Из чего состоит кристалл процессора. AMD Llano: последние соки Атлона. Производство микропроцессоров: триста операций от старта до финиша

Микропроцессор — это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником — тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов, соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. В результате микропроцессор выполняет множество функций.

Производство микропроцессоров: триста операций от старта до финиша

Изготовление микропроцессора — это сложнейший процесс, включающий более 300 этапов. Микропроцессоры формируются на поверхности тонких круговых пластин кремния — подложках, в результате определенной последовательности различных процессов обработки с использованием химических препаратов, газов и ультрафиолетового излучения.

Подложки обычно имеют диаметр 200 миллиметров, или 8 дюймов. Однако корпорация Intel планирует переход на пластины диаметром 300 мм, или 12 дюймов. Пластины изготавливают из кремния — основного компонента, например, обычного песка на пляже, — который очищают, плавят и выращивают из него длинные цилиндрические кристаллы. Затем кристаллы разрезают на тонкие пластины и полируют их до тех пор, пока их поверхности не станут зеркально гладкими и свободными от дефектов.

В процессе изготовления микросхем на пластины-заготовки наносят в виде тщательно рассчитанных рисунков тончайшие слои материалов. На одной пластине помещается до нескольких сотен микропроцессоров, для изготовления которых требуется совершить более 300 операций. Весь процесс производства процессоров можно разделить на несколько этапов: выращивание диоксида кремния и создание проводящих областей, тестирование, изготовление корпуса и доставка.

Выращивание диоксида кремния и создание проводящих областей

Процесс производства микропроцессора начинается с "выращивания" на поверхности отполированной пластины изоляционного слоя диоксида кремния. Осуществляется этот этап в электрической печи при очень высокой температуре. Толщина оксидного слоя зависит от температуры и времени, которое пластина проводит в печи.

Затем следует фотолитография — процесс, в ходе которого на поверхности пластины формируется рисунок-схема. Сначала на пластину наносят временный слой светочувствительного материала — фотослой, на который с помощью ультрафиолетового излучения проецируют изображение прозрачных участков шаблона, или фотомаски. Маски изготавливают при проектировании процессора и используют для формирования рисунков схем в каждом слое процессора. Под воздействием излучения засвеченные участки фотослоя становятся растворимыми, и их удаляют с помощью растворителя, открывая находящийся под ними диоксид кремния.

Открытый диоксид кремния удаляют с помощью процесса, который называется "травлением". Затем убирают оставшийся фотослой, в результате чего на полупроводниковой пластине остается рисунок из диоксида кремния. В результате ряда дополнительных операций фотолитографии и травления на пластину наносят также поликристаллический кремний, обладающий свойствами проводника. В ходе следующей операции, называемой "легированием", открытые участки кремниевой пластины бомбардируют ионами различных химических элементов, которые формируют в кремнии отрицательные и положительные заряды, изменяющие электрическую проводимость этих участков.

Наложение новых слоев с последующим травлением схемы осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются "окна", которые заполняют металлом, формируя электрические соединения между слоями. В своем 0.13-микронном технологическом процессе — самом современном на сегодняшний день — корпорация Intel применила медные проводники. В 0.18-микронном производственном процессе и процессах предыдущих поколений Intel применяла алюминий. И медь, и алюминий — отличные проводники электричества.

Каждый слой процессора имеет свой собственный рисунок, в совокупности все эти слои образуют трехмерную электронную схему. Нанесение слоев повторяют 20 — 25 раз в течение нескольких недель. В результате на поверхности пластины образуются "небоскребы" из нанесенных слоев.

Тестирование

Чтобы выдержать воздействия, которым подвергаются подложки в процессе нанесения слоев, кремниевые пластины изначально должны быть достаточно толстыми. Поэтому прежде чем разрезать пластину на отдельные микропроцессоры, ее толщину с помощью специальных процессов уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на обратную сторону "похудевшей" пластины наносят слой специального материала, который улучшает последующее крепление кристалла к корпусу. Кроме того, этот слой обеспечивает электрический контакт между задней поверхностью интегральной схемы и корпусом после сборки.

После этого пластины тестируют, чтобы проверить качество выполнения всех операций обработки. Чтобы определить, правильно ли работают процессоры, проверяют их отдельные компоненты. Если обнаруживаются неисправности, данные о них анализируют, чтобы понять, на каком этапе обработки возник сбой.

Затем к каждому процессору подключают электрические зонды и подают питание. Процессоры тестируются компьютером, который определяет, удовлетворяют ли характеристики изготовленных процессоров заданным требованиям.

Изготовление корпуса

После тестирования пластины отправляются в сборочное производство Intel, где их разрезают на маленькие прямоугольники, каждый из которых содержит интегральную схему. Для разделения пластины используют специальную прецизионную пилу. Неработающие кристаллы отбраковываются.

Затем каждый кристалл помещают в индивидуальный корпус. Корпус защищает кристалл от внешних воздействий и обеспечивает его электрическое соединение с платой, на которую он будет впоследствии установлен. Крошечные шарики припоя, расположенные в определенных точках кристалла, припаивают к электрическим выводам корпуса. Теперь электрические сигналы могут поступать с платы на кристалл и обратно.

После установки кристалла в корпус процессор снова тестируют, чтобы определить, работоспособен ли он. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям: воздействию различных температурных и влажностных режимов, а также электростатических разрядов. После каждого нагрузочного испытания процессор тестируют для определения его функционального состояния. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Доставка

Процессоры, прошедшие тестирование, поступают на выходной контроль, задача которого — подтвердить, что результаты всех предыдущих тестов были корректными, а параметры интегральной схемы соответствуют установленным стандартам или даже превосходят их. Все процессоры, прошедшие выходной контроль, маркируют и упаковывают для доставки заказчикам.

Расклад сил

Год назад мы уже рассказывали о новом в кратком обзоре « ». (Кстати, применять аббревиатуру APU мы тут не будем, используя более знакомый термин .) Рассматривать Llano отдельно от остальных двух новинок этого года от AMD было бы неверно, ибо компания весьма точно разделила потребителей на сегменты, покрыв новыми процессорами почти всё, что до 2011 г. было отдано на откуп Феномам, Атлонам и Семпронам. Главной идеей создания гибридных ЦП было помещение графического процессора (ГП) на кристалл центрального, названное маркетологами «слиянием» (Fusion). Ранее интегрированная графика у AMD существовала лишь в северном мосте чипсета (у Intel её в 2010 г. переместили в ЦП, но оставили отдельным , причём изготовленным по худшей ). А какая вообще графика требуется пользователям?

  • Простая: для интернета, офиса, фильмов и старых игр - только это до сих пор и могла обеспечить «интеграшка»;
  • Быстрая: в т. ч. для современных игр - такой уровень и сейчас под силу только отдельным видеокартам, цена которых чаще всего больше, чем у ЦП;
  • Средняя: в т. ч. для игр, но либо не самых современных, либо не с самыми крутыми настройками, а главное - в компактном и тихом корпусе и за весьма ограниченный бюджет.

Именно для таких среднячков и сделан Llano. Он точно не поставит рекорды ни в одной категории, которой обычно сравнивают процессоры - ни по скорости (причём и в графической, и в вычислительной частях), ни по экономии, ни по цене. Его цель - занять золотую середину между всеми крайностями. Хотя нельзя сказать, что новизны нет совсем: гибридный ЦП впервые позволил сделать систему одновременно компактную (даже северный мост не нужен), пригодную для большинства игр и доступную почти всем игрокам. Например, всё более популярный форм-фактор «всё-в-одном» (монитор и системный блок в одном корпусе) теперь получит достойную 3D-графику.

Помимо того, что хотят массы, AMD должна была учесть и собственные возможности, которые сильно рассеяны из-за внедрения в течение года трёх , причём каждая - по новому для фирмы (совершенно немыслимая для конкурента ситуация - с их известной стратегией «тик-так»). Поэтому в данном случае (из трёх) ради минимизации рисков и экономии денег и времени решили не делать новую -архитектуру, а в очередной (но последний) раз обновить и дополнить старую. Так получились K12, пришедшие на смену K10.

Впрочем, весь процессор мог «получиться» куда раньше. Дело в том, что впервые идея об APU была заявлена из уст представителей AMD ещё в 2006 г., почти одновременно с покупкой ATI. Уже через год планов было громадье: сначала готовилась интеграция двух кристаллов в корпусе (как сделала Intel), затем - на одном кристалле, но со слабым взаимодействием (видимо, с отдельным КП для графической памяти), потом - с разделяемыми ресурсами, и, наконец, с полным «сплавом» вычислительных блоков общего и графического назначений. Причём шаг №1 должен был произойти уже в 2008 или 2009 г. Ясно, что многое пошло не так, а сложная финансовая ситуация заставила AMD даже выделить производственные мощности в виде отдельной компании Global Foundries (GF). Потерянное время пришлось навёрстывать авралом, так что первый вышедший APU оказался сразу третьим шагом вышеозначенного плана.

Если кратко перечислить суть Llano, то получится вот что:

  • 2–4 ядра K12, суть - улучшенные K10;
  • по 0,5 или 1 МБ на ядро, без ;
  • накристальный ГП класса HD 5000;
  • более скоростной , чем у K10, но лишённый за ненадобностью поддержки ;
  • контроллер шины PCIe 2.0, в т. ч. для подключения внешней видеокарты или двух;
  • более агрессивный авторазгон 2.0 (TC), но только для x86-ядер;
  • шин питания x86-ядер, ГП и блока UVD;
  • кристалл изготовлен по 32 нм технорме.
K10++ = K12

Интересно, что AMD ради высокой производительности GPGPU и некоторых других вычислений (в т. ч. перекодировании видео) сделала оптимизацию случая, когда графические и x86-ядра работают над общими данными - при этом их не требуется копировать из общей (когерентной) памяти в графическую и обратно. Интерфейс OpenCL даёт сразу несколько способов это сделать. Например, область памяти типа USWC (некэшируемая, упреждающая, со слиянием записей) обычно используется под кадровый буфер, но графические и x86-ядра могут получать к ней доступ поочерёдно. Также можно объявить некоторые страницы «фиксированными» (pinned), которых накладываются на непрерывно (для облегчения трансляции) - тогда любые ядра могут одновременно получать в них доступ, хотя для ГП так будет медленней.

Впрочем, эта оптимизация меркнет при рассмотрении пропусков разных видов обменов. На схемах видно, что максимум ПСП для одно- и многопоточного обменов между памятью и x86-ядрами - всего 8 и 13 ГБ/с, т. е. 27% и 43% от теоретического пика. Цифры для ГП - 40% и 57%. Тут, правда, не ясно, допустимо ли сложение чтений и записей - если да, то ситуация несколько лучше: одновременно читая и записывая, только x86-ядра могут в многопотоке загрузить 87% ПСП, а только графические - 97%. Тем не менее, странно, почему для каждого случая мы не можем получить 100%. Возможно, дело как раз в том самом приоритете для ГП, который понижает ПСП и для себя (когда простаивают x86-часть), и для x86 (когда молчит уже ГП).

Ещё меньше пропуски при обменах с чужими адресными пространствами, но тут объяснения есть: где-то нет кэширования в L2, а только буферы (WC, по 4 на ядро); где-то нужны снуп-проверка и трансляция адресов. В любом случае, AMD ещё надо хорошо поработать, чтобы нагрузить на полную широкие внутренние шины и внешнюю память. Для сравнения, ещё более широкая кольцевая шина в Sandy Bridge сразу даёт весь свой теоретический максимум, т. к. подключена к кэшу L3. Наконец-то 32!

Тут GF явно в догоняющих. Её 32-нанометровый техпроцесс на частично обеднённых КНИ-пластинах (PD-SOI) использует HKMG-транзисторы с напряжённым кремнием, изготовленные по методу «затвор первым» (детали обо всех этих технологий см. в нашем ). По утверждению GF, на кристалле могут присутствовать транзисторы, настроенные под три разных напряжения срабатывания - от 0,8 до 1,3 В (какие из них фактически используются в Llano - не ясно). Поверх них - 11-слойная медная металлизация с низкопроницаемыми диэлектриками; шаг затвора с учётом его контакта до одного из нижних трёх слоёв дорожек - 104 нм (для сравнения параметры Intel: 9 металлов и 112,5 нм - детально значение этих цифр исследовано в наших ). Есть несколько разных видов ячеек СОЗУ с разным сочетанием площади, потребления и скорости. Также допустимы (TSV), хотя на практике их в AMD пока никто не показал. В общем, всё примерно как у Intel, но в массовом производстве - на год позже.

Из тонких особенностей выделяются специальные транзисторы, корректирующие фронты сигналов для борьбы с утечками и выравнивания параметров всего массива транзисторов на многобитных шинах. Причём такая мера является «костылём», вызванным тем, что без него переведённое с 45 на 32 нм ядро заработало бы не так хорошо. При этом присутствуют и некоторые штатные средства экономии, в полном наборе имеющиеся в ядрах Bulldozer, изначально сделанных под 32 нм - детально поговорим о них в грядущей статье об этой архитектуре.

Разумеется, никак не обойти замену 6-транзисторных ячеек СОЗУ в кэшах на 8-транзисторные; зачем это надо - описано . (Кстати, впервые Intel применила такой приём экономии в Pentium 4 при переходе на 65 нм - разумеется, не для того, чтобы сделать его ультрамобильным, а т. к. иначе даже на новом техпроцессе не укладывались в предел по .) Но тут есть любопытный момент: замена почему-то почти не отразилась на площади кэшей. Чтобы разобраться с хитростями 32 нанометров у AMD, самое время заняться любимым делом процессорных аналитиков - подсчётом транзисторов:)


Кристалл 4-ядерного Llano

Итак, 4-ядерный Llano (с текущими и частотами потребляющий 35–100 Вт) имеет площадь 228 мм², на которых расположились 1450 млн. транзисторов (как обычно, сократим эту меру до «Мтр»). При этом на рекламном слайде AMD утверждает, что на x86-ядра и ГП ушло по 35%, а на СМ - 30%. Звучит крайне сомнительно: по расчётам, внеядро K10 (за вычетом контроллера и драйвера(ов) шины ) занимает ≈16 Мтр, а присутствующие тут блок UVD и контроллер PCIe никак не тянут на 419 Мтр. Возможно, речь шла о соотношении потраченной площади, что близко к реальности, но совсем не показательно, поэтому вернёмся к транзисторам. 2-ядерная версия кристалла (неизвестной пока площади) получит 758 Мтр и ГП на 240 «ядер».

Каждое ядро x86 занимает 9,69 мм² без учёта L2 и 17,7 мм² с L2. Транзисторов в нём «более 35» Мтр (у K10 было 30) + 1,38 на силовые ключи, а вместе с L2 - 110 Мтр. Предположим, что «более 35» означает «меньше 35,5», и получим ≈73,5 Мтр на мегабайт L2. Вычисленное значение для K10 - 76,25. Разница небольшая, но меньше это число точно стать не должно. Выходит, что либо ранее мы недооценивали сложность ядра K10 (где должно быть примерно на 3 Мтр больше), либо AMD (как уже многажды бывало) снова «намудрила» с цифрами. Проверим выкладки так: в «лишние» 5 Мтр должны уложится по 2 тр./бит в 128 КБ обоих L1 (это 2,1 Мтр), дополнительные 512 72-битных (скорее всего, тоже 8-транзисторных) ячеек для L2D TLB (+ 0,3 Мтр), а почти всё остальное - добавленная логика (в частности, целочисленный делитель - штука весьма немалая). Вроде всё совпадает. Видимо, «110» были округлены вниз примерно на 3 Мтр. Тем не менее, примем данное число.

Подсчитаем транзисторный бюджет большого и малого ГП + UVD + СМ: 1450−4×110=1010 и 758−2×110=538 Мтр. А теперь заглянем в той же архитектуры (изготавливаются на 40-нанометровом техпроцессе компании TSMC) и обнаружим вышеупомянутый Redwood с такими же параметрами, что и у старшего ГП Llano, но с транзисторным бюджетом лишь в 627 Мтр (включая контроллеры двух шин). А в наши 1010 Мтр уместится почти целый Juniper, который вдвое круче по всем параметрам! Далее, можно вычесть цифры Juniper из Redwood, т. к. эти ГП прежде всего отличаются формулой графических ядер и спаренных с ними спецблоков. Получаем 413 Мтр на 400 ФУ, 20 TMU и 8 ROP. Если же аналогично вычесть старший ГП Llano из младшего, то получится 472 Мтр на 160 ФУ, 8 TMU и 4 ROP!


Корпус (с варварски содранной крышкой) и основной кристалл XCGPU

Можно зайти с другой стороны - год назад был представлен чип, имеющий полное право называться первым массовым APU - XCGPU, процессор для нового поколения приставки Xbox моделей S. Предыдущие версии имели ЦП и ГП отдельно, тут же 45-нанометровое изделие GF умещает:

  • 3 ядра ЦП (чуть модифицированные версии миниядер PPE из ЦП IBM Cell), работающие на частоте 3,2 ГГц;
  • 1 МБ общего для них кэша L2, работающего с половинной частотой и подключенного к 256-битной шине;
  • 500 МГц ГП AMD Xenos на 240 ФУ с пиковой производительностью в 240 Гфлопс;
  • на втором чипе, связанном 500-мегагерцовой 512-битной шиной - 8 ROP и кадровый буфер на 10 МБ с архитектурой eDRAM (встроенное динамическое ОЗУ с 1-транзисторными ячейками).

Один корпус вместо двух (у прошлого ГП кадровый буфер также сидел рядом вторым кристаллом) сэкономил 60% TDP и 50% площади. На 10 МБ ОЗУ + ROP ушло 105 Мтр, т. е. для 8 ROP остаётся всего ≈10 Мтр. Но главное для нас то, что у основного чипа - 372 Мтр, из которых 165 ушло на ЦП + L2, а 232 - на ГП. И вот эта последняя цифра совсем не вяжется с похожим (в т. ч. по пиковой скорости) младшим ГП в Llano, которому, как мы подсчитали по не менее официальным цифрам, выпало 538 Мтр. В общем, веселуха с транзисторами продолжается - видимо, на техасщине это тоже популярная забава:) Кристалл со странностями

Теперь вернёмся к x86-ядрам. Тут полезно сделать небольшую ретроспективу. Давным-давно жила-была компания DEC - один из мировых лидеров по производству мэйнфреймов, миникомпьютеров и рабочих станций. И была в ней группа талантливых разработчиков микроархитектур, из-под руки которых вышли всемирно известные PDP-11, VAX и Alpha. О последней стоит сказать особо: её первая версия, Alpha 21064 или EV4 (1992 г.), это первый -процессор, частота которого превысила самые быстрые доселе компьютеры на ЭСЛ-логике. Второе поколение (21164 или EV5 - 1995 г.) - первый ЦП со встроенным L2 (который, правда, убрали из ЦП следующей версии). 21264 (EV6, 1998 г.) - второй (после AMD K5) 4-путный ЦП с (и с рекордными для логики 15,2 Мтр). 21364 (EV7, 2003 г.) - первый ЦП с высокоскоростным ИКП и сетевой межпроцессорной шиной. Планировавшийся на 2004 г. 21464 (EV8) должен был стать первым на 8 IPC и с 4-путной .

Но из-за просчётов руководства (и неожиданного для всех скачка производительности у x86 с выходом Pentium Pro) компьютеры с ЦП Alpha становились всё менее популярны, DEC терпела убытки, пока не была куплена компанией Compaq в 1998 г. Последняя свои микросхемы не разрабатывала и не производила (являясь активным покупателем ЦП Intel), так что судьба инженеров, продолжавших дорабатывать Альфы, была весьма печальна. В 2001 г. все наработки по Alpha (включая исследования по SMT, которые позже вырастут в технологию HyperThreading) Compaq продала в Intel, а та пригласила технарей работать над будущим Itanium (совместно с HP). (Говорят, большинство из перешедших 300 с чем-то инженеров до сих пор работают над новыми версиями этих ЦП.) Но часть персонала ушла ещё при кончине DEC…

…И ушла в AMD! Более того, Дэррик «Дёрк» Мэер, один из создателей Альфы, перешёл в AMD ещё в 1996 г. Возглавив группу, во многом состоящую из своих бывших коллег, он стал работать над новым ЦП. И уже в 1999 г. вышел первый Athlon. ЦП, разумеется, сделан с нуля, но в нём использовалась системная шина с технологией , первоначально разработанная для Alpha 21264. А в первых Opteron применили ИКП и шину HyperTransport, также от наработок для Alpha. Атлоны позволили в первый (и, пока, в последний) раз на равных соревноваться с Intel, пока та соображала, что бы такого сделать с Pentium 4… В общем, без команды архитектурщиков и инженеров из DEC об AMD сейчас бы вспоминали не чаще, чем о VIA. Но самое интересное для нас тут - как выглядели ядра Атлонов с первого по последний, и, для сравнения, Llano (по ссылкам - крупные версии):

K7, 250 нм, 1999 г. K7, 180 нм, 2001 г. K8, 130 и 90 нм, 2003 и 2004 гг.

K8, 65 нм, 2006 г. K10, 65 и 45 нм, 2007 и 2009 гг. K12, 32 нм, 2011 г.

Ясно, что любое сделанное с нуля ядро будет иметь совершенно новую раскладку блоков, с учётом архитектуры, техпроцесса и прочих параметров. Однако лицо Атлонов словно застряло во времени: за 12 лет на семи поколениях техпроцессов взаимное расположение и даже относительный размер основных блоков почти не изменились! Для сравнения, за это время Intel сделала с нуля P4, P-M, Core 2, Nehalem и Atom (не считая тех же Itanium и других не x86-ЦП), каждый их которых имеет совершенно отличный расклад ядра. Нельзя сказать, что в AMD сидят лентяи - просто либо первоначальный расклад оказался исключительно удачным, либо (что куда более вероятно) в AMD не хватило людских ресурсов, чтобы разработать совершенно новую микроархитектуру ранее 2011 г. Поэтому каждый раз ограничивались такими обновлениями существующей, чтобы они не повлекли полной переделки ядра.

Впрочем, кое-какие сдвиги в K12 всё же достойны комментария. Из-за удлинившегося целочисленного (включающего в себя и резервации) контроллер L2 «вылез» дальше остальных блоков, так что по обе стороны от него есть полосы свободного места. Особенно его много у L1I - настолько, что, немного потеснившись в логике фронта, его можно было бы увеличить на 50%. В других местах тоже стало посвободней - прежде всего из-за чуть более широких кэшей. Однако не смотря на их перевод с 6- на 8-транзисторную ячейку, относительная длина у них почти та же, что и у K10. Тем не менее, инженеры могли бы сократить несколько долей миллиметра по длине, пересобрав некоторую мешающую этому логику. Но не сделали это либо из-за недостатка времени, либо за ненадобностью.


Ладно там независимые аналитики из интернетов - но как AMD умудрилась ошибиться в разрисовке своего же кристалла, проведя границу блока UVD по его середине?..

А причина ненадобности может оказаться весьма проста - по ширине 4-ядерный кристалл ограничен длиной ГП. В результате парам x86-ядер не тесно даже с мегабайтовыми кэшами L2 - вокруг них полно свободного места. А ведь можно было ограничиться половиной L2 и развернуть ядра и СМ на 90° - сверху от них (по фото) освободится пространство, где можно разместить половину драйверов шин памяти, а вторую - вдоль левого края (ничего страшного, у Athlon II X2 эта полоска имеет аж два излома). В результате чип станет чуть длиннее (на ширину драйверов ОЗУ), но куда у́же.

Рассмотрим теперь ГП. Сразу можно сделать наблюдение: каждый большой прямоугольный блок устроен по принципу «массивы - по периметру, логика - по центру». Массивы - это мелкие горизонтальные прямоугольнички, устройство которых удивительно похоже по всему ГП. Зато логика, наоборот, совершенно хаотична. Такая комбинация может быть, только если и логику, и массивы оптимизировали по площади (и, во вторую очередь, экономии) в ущерб частоте. Но тут она и не нужна - выше 850 МГц не поднимаются даже дискретные ГП этой архитектуры. Тем не менее, линейная регулярность в логике должна быть, но тут она видна только на крупноблочном уровне: можно сказать точно, что 5 столбцов одинаковых блоков по 5 строк - это те самые 400 ФУ и 20 TMU. Число ROP (8) не делится на 5, и т. к. вряд ли одна пара рендер-блоков отключена даже в старшем ГП - их среди регулярных столбцов, видимо, нет…


Одна из пяти строчек с (предположительно) 80 графическими ФУ в ГП Llano

Резонно предположить, что вычислительные тракты займут наибольшую часть места, и это будут два похожих столбца по центру. Однако неясно, почему они хоть немного, но отличаются, и почему в каждом из них должно быть по 8 пятёрок 32-битных ФУ, но визуально ничего подобного не наблюдается… Выходит, либо AMD играет с Фотошопом (как это до сих пор продолжается с изображениями кристалла 4-модульного Bulldozer - скоро увидите), либо инженеры бывшей ATI намудрили что-то такое, что распознать это не могут даже видавшие всякого аналитики:)

Впрочем, кое-что всё же видно: по периметру каждой половины блока есть 64 одинаковых регулярных массива. При этом в вычислительную часть SIMD-блока (помимо 80 SP) входят 16 (РФ) по 1024 128-битных регистра. Плотность этих РФ в битах/мм² оказывается лишь чуть меньше плотности кэша L2 для x86-ядер и примерно в 20 раз лучше, чем у векторно-вещественного РФ там же. И это при обязательной многопортовости! Вот какие транзисторные оптимизации доступны при низких целевых частотах.

Теперь сообразим, как выглядит 2-ядерный кристалл с младшим ГП на 240 ФУ и половиной ROP. Все уже заметили «трещину» посреди ГП? Очевидно, это и есть «линия разреза», остаться после которого суждено только нижней части - вместе с нижней парой x86-ядер. Но постойте, ведь в верхней половине ГП есть ещё куча нужной логики и блок UVD - где будут они? Допустим, что их уместят встык к ФУ и TMU, но тогда придётся подвинутся драйверам ОЗУ, которые должны быть расположены либо углом, либо в 4 ряда (а не в 2, как сейчас: по числу каналов).

Не меньший вопрос - насчёт «потерянных» двух ROP. По 4 этих блока должны оказаться по разные стороны «трещины» (у всех старших ГП их 8, а у младших - 4). Но не считая вышеуказанных пяти «вычислительных столбцов», все остальные блоки и сверху и снизу разные. Если кто-то из читателей сможет аргументированно привязать хоть что-то из них к схеме ГП - добро пожаловать в комментарии на форуме. Стоит добавить, что при сравнении с не менее качественным фото ядра APU Zacate (с ГП на 80 ФУ той же архитектуры) ничего похожего на структуры из Llano не видно… Экономия

Первый пункт - цифровое предсказание потребления в модуле управления питанием (Digital APM). До сих пор APM работал примерно так: собирая аналоговые данные с термодиодов и датчиков тока, модуль их оцифровывал и делал выводы об общем потреблении. Цифровой APM таким методом только подтверждает ранее сделанное предсказание, основанное на сборе статистики по загрузке отдельных блоков. Зная её и зависимость потребления этого конкретного блока от его прошлой и текущей нагрузок, можно вычислить, сколько через мгновение должен потреблять весь чип, исходя из его математической модели. Смысл этого в том, что предсказание делается куда быстрее реальных измерений, причём его не надо предварительно калибровать под особенности конкретного кристалла, как того требуют аналоговые датчики. Цифровой APM, замеряя 95 сигналов и ошибаясь менее чем на 2%, обеспечивает более быстрые подстройки частот и напряжений при колебаниях нагрузки - ещё до того, как кристалл среагирует изменением температуры.

Любопытная хитрость, позволяющая цифровой модели там мало отклоняться от реальности, заключается в том, что APM учитывает теплопроводность отдельных участков кристалла, зная их расположение, площадь и локальную температуру. Поток тепла перераспределяется из работающих блоков в соседние, которые, возможно, простаивают, оттягивая на себя часть тепла. Учитывая, что тепло отводится через всю поверхность чипа, но имеет ограничение по потоку (≈50 Вт/см²) - чем с большей площади идёт охлаждение, тем лучше. Таким образом, горячее место на кристалле, если оно окружено простаивающими блоками, будет охлаждаться не только над собой, но и немножко сбоку, что и учитывает модель APM. Ей надо также учесть, что технология кремния-на-изоляторе (), при всех её технических преимуществах, имеет и недостаток: слой диоксида кремния работает в качестве не только электро-, но и термоизолятора. При прочих равных КНИ-кристалл имеет больше шансов перегреться. Но AMD с этим знакома уже давно и наверняка что-то придумала:)


Пилообразная граница между доменами питания у Llano удлиняет периметр, позволяя разместить над двойным набором ключей (вертикальные пунктиры) силовые контакты (квадраты) смежных доменов для экономии места под ключи. Иллюстрация с доклада для конференции ISSCC

Второй момент - силовые ключи , подключающие «землю» к ядрам (шины питания тут всегда включены). Используются n-канальные транзисторы, эффективность которых в качестве ключей (особо низкое сопротивление во включенном режиме и особо высокое в выключенном) оказывается лучше, чем у p-канальных - что является следствием применения КНИ. Intel использует p-канальную коммутацию шин питания - т. к. у неё техпроцесс на цельном кремнии. AMD утверждает, что n-канальные транзисторы меньше и быстрее при тех же электрических параметрах. В результате утечка тока у отключенного ядра уменьшена в 10 раз. Фактические тесты действительно подтверждают резкое сокращение потребления ЦП при частичной или нулевой загрузке.


Карта утечек тока Llano (красный - больше, синий - меньше) при нулевом тактировании, полученная с помощью «meridian photon recombination». При этом никакого другого упоминания этой фразы в сети больше нет - что же это за загадочный метод? И почему часть ГП странно замазана?..

AMD также показала карту утечек тока в трёх случаях: когда цепи включены, когда выключен блок UVD и когда выключена вся графика. x86-ядра, разумеется, могут отключаться по отдельности в C6. При усыплении всех ядер напряжение на шине их питания снижается, чтобы уменьшить даже эту мизерную утечку. При этом APM позволяет усыпить ядро как по его просьбе (т. е. от исполняющейся на нём программе), так и по команде ОС (которая исполняется в другом ядре). Усыпление ГП происходит после неактивности в течение заданного времени. Усыпление UVD и контроллера PCIe - программное, через драйверы и BIOS соответственно.

Засыпание ↓ Пробуждение
Ядро активно
Смыв кэшей
Сохранение состояния в ОЗУ

Инициализация кэшей

Запуск загрузочного микрокода
(как после сброса)

Подключение перемычек
с коррекцией микрокода
Понижение частоты Повышение частоты
Отключение PLL
Отключение шин до СМ Подключение шин до СМ
Отключение силовой шины Подключение силовой шины

Включение и калибровка PLL
Ядро спит

В этой таблице указаны процедуры засыпания в состояние C6 и пробуждения из него. Последнее занимает 30 мкс для одного ядра и 100 мкс для всего ЦП (включая пробуждение модулей памяти), причём AMD обещает даже эти достойные цифры ещё улучшить. (Можете их сравнить с моделей Z6xx.) При этом в спящем ЦП всё равно работает APIC - программируемый контроллер прерываний, реагирующий на внешние события, включая регулярные пробуждения по таймеру. В отличие от того же «Атома», AMD не стала внедрять специальное буферное для хранения состояния ядра на кристалле, разумно полагая, что пока будут выполняться остальные процедуры, ИКП успеет подкачать нужные несколько сот байт.

Заметим, что шин питания , у Llano - две: для x86-ядер и всего остального, включая ГП (кроме умножителей, для которых есть отдельная слаботочная шина). Это чуть удешевляет плату, но не приводит к неоптимальному потреблению энергии. Второе напряжение является максимумом из потребностей СМ (включая ИКП), ГП, UVD и контроллера PCIe. При декодировании видео ГП простаивает, но запитывается полными вольтами - однако они не доходят до потребления, остановленные силовыми ключами. Похоже, что AMD нашла оптимум между ценой и экономией.

Наконец, третья добавка - разряжённая сеть тактирования . Через неё умножитель частоты передаёт потребителям тактовые импульсы нужной им частоты. Требуется, чтобы все импульсы дошли строго одновременно до всех частей потребителей, что вынуждает строить разветвлённое дерево дорожек, высчитывая их длину так, чтобы задержка распространения сигнала до любой конечной ветки была одинакова. Учитывая затухание сигнала, приходится регулярно ставить усилители, вносящие собственную задержку. В результате на полной частоте вся эта сеть потребляет значительную энергию, даже если никакой полезной работы не выполняется. Например, у Pentium 4 на её питание уходило до трети потребляемой мощности.

В AMD поступили так же, как и создатели Atom: сократили число буферов и усилителей вдвое, а число ветвей - впятеро, удалив ненужные с учётом нагрузки. Теперь при полной выкладке Llano тактирует всего 32% блоков (только фактически работающие), а при простое (без отключения блоков) - лишь 12%. Так получилось уменьшить на 54% потребляемую сетью мощность. Опять же - всё со слов AMD. В таблице рядом показаны результаты моделирования максимального потребления при питании 1 В.

Ещё три технологии касаются конкретно ГП. Во-первых, адаптивная модуляция подсветки (adaptive backlight modulation, ABM) плавно затемняет лампы или светодиоды подсветки при выводе «тёмной» картинки - при этом выводимые пиксели пропорционально осветляются, чтобы воспринимаемое изображение имело верную яркость. Во-вторых, сжатие кадрового буфера позволяет выводить только изменённые части кадра относительно предыдущего - с сильной экономией трафика шины (много ли пикселей меняется от кадра к кадру при перемещении курсора?). В-третьих, внешний ГП при простое спит, потребляя всего 0,2 Вт (с готовностью проснуться за 0,15 с), хотя это больше заслуга его устройства, а не процессора.

Что всё это даст потребителю? А то, что впервые со времён мобильных Pentium 4 AMD предложила платформу, достаточно экономную, чтобы если не выиграть, то хотя бы на равных соревноваться с соперником (при одинаковой скорости и ёмкости батарей). При этом вариант AMD стоит дешевле, если систему на базе Intel оснастить дискретным ГП, сравнимым со встроенным в Llano. Turbo Core 2.0

Экономия ватт даст больше шансов разогнать работающие ядра, что будет посильнее призрачных «6%», когда вычислительная производительность нужна во что бы то ни стало. Поможет в этом новый (по сравнению с внедрённым в Phenom II X6) алгоритм Turbo Core 2.0. Он работает во всех мобильных моделях, разгоняя их на 400-900 МГц, но не во всех настольных, где разгон - всего на 300 МГц. Причём для конкретного ЦП разгон либо включен, либо нет - никакой регулировки типа «от 100 до 500 МГц» нет. Если сравнить это с возможностями Turbo Boost, то видно, что AMD есть к чему стремиться.

Как и с Turbo Boost 2.0, теперь можно ненадолго превысить предел TDP, если температура ещё не подошла к своему лимиту. В версии 1.0 ускорение делалось на базе активности половины ядер, а не каждого по отдельности. Т. е. формула ускорения (приращение множителей при простое от N−1 до 0 ядер) для 6-ядерного Фенома выглядела так: x-x-x-0-0-0. Однако у Llano авторазгон присутствует и у 3-ядерного A6-3500 (т. е. с нечётным числом ядер), из чего можно сделать осторожный вывод, что TC 2.0, видимо, наконец-то научился работать с поядерной дискретностью. Проверить это, как ни странно, весьма трудно, т. к. AMD до сих пор не даёт возможность считать реальную частоту ядер. Кроме того, как уже сказано, не может ускоряться ГП. Пока… Модели, чипсеты и платформы

Как обычно, дадим ссылки на описания и моделей в Википедии и прокомментируем увиденное. Во-первых, не доверяйте всему, что там пишут над таблицами;) Во-вторых, знакомые имена ушли в прошлое, оставив лишь буквы и цифры. С буквами после номера модели просто: M - мобильная модель на 35 Вт, MX - на 45, K - настольная со свободным множителем. А вот их комбинации с цифрами уже возвращают нас в привычный бардак. В таблице указаны общие характеристики первых выпущенных видов Llano.

Ряд Число ядер Объём L2, МБ ГП Turbo Core Память TDP, Вт
E2 2 0,5×2 6370D нет DDR3-1600 65
E2-M 6380G у всех DDR3-1333 35
A4 2 0,5×2 6410D нет DDR3-1600 65
A4-M 1×2 6480G у всех DDR3-1333 35
A4-MX 45
A6 3/4 1×3/4 6530D иногда DDR3-1866 65/100
A6-M 4 1×4 6520G у всех DDR3-1333 35
A6-MX DDR3-1600 45
A8 4 1×4 6550D иногда DDR3-1866 65/100
A8-M 6620G у всех DDR3-1333 35
A8-MX DDR3-1600 45

Казалось бы, куда логично назвать все 4-ядерные модели - A8, а отличия в ГП оставить лишь в номерах. Не менее разумно оснастить все A4 полными кэшами L2, а все MX-версии - памятью на 1600 МГц (иначе не ясно, почему на +200 МГц базовой частоты x86-ядер модели A4-3310MX в сравнении с A4-3300M угрохали лишние 10 Вт). Из номеров моделей пока можно узнать, что первая цифра - 3, последняя - 0, а две средние - чем больше, тем лучше. При всём идиотизме такого описания - это всё, что можно сказать, чтобы не пускаться в исключения.

Занятно, что TС отсутствует у 100-ваттовых ЦП, хотя, казалось бы, у них-то точно потолок разгона высокий… Куда хуже то, что, несмотря на все ухищрения, меньше 65 Вт у настольных моделей нет. Разумеется, надо отдать должное неслабому ГП (даже у A4 и E2), но как минимум с маркетинговой точки зрения (по сравнению с модельным рядом Intel) смотрится плохо.

С тех пор уже объявлены новые модели, описание которых показывает, куда расширяется модельный ряд:

  • Помимо A8-3870K, планируется ещё одна разблокированная модель - A6-3670K на 2,7 ГГц (также без авторазгона) и ГП 6530D на 443 МГц. Таким образом, даже скромный игрок сможет быть разгонщиком;
  • Готовятся 4-ядерные Athlon II X4 моделей 631, 641 и 651 на 2,6, 2,8 и 3 ГГц, 100 Вт TDP, без TC и даже без ГП. К ним присоединятся и 2-ядерные Sempron X2 198 на 2,5 ГГц и Athlon II X2 221 на 2,8 (оба - с 0,5 МБ L2 и TDP на 65 Вт). Все они уже не APU - потому, видимо, их и назвали старыми именами. Возможно, эти модели придут, когда современные ЦП на 45 нм уже уйдут на покой, а новые ещё не появятся;
  • Модель A4-3305M отличается от A4-3300M тем, что имеет половинные кэши L2 и самый слабый ГП, зато последний работает на частоте 593 МГц (быстрее любого другого мобильного Llano). Таким образом, внезапная пятёрка внесла очередное исключение: по большинству характеристик 3305M относится к линейке E2;
  • Планируемые модели ноутбуков HP Pavilion в списке доступных ЦП имеют и другие модели Llano, которые вносят ещё больший бардак (например, больший номер может означать меньшую частоту, а буква M - 45 Вт TDP). Впрочем, эти номера запросто могут бесследно исчезнуть…

Настольные модели используют -корпус для разъёма Socket FM1 на 905 выводов, а мобильные - FS1 на 722. В будущем возможны мобильные модели в -корпусе для распайки на плате, хотя для них почему-то также указывается разъём - FP1. Интересно, что для этих ЦП TDP указан как 20 или 26 Вт для 2-ядерных и 30 Вт для 4-ядерных - нижняя граница вплотную подходит к чипам Zacate с ядрами Bobcat…

От чипсетов остались лишь южные мосты, потому что северный уже весь «сынтегрирован» - и это вдвойне хорошо, т. к. уже известно, что они смогут работать как минимум с некоторыми ЦП из второго поколения APU, выходящего в 2012 г. Официально чипсет называется Fusion Controller Hub («узел управления слиянием», смех в зале ), а неофициально - Hudson. Изготавливается по технорме 65 нм в корпусе FCBGA-605 размером 23×23 мм. FCH для Llano делятся на два класса - мобильные M с TDP 2,7–4,7 Вт и настольные D на 5 Вт.

  • Все версии имеют: 6 портов SATA 3.0 (на 6 Гбит/с), RAID 0/1, 4 порта PCIe 2.0 x1 и 3 PCI, VGA (аналоговая часть), звук HD Audio, 14 портов USB 2.0, гигабитный Ethernet, контроллер карт SD (до 32 ГБ и 25 МБ/с), встроенный тактовый генератор и поддержка UEFI (новый «BIOS»);
  • M2 (он же - A60M, предназначен для платформы Sabine): стандартная модель;
  • M3 (A70M, для Sabine): как M2, но 4 порта USB обновлены до версии 3.0;
  • D1 (A45, для Value Lynx): отсутствуют Ethernet, RAID, SD и VGA; все порты SATA - только версии 2.0; + 1 порт PCI;
  • D2 (A55, для Lynx и Carina): как M2, но с поддержкой RAID 10 и FIS-based switching (возможность подключения к порту SATA до 15 устройств через хаб-разветвитель);
  • D3 (A75, для Lynx и Carina): как D2, но 4 порта USB обновлены до версии 3.0.

Платформа Sabine - для «обычных» ноутбуков, Value Lynx - дешёвые домашние ПК, Lynx - «просто» домашние ПК, а Carina - офисные ПК. Чем отличаются последние два - неясно. Итого

В теории всё выглядит хорошо: AMD малыми усилиями сделала ЦП, некоторые характеристики которых можно с полным правом назвать передовыми и даже уникальными, что и обеспечит им продажи. Заменив старые Атлоны и добавив к ним графику за меньшие деньги и ватты, можно почувствовать, что прогресс есть даже у ЦП с 12-летней микроархитектурой. Но всему приходит конец - выходящее весной 2012 г. второе поколение APU Trinity уже будет использовать новые ядра Piledriver («улучшенный Бульдозер») и новый разъём Socket FM2 на 904 вывода (специально несовместимый с нынешним). В Trinity обещают ГП с новой архитектурой VLIW4 (используется пока только в чипе Cayman, он же Radeon HD 69x0), аппаратный видеокодер (VCE), подключение до трёх мониторов, наличие TC версии 3.0 (с разгоном ГП), поддержку DDR3-2133 и PCIe 3.0, 65–125 Вт TDP и обновлённые чипсеты.

А в следующих поколениях встроенных ГП на базе архитектуры «Southern Islands» появятся: лучшая поддержка языков высокого уровня для GPGPU (с использованием более привычной суперскалярных -ядер вместо ), общее адресное пространство с x86, 64-битная виртуальная адресация с подкачкой страниц, переключение контекста (для многозадачности) и протокол когерентности для PCIe (чтобы всё вышеперечисленное было возможно и для внешнего ГП).

На радостях от выпуска новых ЦП в AMD даже считать разучились, заявив в одном из слайдов, что «APU знаменуют самый большой сдвиг в технологии ПК с момента изобретения x86-ЦП более 40 лет назад». Изобретения? Более 40 лет назад? Ну, пока кто-то в AMD открывает для себя непознанные страницы истории (или арифметики) - отдадим дань окончательно уходящим на покой Атлонам. Из них выжали всё, и этого хватило надолго.

Идея прямого омывания кристалла процессора водой не нова. Современные процессоры снабжаются теплораспределителями, которые контактируют с кристаллом ядра через слой термопасты. Не секрет, что такое сопряжение является "узким местом" в цепочке, обеспечивающей отвод тепла от ядра процессора. Некоторые оверклокеры пытаются улучшить условия охлаждения ядра, для чего снимают крышки с процессоров. Однако, и после этого кристаллу ядра обычно приходится контактировать с подошвой водоблока или радиатора воздушного кулера.

Идея прямого омывания ядра заключается в том, чтобы поток воды забирал тепло непосредственно у кристалла, однако практическая реализация этой идеи до сих пор сдерживалась факторами риска, которые неизбежно возникают при контакте электронных компонентов с токопроводящей средой, коей является и вода.

Как сообщает сайт VR-Zone , швейцарским учёным из лаборатории IBM удалось разработать технологию микроканального прямого омывания микрочипов, которая может найти применение при охлаждении компонентов в обозримом будущем. Современные процессоры достигают плотности теплового потока 100 Вт на кв.см площади ядра, и эффективно отводить тепло от таких процессоров при помощи воздушных кулеров становится всё труднее. Новая технология позволяет отводить до 370 Вт с одного квадратного сантиметра площади ядра.

Принцип действия новой системы охлаждения демонстрируется этой иллюстрацией. Система из 50 000 микроканалов шириной 30-50 микрометров (0.03-0.05 мм) пронизывает радиатор охлаждения процессора, который монтируется непосредственно на "обнажённое" ядро. Между подошвой радиатора и поверхностью ядра создаётся небольшой зазор, который в рабочем состоянии заполняется водой. От протечек систему защищает специальное уплотнение.

По системе микроканалов, очень напоминающих кровеносную систему человека, вода подаётся в рабочую полость этого импровизированного водоблока, по этой же системе (но другим каналам) нагретая вода отсасывается. Разработчики утверждают, что на обеспечение циркуляции жидкости нужно тратить гораздо меньше сил, чем в случае с обычными системами водяного охлаждения. Данный принцип был заимствован у природы. Это означает, что помпа, подающая жидкость, не обязательно должна быть мощной.

Кстати, такая микроканальная структура может использоваться и в сфере воздушного охлаждения. Например, для равномерного распределения термопасты по поверхности кристалла ядра. Микроканальная система может встраиваться в теплораспределитель процессора, она не будет сообщаться с внешним миром.

На этой фотографии показан радиатор с микроканальной структурой, работающий по принципу прямого омывания ядра. На заднем плане виднеется сам чип, который он должен охлаждать. Снизу же расположен медный радиатор весом в несколько килограмм, имеющий сопоставимую с изобретением IBM эффективность.

Разработка позволяет повысить плотность теплового потока в шесть раз по сравнению с существующими системами воздушного охлаждения. Если учесть, что процессоры становятся всё более компактными, даже без учёта возможности роста тепловыделения плотность теплового потока будет расти. Вполне возможно, новую технологию охлаждения IBM применит на своих 0.065 мкм процессорах семейства Power6 , которые будут работать на частотах свыше 4.0 ГГц.

Современные микропроцессоры - одни из сложнейших устройств, изготавливаемых человеком. Производство полупроводникового кристалла намного более ресурсоемко, чем, скажем, возведение многоэтажного дома или организация крупнейшего выставочного мероприятия. Однако благодаря массовому выпуску CPU в денежном эквиваленте мы этого не замечаем, да и редко кто задумывается обо всей грандиозности элементов, занимающих столь видное место внутри системного блока. Мы решили изучить детали производства процессоров и поведать о них в данном материале. Благо в Сети сегодня достаточно информации на эту тему, а специализированная подборка презентаций и слайдов корпорации Intel позволяет выполнить поставленную задачу максимально наглядно. Предприятия других гигантов полупроводниковой индустрии работают по тому же принципу, поэтому с уверенностью можно сказать, что все современные микросхемы проходят идентичный путь создания.

Первое, о чем стоит упомянуть, - строительный материал для процессоров. Кремний (англ. silicon) - второй после кислорода наиболее распространенный элемент на планете. Он является природным полупроводником и используется как основной материал для производства чипов всевозможных микросхем. Больше всего кремния содержится в обычном песке (особенно кварце) в виде диоксида кремния (SiO2).

Впрочем, кремний - не единственный материал. Самый близкий его родственник и заменитель - германий, однако в процессе совершенствования производства ученые выявляют хорошие полупроводниковые свойства у соединений других элементов и готовятся опробовать их на практике или уже это делают.

1 Кремний проходит многоступенчатый процесс очистки: сырье для микросхем не может содержать больше примесей, чем один чужеродный атом на миллиард.

2 Кремний расплавляют в специальной емкости и, опустив внутрь постоянно охлаждаемый вращающийся стержень, «наматывают» на него благодаря силам поверхностного натяжения вещество.

3 В итоге получаются продольные заготовки (монокристаллы) круглого сечения, каждая массой около 100 кг.

4 Заготовку нарезают на отдельные кремниевые диски - пластины, на которых будут расположены сотни микропроцессоров. Для этих целей используются станки с алмазными режущими дисками или проволочно-абразивные установки.

5 Подложки полируют до зеркального блеска, чтобы устранить все дефекты на поверхности. Следующий шаг - нанесение тончайшего фотополимерного слоя.

6 Обработанная подложка подвергается воздействию жесткого ультрафиолетового излучения. В фотополимерном слое происходит химическая реакция: свет, проходя через многочисленные трафареты, повторяет рисунки слоев CPU.

7 Реальный размер наносимого изображения в несколько раз меньше собственно трафарета.

8 Участки, «протравленные» излучением, вымываются. На кремниевой подложке получается рисунок, который затем подвергается закреплению.

9 Следующий этап изготовления одного слоя - ионизация, в процессе которой свободные от полимера участки кремния бомбардируются ионами.

10 В местах их попадания изменяются свойства электрической проводимости.

11 Оставшийся полимер удаляют, и транзистор почти готов. В изолирующих слоях делаются отверстия, которые благодаря химической реакции заполняются атомами меди, используемыми в качестве контактов.

12 Соединение транзисторов представляет собой многоуровневую разводку. Если взглянуть в микроскоп, на кристалле можно заметить множество металлических проводников и помещенных между ними атомов кремния или его современных заменителей.

13 Часть готовой подложки проходит первый тест на функциональность. На этом этапе на каждый из выбранных транзисторов подается ток, и автоматизированная система проверяет параметры работы полупроводника.

14 Подложка с помощью тончайших режущих кругов разрезается на отдельные части.

15 Годные кристаллы, полученные в результате данной операции, используются в производстве процессоров, а бракованные отправляются в отходы.

16 Отдельный кристалл, из которого будет сделан процессор, помещают между основанием (подложкой) CPU и теплорас-пределительной крышкой и «упаковывают».

17 В ходе окончательного тестирования готовые процессоры проверяются на соответствие требуемым параметрам и лишь затем сортируются. На основании полученных данных в них прошивается микрокод, позволяющий системе должным образом определить CPU.

18 Готовые устройства упаковываются и направляются на рынок.

Интересные факты о процессорах и их производстве

«Силиконовая долина» (Silicon Valley, США, Калифорния)

Получила свое название благодаря основному строительному элементу, использующемуся в производстве микрочипов.

«Почему пластины для производства процессоров круглые?» - наверняка спросите вы.

Для производства кремниевых кристаллов применяется технология, позволяющая получать только цилиндрические заготовки, которые затем режутся на части. До сих пор еще никому не удавалось изготовить квадратную пластину, лишенную дефектов.

Почему микрочипы квадратные?

Именно такая литография позволяет использовать площадь пластины с максимальной эффективностью.

Зачем процессорам столько ножек/контактов?

Помимо сигнальных линий каждый процессор для работы нуждается в стабильном питании. При энергопотреблении порядка 100-120 Вт и низком напряжении через контакты может протекать ток силой до 100 А. Значительная часть контактов CPU выделена именно под систему питания и дублируется.

Утилизация отходов производства

Раньше дефектные пластины, их остатки и бракованные микрочипы шли в отходы. На сегодняшний день ведутся разработки, позволяющие использовать их в качестве основы для производства солнечных батарей.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

99,9999%

Для производства процессоров пригоден только кремний высочайшей степени чистоты. Заготовки очищают спецхимией.

300 мм

Таков диаметр современных кремниевых пластин для производства процессоров.

1000 раз

Именно настолько чище воздух в помещениях фабрик для производства чипов, чем в операционной.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua

Сложно в это поверить, но современный процессор является самым сложным готовым продуктом на Земле - а ведь, казалось бы, чего сложного в этом куске железа?

Итак, когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль.

Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час.

Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы.

Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска.

Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы.

После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров - если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Уроки химии

Давайте рассмотрим весь процесс более подробно. Содержание кремния в земной коре составляет порядка 25-30% по массе, благодаря чему по распространённости этот элемент занимает второе место после кислорода.

Песок, особенно кварцевый, имеет высокий процент содержания кремния в виде диоксида кремния (SiO 2) и в начале производственного процесса является базовым компонентом для создания полупроводников.

Первоначально берется SiO 2 в виде песка, который в дуговых печах (при температуре около 1800°C) восстанавливают коксом:

Такой кремний носит название «технический » и имеет чистоту 98-99.9%. Для производства процессоров требуется гораздо более чистое сырье, называемое «электронным кремнием » — в таком должно быть не более одного чужеродного атома на миллиард атомов кремния.

Для очистки до такого уровня, кремний буквально «рождается заново». Путем хлорирования технического кремния получают тетрахлорид кремния (SiCl 4), который в дальнейшем преобразуется в трихлорсилан (SiHCl 3):

3SiCl 4 + 2H 2 + Si ↔ 4SiHCl 3

Данные реакции с использованием рецикла образующихся побочных кремнийсодержащих веществ снижают себестоимость и устраняют экологические проблемы:

2SiHCl 3 ↔ SiH 2 Cl 2 + SiCl 4
2SiH 2 Cl 2 ↔ SiH 3 Cl + SiHCl 3
2SiH 3 Cl ↔ SiH 4 + SiH 2 Cl 2
SiH 4 ↔ Si + 2H 2

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля.

В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая дуля весит порядка 100 кг.

Слиток шкурят «нулёвкой»:) и режут алмазной пилой. На выходе - пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (~12 дюймов; именно такие используются для техпроцесса в 32нм с технологией HKMG, High-K/Metal Gate).

Когда-то давно Intel использовала диски диаметром 50мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450мм - это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии — все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.

Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру. Остановимся совсем коротко на самых важных этапах.

Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать?

Вообще, нанесение различных слоев на процессорную подложу - это целая наука, ведь даже в теории такой процесс непрост.

Фотолитография

Проблема решается с помощью технологии фотолитографии — процесса избирательного травления поверхностного слоя с использованием защитного фотошаблона. Технология построена по принципу «свет-шаблон-фоторезист» и проходит следующим образом:

— На кремниевую подложку наносят слой материала, из которого нужно сформировать рисунок. На него наносится фоторезист — слой полимерного светочувствительного материала, меняющего свои физико-химические свойства при облучении светом.
— Производится экспонирование (освещение фотослоя в течение точно установленного промежутка времени) через фотошаблон
— Удаление отработанного фоторезиста.

Нужная структура рисуется на фотошаблоне — как правило, это пластинка из оптического стекла, на которую фотографическим способом нанесены непрозрачные области. Каждый такой шаблон содержит один из слоев будущего процессора, поэтому он должен быть очень точным и практичным.

Иной раз осаждать те или иные материалы в нужных местах пластины просто невозможно, поэтому гораздо проще нанести материал сразу на всю поверхность, убрав лишнее из тех мест, где он не нужен — на изображении выше синим цветом показано нанесение фоторезиста.

Пластина облучается потоком ионов (положительно или отрицательно заряженных атомов), которые в заданных местах проникают под поверхность пластины и изменяют проводящие свойства кремния (зеленые участки — это внедренные чужеродные атомы).

Как изолировать области, не требующие последующей обработки?

Перед литографией на поверхность кремниевой пластины (при высокой температуре в специальной камере) наносится защитная пленка диэлектрика - как я уже рассказывал, вместо традиционного диоксида кремния компания Intel стала использовать High-K-диэлектрик.

Он толще диоксида кремния, но в то же время у него те же емкостные свойства. Более того, в связи с увеличением толщины уменьшен ток утечки через диэлектрик, а как следствие - стало возможным получать более энергоэффективные процессоры.

В общем, тут гораздо сложнее обеспечить равномерность этой пленки по всей поверхности пластины — в связи с этим на производстве применяется высокоточный температурный контроль.

Так вот. В тех местах, которые будут обрабатываться примесями, защитная пленка не нужна - её аккуратно снимают при помощи травления (удаления областей слоя для формирования многослойной структуры с определенными свойствами).

А как снять ее не везде, а только в нужных областях? Для этого поверх пленки необходимо нанести еще один слой фоторезиста - за счет центробежной силы вращающейся пластины, он наносится очень тонким слоем.

В фотографии свет проходил через негативную пленку, падал на поверхность фотобумаги и менял ее химические свойства. В фотолитографии принцип схожий: свет пропускается через фотошаблон на фоторезист, и в тех местах, где он прошел через маску, отдельные участки фоторезиста меняют свойства. Через маски пропускается световое излучение, которое фокусируется на подложке.

Для точной фокусировки необходима специальная система линз или зеркал, способная не просто уменьшить, изображение, вырезанное на маске, до размеров чипа, но и точно спроецировать его на заготовке. Напечатанные пластины, как правило, в четыре раза меньше, чем сами маски.

Весь отработанный фоторезист (изменивший свою растворимость под действием облучения) удаляется специальным химическим раствором - вместе с ним растворяется и часть подложки под засвеченным фоторезистом. Часть подложки, которая была закрыта от света маской, не растворится.

Она образует проводник или будущий активный элемент - результатом такого подхода становятся различные картины замыканий на каждом слое микропроцессора.

Собственно говоря, все предыдущие шаги были нужны для того, чтобы создать в необходимых местах полупроводниковые структуры путем внедрения донорной (n-типа) или акцепторной (p-типа) примеси.

Допустим, нам нужно сделать в кремнии область концентрации носителей p-типа, то есть зону дырочной проводимости. Для этого пластину обрабатывают с помощью устройства, которое называется имплантер — ионы бора с огромной энергией выстреливаются из высоковольтного ускорителя и равномерно распределяются в незащищенных зонах, образованных при фотолитографии.

Там, где диэлектрик был убран, ионы проникают в слой незащищенного кремния - в противном случае они «застревают» в диэлектрике. После очередного процесса травления убираются остатки диэлектрика, а на пластине остаются зоны, в которых локально есть бор.

Понятно, что у современных процессоров может быть несколько таких слоев — в таком случае на получившемся рисунке снова выращивается слой диэлектрика и далее все идет по протоптанной дорожке — еще один слой фоторезиста, процесс фотолитографии (уже по новой маске), травление, имплантация… ну вы поняли.

Характерный размер транзистора сейчас — 32 нм, а длина волны, которой обрабатывается кремний — это даже не обычный свет, а специальный ультрафиолетовый эксимерный лазер — 193 нм. Однако законы оптики не позволяют разрешить два объекта, находящиеся на расстоянии меньше, чем половина длины волны. Происходит это из-за дифракции света. Как быть?

Применять различные ухищрения — например, кроме упомянутых эксимерных лазеров, светящих далеко в ультрафиолетовом спектре, в современной фотолитографии используется многослойная отражающая оптика с использованием специальных масок и специальный процесс иммерсионной (погружной) фотолитографии.

Логические элементы, которые образовались в процессе фотолитографии, должны быть соединены друг с другом. Для этого пластины помещают в раствор сульфата меди, в котором под действием электрического тока атомы металла «оседают» в оставшихся «проходах» — в результате этого гальванического процесса образуются проводящие области, создающие соединения между отдельными частями процессорной «логики».

Излишки проводящего покрытия убираются полировкой.

Самое сложное позади. Осталось хитрым способом соединить «остатки» транзисторов — принцип и последовательность всех этих соединений (шин) и называется процессорной архитектурой.

Для каждого процессора эти соединения различны - хоть схемы и кажутся абсолютно плоскими, в некоторых случаях может использоваться до 30 уровней таких «проводов».

Отдаленно (при очень большом увеличении) все это похоже на футуристическую дорожную развязку - и ведь кто-то же эти клубки проектирует!

Когда обработка пластин завершена, пластины передаются из производства в монтажно-испытательный цех. Там кристаллы проходят первые испытания, и те, которые проходят тест (а это подавляющее большинство), вырезаются из подложки специальным устройством.

На следующем этапе процессор упаковывается в подложку (на рисунке - процессор Intel Core i5, состоящий из CPU и чипа HD-графики).

Подложка, кристалл и теплораспределительная крышка соединяются вместе - именно этот продукт мы будем иметь ввиду, говоря слово «процессор».

Зеленая подложка создает электрический и механический интерфейс (для электрического соединения кремниевой микросхемы с корпусом используется золото), благодаря которому станет возможным установка процессора в сокет материнской платы - по сути, это просто площадка, на которой разведены контакты от маленького чипа.

Теплораспределительная крышка является термоинтерфейсом, охлаждающим процессор во время работы - именно к этой крышке будут примыкать система охлаждения, будь то радиатор кулера или здоровый водоблок.

Сокет (разъём центрального процессора) — гнездовой или щелевой разъём, предназначенный для установки центрального процессора.

Использование разъёма вместо прямого распаивания процессора на материнской плате упрощает замену процессора для модернизации или ремонта компьютера.

Разъём может быть предназначен для установки собственно процессора или CPU-карты (например, в Pegasos). Каждый разъём допускает установку только определённого типа процессора или CPU-карты.

На завершающем этапе производства готовые процессоры проходят финальные испытания на предмет соответствия основным характеристикам - если все в порядке, то процессоры сортируются в нужном порядке в специальные лотки - в таком виде процессоры уйдут производителям или поступят в OEM-продажу.

Еще какая-то партия пойдет на продажу в виде BOX-версий - в красивой коробке вместе со стоковой системой охлаждения.

Теперь представьте себе, что компания анонсирует, например, 20 новых процессоров. Все они различны между собой - количество ядер, объемы кэша, поддерживаемые технологии…

В каждой модели процессора используется определенное количество транзисторов (исчисляемое миллионами и даже миллиардами), свой принцип соединения элементов… И все это надо спроектировать и создать/автоматизировать - шаблоны, линзы, литографии, сотни параметров для каждого процесса, тестирование…

И все это должно работать круглосуточно, сразу на нескольких фабриках…

В результате чего должны появляться устройства, не имеющие права на ошибку в работе, а стоимость этих технологических шедевров должна быть в рамках приличия.