в пользу процессора Prescott, который плохо наращивает свою производительность по сравнению с чипами AMD, использующими встроенный контроллер памяти.

Да, Intel нужна быстрая платформа со всеми выпестованными особенностями типа Socket 775, PCI Express и памятью DDR2, но на тактовую частоту процессора уповать уже не приходится. Это урок, который Intel уже пришлось выучить на серверном рынке, поскольку AMD получает всё более широкую поддержку своего семейства Opteron. И Pentium 4 Prescott не слишком хорошо соответствует репутации Intel, ведь его тепловой пакет TDP составляет более сотни ватт - при этом процессор не даёт сколько-нибудь ощутимых преимуществ по сравнению с предшественником Northwood.

Intel, конечно же, не почивает на лаврах - сегодня компания находится в процессе внедрения нового степпинга D0 ядра Prescott, который позволит процессору достичь тактовой частоты вплоть до 4 ГГц - как и упоминается в планах компании. Поскольку не все 3,4-ГГц версии Prescott имеют степпинг D0, мы решили привести таблицу, которая поможет отличить старые и новые процессоры Prescott.

По информации Intel, последний степпинг позволит увеличивать тактовую частоту из-за внесённых оптимизаций потребления энергии. Однако тепловой пакет нового процессора не изменился и остался на уровне 103 Вт максимум. Хотя процессор и кажется улучшенным по сравнению с 3,2-ГГц версией, его тепловыделение всё ещё несколько непропорционально по отношению к тактовой частоте. В любом случае, при покупке следует быть готовым к высокому тепловыделению процессора.


CPU-Z правильно определяет новый процессор Pentium 4: Model 3, Stepping 3 (CPUID 0F34h). Перед нами старый степпинг C0.


Новый процессор нагревается чуть сильнее.

Pentium 4: обзор моделей

Как вы, наверняка, знаете, Pentium 4 Prescott является ядром Pentium 4 третьего поколения. Первое, под кодовым названием Willamette, приобрела немалую популярность из-за увеличения производительности по сравнению с Pentium III Tualatin, в то же время потребляя намного больше энергии.

Второе поколение ядра под названием Northwood изготавливалось по 130-нм техпроцессу - на сегодня его по-прежнему можно называть лучшим ядром Pentium 4, поскольку процессор обеспечивает приличную производительность и неплохие возможности по "разгону". Мы уже смогли заставить несколько процессоров Northwood работать на частоте больше 4 ГГц - причём с обычными кулерами.

Сегодня на рынке присутствует большое число процессоров Pentium 4, базирующихся на ядрах Northwood или Prescott. Тактовые частоты сегодня начинаются на отметке 2,4 ГГц и заканчиваются на 3,4 ГГц, причём на этом отрезке потребитель может выбирать 20 разных моделей. Чтобы вы смогли лучше представлять себе ситуацию с процессорами Pentium 4, мы свели все модели вместе в краткую таблицу:

Процессор FSB Частота ядра Ядро HT
Pentium 4 400 МГц 2,0, 2,2, 2,4, 2,6 ГГц Northwood Нет
Pentium 4 B 533 МГц 2,4 ГГц Northwood Нет
Pentium 4 533 МГц 2,26, 2,53, 2,66, 2,8 ГГц Northwood Нет
Pentium 4 533 МГц 3,06 ГГц Northwood Да
Pentium 4 C 800 МГц 2,4, 2,6, 2,8 ГГц Northwood Да
Pentium 4 800 МГц 3,0, 3,2, 3,4 ГГц Northwood Да
Pentium 4 A 533 МГц 2,8 ГГц Prescott Нет
Pentium 4 E 800 МГц 2,8, 3,0, 3,2, 3,4 ГГц Prescott Да

Чем дальше располагается буква по алфавиту, тем лучше процессор вы получите. Однако это относится только к сравнению двух различных моделей с одинаковой тактовой частотой - типа Pentium 4 на 2,4 ГГц и FSB400 в сравнении с Pentium 4 B на 2,4 ГГц и FSB533. Pentium 4 C работает на FSB800 и поддерживает Hyper-Threading. Единственным исключением является Pentium 4 3,06 ГГц, который работает на FSB533 - и является первым процессором, поддерживающим Hyper-Threading. Буква E обозначает модели Prescott с 1-Мбайт кэшем L2, в то же время версии этого ядра с FSB533 обозначаются буквой A.

Intel вводит номера моделей

Существует много причин, по которым лучше использовать модельные номера, а не тактовые частоты. Во-первых, в номере можно учесть множество технологических деталей, типа FSB, размера кэша, частоты или дополнительных функций - Hyper-Threading и т.д. Во-вторых, исчезнет путаница между разными версиями процессоров с одинаковой тактовой частотой - в результате чего обычный покупатель легко выберет самый быстрый процессор. В-третьих, в индустрии существует множество примеров успешного использования модельных номеров - скажем та же AMD с семейством Opteron 14x, 24x и 84x. Первая цифра номера указывает поддержку числа процессоров: 1 - для одного процессора, 2 - для двухпроцессорных систем и т.д. Цифра x может быть 2, 4, 6 и 8 - что указывает на частоты 1,6, 1,8, 2,0 и 2,2 ГГц.

Наконец, мы должны подумать о процессорах Intel Pentium M, тем более что вскоре появится новая версия с техпроцессом 90-нм (Dothan). Поскольку этот чип будет существенно быстрее Banias из-за увеличенных тактовых частот, Intel будет очень трудно аргументировать покупку 3-ГГц настольного процессора Prescott, который в некоторых приложениях работает медленнее 2,0-ГГц Dothan.

По нашим источникам, тактовые частоты должны полностью исчезнуть из названий процессоров Intel. Поскольку число доступных моделей процессоров вряд ли уменьшится, такой шаг нам кажется вполне логичным. Будущая система именования процессоров будет выглядеть примерно так: процессор Pentium 4 будет дополняться номером 5xx, а линейка Celeron - номером Celeron 3xx.

Мобильные процессоры Настольные процессоры
Производительный сегмент рынка Pentium M 755 (2,0 ГГц)
Pentium M 745 (1,8 ГГц)
Pentium M 735 (1,7 ГГц)
Pentium M 725 (1,6 ГГц)
Pentium M 715 (1,5 ГГц)
Pentium 4 Extreme Edition
Массовый сегмент рынка Pentium 4 Mobile Pentium 4 560 (3,6 ГГц)
Pentium 4 550 (3,4 ГГц)
Pentium 4 540 (3,2 ГГц)
Pentium 4 530 (3,0 ГГц)
Pentium 4 520 (2,8 ГГц)
"Бюджетный" сегмент рынка Celeron M 340 (1,5 ГГц)
Celeron M 330 (1,4 ГГц)
Celeron M 320 (1,3 ГГц)
Celeron D 340 (2,93 ГГц)
Celeron D 330 (2,8 ГГц)
Celeron D 320 (2,66 ГГц)
Celeron D 310 (2,53 ГГц)

Тестовая конфигурация

Аппаратное обеспечение

Процессоры Intel (Socket 478)
200 МГц FSB
(двухканальная DDR400)
Pentium 4 Extreme Edition 3,4 ГГц (2-Мбайт кэш L3)
Pentium 4 Extreme Edition 3,2 ГГц (2-Мбайт кэш L3)
200 МГц FSB
(двухканальная DDR400)
Pentium 4 3,40 ГГц (512-кбайт кэш L2)
Pentium 4 3,20 ГГц (512-кбайт кэш L2)
Pentium 4 3,00 ГГц (512-кбайт кэш L2)

Pentium 4 2,60 ГГц (512-кбайт кэш L2)
Pentium 4E 3,20 ГГц (1-Мбайт кэш L2)
Pentium 4E 3,00 ГГц (1-Мбайт кэш L2)
Pentium 4E 2,80 ГГц (1-Мбайт кэш L2)
133 МГц FSB
(двухканальная DDR333)
Pentium 4 3,06 ГГц (512-кбайт кэш L2)
Pentium 4 2,80 ГГц (512-кбайт кэш L2)
Pentium 4 2,66 ГГц (512-кбайт кэш L2)
Процессоры AMD (Socket A)
200 МГц FSB
(двуканальная DDR400)
Athlon XP 3200+ (2200 МГц, 512-кбайт кэш L2)
Athlon XP 3000+ (2100 МГц, 512-кбайт кэш L2)
166 МГц FSB
(двухканальная DDR333)
Athlon XP 3000+ (2166 МГц, 512-кбайт кэш L2)
Athlon XP 2800+ (2083 МГц, 512-кбайт кэш L2)
Athlon XP 2700+ (2166 МГц, 256-кбайт кэш L2)
Athlon XP 2600+ (1917 МГц, 512-кбайт кэш L2)
Athlon XP 2500+ (1833 МГц, 512-кбайт кэш L2)
Процессоры AMD (Socket 940)
200 МГц FSB
(двухканальная регистровая DDR400)
Athlon 64 FX-51 (2200 МГц, 1-Мбайт кэш L2)
Процессоры AMD (Socket 754)
200 МГц FSB
(одноканальная DDR400)
Athlon 64 3400+ (2200 МГц, 1-Мбайт кэш L2)
Athlon 64 3200+ (2200 МГц, 512-кбайт кэш L2)
Память
Платформа Intel 4x Corsiar TwinX CMX256A-3200LL (XMS32005V1.1)
256 Мбайт на DIMM
CL 2,0 - tRCD 2 - tRP 2 - tRAS 6 для 133 и 200-МГц FSB
AMD Athlon 64
512 Мбайт на DIMM
AMD Athlon 64 FX 2x Mushkin PC3200 ECC Registered High Performance
512 Мбайт на DIMM
CL 2,0 - tRCD 3 - tRP 2 - tRAS 6
AMD Athlon XP 2x Corsair TwinX CMX512-3200LL (MXS32005 V1.2)
512 MB per DIMM
CL 2.0 - tRCD 3 - tRP 2 - tRAS 6 for 166 and 200 МГц FSB
Материнские платы
Платформа Intel
(Socket 478)
Asus P4C800-E Deluxe, Rev. 1.02
Чипсет Intel 875P
BIOS: 1014
Intel 82547EI Gigabit Ethernet Controller (CSA)
Платформа AMD Athlon 64
(Socket 462)
Asus K8V Deluxe, Rev. 1.12
Чипсет VIA K8T800
BIOS: 1004
3COM/Marvell 940 Gigabit Ethernet Controller
Платформа AMD Athlon 64 FX
(Socket 940)
Asus SK8N Rev: 1.03
Чипсет nVIDIA nForce3 150
BIOS: ???
Broadcom BCM5705 Gigabit Ethernet Controller
Платформа AMD Athlon XP
(Socket A)
Asus A7N8X-E, Rev. 2.0
NVIDIA nForce2 Ultra 400 Chipset
BIOS: 1007
3COM 3C905C-TX-M PCI 100 Mbit Network Controller
Системное аппаратное обеспечение
Графическая карта Asus A9800XT/DVD, Rev. 1.01
GPU: ATI Radeon 9800XT, частота чипа 412 МГц
Память: 128 Мбайт DDR-SDRAM, частота 365 МГц
Звуковая карта Terratec Aureon 7.1 Space
Жёсткие диски
(массив RAID-0)
Maxtor 6Y080M0 Serial ATA, 80 Гбайт
80 Гбайт на пластину, 7200 об/мин, кэш 8 Мбайт
Дисковая подсистема
(платформы AMD)
Promise FastTrak S150 TX2plus (Bios: 1.00.0.30)
Контроллер SATA RAID для 32-битной PCI
Дисковая подсистема
(платформа Intel)
Intel FW82801ER ICH5R / контроллер южного моста
Встроенный контролер SATA RAID
Сетевые контроллеры См. материнские платы
Программное обеспечение
Драйвер чипсета Intel Chipset Installation Utility 5.1.1.1002
NVIDIA Platform Driver 3.13
VIA Hyperion 4in1 Ver. 4.51
Графический драйвер ATI Catalyst 4.1 (7.97 / 6.14.10.6414)
Драйверы подсистемы хранения Intel Application Accelerator RAID Edition 3.5.3
Promise FastTrak S150 TX2plus Driver Ver. 1.00.0.37
Сетевые драйверы 3COM Windows Default Network Driver
Broadcom BCM5705 Driver Build 7.35a
Intel Pro Network Driver 8.3
Версия DirectX 9.0b
ОС Windows XP Professional 5.1.2600, Service Pack 1

Программное обеспечение и тесты

Тесты и настройки
OpenGL
SPEC viewperf Version 7.1.1
1280x1024 32 Bit
Serious Sam Version 1.07
The Secound Encounter 1024 x 786 - 32 bit
Graphics API: Open GL
Preferences: Quality
no Audio
Bits per Pixel: 32 Bit
Execute Addon: 32bit_HQ++-ansio8-24z.ini
Demo: Valley fo the Jaguar
Wolfenstein Version: 2.56 (Patch V 1.02)
Enemy Territory 1024 x 786 - 32 bit
timedemo 1 / demo demo4
Geometric detail = low
Texture detail = low
DirectX 8
Comanche 4 Demo Version: 1.0.1.18
1024 x 768 - 32 bit
autio = off
Unreal Tournament 2003 Version: 2206
1024 x 768 / 32 bit / Audio = off
system/benchmark.exe
Texture Detail = Normal
Character Detail = Normal
World Detail = Highest
Physics Detail = High
all = on, Decal Stay = High
Splinter Cell Version 1.2b
1024 x 786 - 32 Bit
audio = off
2_2_1_KalinatekDemo
Shdow resolution: low
Shadow detail: low
Effects quality: low
DirectX 9a
3DMark 2003 Version 3.4.0
1024 x 786 - 32 bit
Graphics and CPU Default Benchmark
X2-The Threat Version 1.0
1024x768x32
(X8R8G8B8)
Demo - bechmark
Graphic Settings: all off
AquaMark3 Version: 3.0
1024 x 768 - 32 bit
Audio = off
Advanced Measurement
Antialiasing mode: off
Anisotropy: off
Level Detail: very low
Video
Mainconcept MPEG Encoder Version: 1.4.1
1.2 GB DV to MPEG II
(720x576, Audio) converting
Pinnacle Studio 9 Version: 9.0.0
Rendering - DVD Compatible
no Audio
Xmpeg Version: 5.0.8.84
DivX 5.1.1 Pro AMD: Otimized MMX iDCT
Intel: Otimized SEE2 iDCT
DivX 5.10 Pro
Audio: off
Psychovisual Enhancements: off
Resize: 720x576
Restore Defaults
780 kbps
feedback windows: off
Windows Media Encoder 9 Version: 9.00.00.2980
436 MB AVI File convert to WMV
Windows Media server (streaming)
Microsoft Movie Maker Version 2.0.3312.0
416 MB DV to WMV
TMPGEnc Plus Version 2.521
1.2 GB DV to MPEG I
(720x576, Audio) converting
Audio
magix mp3 maker 2004 Version 4.11 Build 19593
diamond 65 minutes/44.100 KHz wave file (688,4 MB)
Format: MP3 High Quality
Lame Version 3.95
Wave 17:14 minutes (182 MB) to mp3
32 - 320 kbit
VBR = level 3
Syntrillium Version 2.1
Cool Edit Pro Amplitude Normalizing
2.6 GB wave Audio file
Applications
Sysmark 2004 Version 1.07
Winrar Version 3.30
283 MB, 246 Files
Compression = Best
Dictionary = 4096 KB
Newtek Lightwave Version 7.5c - Build 572
Render First Frame = 1
Render Last Frame = 60
Render Frame Step = 1
Rendering Bench
"variations.lws"
Show Rendering in Progress = 320x240
Ray Trace Shadows, Reflection
Refraction, Transparency = on
Multithreading = 8 Threads
Cinema 4D XL 8 Version 8.503
Maxon Computer Rendering in 1028 x 1024, "ship_dirt"
3D Studio Max 6.0 Characters "Dragon_Charater_rig"
Discreet Pixel: 1024 x 768
Rendering Single
Mathematica 5 Version 5.0.0.0
Wolframresearch MMA 40 Test
Microsoft Version 2003 (Enterprise Architect)
Visual Studio .NET C++ Compiling "Emule 0.42b"
LIUtilities Version 1.84
WinBackup 650 MB wave file
Encryption: 256 Bit DES, Password "test"
Synthetic
PCMark 2004 Pro Version: 1.1.0
CPU and Memory Tests
SiSoftware Sandra 2004 Version 2004.10.9.89
CPU Test = MultiMedia / CPU Arithmetic
Memory Test = Bandwidth Benchmark

К началу 2004 года, компании Intel удалось успешно перевести свои процессоры на новое ядро Prescott. Правда само ядро не может похвастаться улучшенными характеристиками. В частности по производительности в большинстве приложений оно уступает ядру Northwood (в некоторых - до 15%), а по тепловыделению значительно превосходит его. Но проблема повышенного потребления энергии свойственна степпингу C0. А в последнее время, Intel перешел на выпуск процессоров на новом степпинге - D0, в котором эта проблема частично решена. А окончательно она будет решена в следующем степпинге - E0, в котором появится механизм снижения частоты во время простоя процессора. Но пока, основным степпингом является D0, на котором производятся процессоры как Socket478, так и Socket LGA775 форм-фактора.


Из-за чего появилась потребность в новом сокете? Основная версия - более равномерное распределение потребляемой мощности между различными блоками процессорного ядра. Кроме того, в ближайшее время Intel введет несколько новых технологий, таких как EM64T (64-битное расширение команд), NX-bit (дополнительные возможности в области защиты информации), а также усовершенствованный механизм энергосбережения. Вполне возможно, для их поддержки и понадобятся дополнительные контакты. Кстати, по предварительной информации все эти технологии уже присутствуют в сегодняшних процессорах Prescott, но в заблокированном виде.

Еще одна новая технология, которая должна появится в ближайшее время (ориентировочно - в степпинге E0) это SpeedStep. Благодаря ей, процессор во время простоя будет снижать тактовую частоту, и как следствие, выделять меньше тепла. И если снижение частоты будет серьезным (например в 2 раза), и будет сопровождаться снижением напряжения Vcore, то возможно кардинальное уменьшение типичного уровня тепловыделения. Напомню, что процессоры AMD Athlon64 уже сейчас поддерживают аналогичную технологию - Cool"n"Quiet, которая путем снижения частоты и напряжения более чем в 2 раза снижает уровень тепловыделения (35W против 89W подробности в обзоре AMD Athlon64).

И опять возвращаемся к проблеме потребления энергии. Специалисты Intel оценивают технологический потенциал ядра Prescott - 4Ггерц. А на этой частоте максимальное тепловыделение может достигать отметки в 150W. Поэтому использование нового сокета, нового дизайна модуля питания и новой конструкции охлаждающей системы, предназначено для реализации этого потенциала.

Компания Intel решила не ограничиваться простой сменой процессорного сокета. Фактически, на суд публике представлена совершенно новая платформа: поддержка памяти DDR2, поддержка шины PCI Express, а также расширенные возможности по подключению периферии. Для этого были выпущены чипсеты i925X и i915P. Подробно на них мы останавливаться не будем, потому что уже тщательно разобрали возможности i925X в обзоре платы Abit AA8 DuraMAX .

Возвращаемся к процессорам - для сокета LGA775 компания Intel анонсировала следующие процессоры:

Celeron D 325 2.53Ггерц 79$
Celeron D 330 2.66Ггерц 83$
Celeron D 335 2.8Ггерц 103$
Celeron D 340 2.93Ггерц 117$ *

Pentium4 520 2.8Ггерц 163$
Pentium4 530 3.0Ггерц 178$
Pentium4 540 3.2Ггерц 218$
Pentium4 550 3.4Ггерц 278$
Pentium4 560 3.6Ггерц 417$
Pentium4 570 3.8Ггерц 637$ *

Жирным шрифтом выделен "процессорный номер", который предназначен для четкого деления процессоров на классы. Фактически это означает отход от устаревшей системы классифицирования процессоров по тактовой частоте.

После перехода процессоров Pentium4 на более скоростную 1066Мгерцовую шину, соответствующие модели скорее всего составят "шестую" серию, и займут промежуточную позицию между "пятой" и "седьмой" серией (в "седьмую" серию входят процессоры Pentium4 Extreme Edition c 2Мбайтным кешем L3).

Что касается процессоров Celeron, то стоит отметить их возросшие характеристики. В частности объем кэш-памяти L2 увеличился с 128 до 256Кбайт, а частота системной шины возросла с 100 до 133мгерц (QPB: с 400 до 533Мгерц соответственно).

Итак, посмотрим что собой представляет процессор Pentium4 540.

Утилита CPU-Z правильно определила все параметры процессора, включая степпинг (D0). Что касается внешнего вида, то для постоянных читателей здесь нет никаких неожиданностей.



Слева Socket478, справа LGA775


А для тех, кто впервые видит процессор LGA775 прошу обратить внимание на полное отсутствие ножек.


Теперь ножки находятся непосредственно на процессорном сокете (все этапы установки процессора вы можете просмотреть в предварительном обзоре платформы LGA775). Кстати, практически сразу после появления первых образцов системных плат с LGA775 многие обозреватели стали жаловаться на хрупкость и ненадежность процессорного сокета. Самой распространенной проблемой является то, что после нескольких установок процессора в сокет, ножки деформируются (или сгибаются).

Естественно после получения платформы LGA775, я устанавливал процессор с особой аккуратностью. Однако никаких трудностей в процессе установки выявлено не было. Более того, по моему мнению проблему с ненадежностью сокета носит несколько преувеличенный характер (с другой стороны "кривыми" руками можно поломать все что угодно:). В любом случае как только к нам попадет первая "бюджетная" плата с LGA775, мы проведем своеобразное "стресс-тестирование" сокета LGA775 на многократную установку процессора.