Излучение и приём радиоволн - definition. Прием радиоволн

Доказал, что электромагнитная энергия может быть отправлена в космос в виде радиоволн, которые проходят через атмосферу примерно со скоростью света. Это открытие помогло разработать принципы радиосвязи, которыми пользуются и сегодня. Кроме того, ученый доказал, что радиоволны имеют электромагнитную природу, а главная их характеристика - это частота, при которой энергия колеблется между электрическими и магнитными полями. Частота в герцах (Гц) связана с длиной волны λ, представляющей собой расстояние, которое радиоволна проходит в течение одного колебания. Таким образом, получается следующая формула: λ = C/F (где C равна скорости света).

Принципы радиосвязи основаны на передаче несущих информацию радиоволн. Они могут передавать голос или цифровые данные. Для этого радиостанция должна иметь:

Устройство для сбора информации в электрический сигнал (например, микрофон). Этот сигнал называется основной полосой частот в обычном звуковом диапазоне.

Модулятор внесения информации в полосу частот сигнала на выбранной

Передатчик, сигнала, который посылает его на антенну.

Антенну из проводящего электричество стержня определенной длины, которая будет излучать электромагнитную радиоволну.

Усилитель сигнала на стороне приемника.

Демодулятор, который будет способен восстановить первоначальную информацию из принимаемого радиосигнала.

Наконец, устройство для воспроизведения переданной информации (например, громкоговоритель).

Современный принцип радиосвязи был задуман еще в начале прошлого века. В то время радио разработали в основном для передачи голоса и музыки. Но очень скоро появилась возможность использовать принципы радиосвязи для передачи более сложной информации. Например, такой ​​как текст. Это привело к изобретению телеграфа Морзе.

Общим для голоса, музыки или телеграфа является то, что основная информация зашифрована в которые характеризуются амплитудой и частотой (Гц). Люди могут слышать звуки в диапазоне от 30 Гц и примерно до 12 000 Гц. Этот диапазон называется звуковой спектр.

Радиочастотный спектр делится на различные Каждый из которых имеет конкретные характеристики в отношении излучения и затухания в атмосфере. Выделяют описанные в таблице ниже коммуникационные приложения, которые работают в том или ином диапазоне.

LF-диапазон от 30 кГц до 300 кГц В основном используется для воздушных судов, маяков, навигации, а также для передачи информации.
FM-диапазон от 300 кГц до 3000 кГц Используется для цифрового вещания.
ВЧ-диапазон от 3000 кГц до 30000 кГц Этот диапазон широко подходит для средней и дальней наземной радиосвязи.
УКВ-диапазон от 30000 кГц до 300000 кГц УКВ обычно используется для наземного радиовещания и связи морских и воздушных судов
UHF-диапазон от 300000 кГц до 3000000 кГц С помощью этого спектра работают спутниковые системы позиционирования, а также мобильные телефоны.

Сегодня сложно представить, что делало бы человечество без радиосвязи, которая нашла свое применение во многих современных устройствах. Например, принципы радиосвязи и телевидения используются в мобильных телефонах, клавиатуре, GPRS, Wi-Fi, беспроводных компьютерных сетях и так далее.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

ИЗЛУЧЕНИЕ И ПРИЁМ РАДИОВОЛН

и приём радиоволн. Излучение радиоволн - процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн.

Излучение радиоволн. Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны l, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем l/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает колебательный контур, содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем l/2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с l/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с l < 10 км.

Излучатели. Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO" двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4).

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r , проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5).

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны l. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с l/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения R и, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью m , на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7 , а, б), что обусловлено принципом двойственности.

Если в стенках радиоволновода или объёмного резонатора, где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7 , в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн, излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) p/2, где n - целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q , наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами:

для синфазного возбуждения и

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9). С - постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приёмную В - в начале и в конце линии радиосвязи, то генератор, питающий антенну А, переключенный в приёмную антенну В, создаёт в приёмном устройстве, переключенном в антенну А, такой же ток, какой, будучи включенным в антенну А, он создаёт в приёмнике, включенном в антенну В. Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12). Наилучшие условия приёма, при j 0.При j p/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 < j < p/2, то очевидно, что энергия, извлекаемая приёмной антенной из поля ~ (Ecos j)2. Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея - Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой T A. Мощность Р ш внешних шумов на входе антенны в полосе частот Dn приёмника равна:

(k - Больцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140-250 К; у остронаправленных антенн она составляет обычно 50-80 К, а специальными мерами её можно снизить до 15-20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. - Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. - Л., 1950.

Под редакцией Л. Д. Бахража.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ИЗЛУЧЕНИЕ И ПРИЁМ РАДИОВОЛН в русском языке в словарях, энциклопедиях и справочниках:

  • ПРИЕМ в Иллюстрированной энциклопедии оружия:
    ДЕКОРАТИВНЫЙ — изготовление клинка путем накладывания полосок стали узорчатой сварки на среднюю часть клинка с железной …
  • ПРИЕМ в Соннике Миллера, соннике и толкованиях сновидений:
    Если Вам снится, что Вы оказываетесь на каком-то приеме - это обещает Вам в скором времени приятную встречу. Если на …
  • ИЗЛУЧЕНИЕ в Словаре современной физики из книг Грина и Хокинга:
    Б. Грин Перенос энергии волнами или …
  • ПРИЁМ в Лексиконе нонклассики, художественно-эстетической культуры XX века, Бычкова:
    (литературный) Одни из принципов организации текстов художественных произведений. Понятие «П.» стало широко использоваться в научной литературе с 20-х гг. XX …
  • ИЗЛУЧЕНИЕ в Словаре экономических терминов:
    ИОНИЗИРУЮЩЕЕ - см ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ …
  • ПРИЕМ в Литературной энциклопедии:
    термин, введенный формалистами (Шкловский В., Искусство как прием, сб. «Поэтика», П., 1919) для обозначения всей совокупности средств, с помощью которых …
  • ИЗЛУЧЕНИЕ в Большой советской энциклопедии, БСЭ:
    электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - …
  • ИЗЛУЧЕНИЕ в Современном энциклопедическом словаре:
  • ИЗЛУЧЕНИЕ в Энциклопедическом словарике:
    электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно …
  • ПРИЁМ в Энциклопедическом словаре:
    , -а, м. 1. см. принять. 2. Отдельное действие, движение. Выпить стакан в два приема. 3. Способ в осуществлении чего-н. …
  • ИЗЛУЧЕНИЕ в Большом российском энциклопедическом словаре:
    ИЗЛУЧ́ЕНИЕ электромагнитное, процесс образования свободного эл.-магн. поля; И. наз. также само свободное эл.-магн. поле. Излучают ускоренно движущиеся заряж. частицы (напр., …
  • ПРИЁМ
    приём, приёмы, приёма, приёмов, приёму, приёмам, приём, приёмы, приёмом, приёмами, приёме, …
  • ИЗЛУЧЕНИЕ в Полной акцентуированной парадигме по Зализняку:
    излуче"ние, излуче"ния, излуче"ния, излуче"ний, излуче"нию, излуче"ниям, излуче"ние, излуче"ния, излуче"нием, излуче"ниями, излуче"нии, …
  • ПРИЕМ в Словаре для разгадывания и составления сканвордов:
    Элемент спортивной …
  • ПРИЕМ в Тезаурусе русской деловой лексики:
  • ПРИЕМ в Тезаурусе русского языка:
    1. Syn: получение, приемка, принятие Ant: отправление, отсылка 2. Syn: уловка, хитрость, способ, ухищрение 3. Syn: вечер, встреча, аудиенция 4. …
  • ПРИЕМ в Словаре синонимов Абрамова:
    см. доза, еда, замашка, порция, привычка, способ, уловка, хитрость, часть || в один прием, за один прием, иметь тонкие приемы, …
  • ПРИЕМ
    агроприем, анафора, апач, артикул, аудиенция, блок, блокаж, взятие, вибрато, включение, встреча, гипербола, глиссандо, движение, действие, диалогизм, доза, допущение, дриппинг, замашки, …
  • ИЗЛУЧЕНИЕ в словаре Синонимов русского языка:
    альфа-излучение, альфа-лучи, гамма-излучение, изливание, излитие, испускание, источение, лучеиспускание, радиация, радиоизлучение, самоизлучение, свет, светоизлучение, сноп, теплоизлучение, …
  • ПРИЁМ
  • ИЗЛУЧЕНИЕ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ср. 1) Процесс действия по знач. глаг.: излучать (1), излучить. 2) Поток энергии, выделенной в окружающую …
  • ПРИЁМ
    приём, …
  • ИЗЛУЧЕНИЕ в Словаре русского языка Лопатина:
    излуч`ение, …
  • ПРИЁМ
    приём, …
  • ИЗЛУЧЕНИЕ в Полном орфографическом словаре русского языка:
    излучение, …
  • ПРИЁМ в Орфографическом словаре:
    приём, …
  • ИЗЛУЧЕНИЕ в Орфографическом словаре:
    излуч`ение, …
  • ПРИЕМ в Словаре русского языка Ожегова:
    отдельное действие, движение Выпить стакан в два приема. прием собрание приглашенных (обычно у официальных лиц) в честь кого-чего-нибудь П. в …
  • ИЗЛУЧЕНИЕ в Современном толковом словаре, БСЭ:
    электромагнитное, процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., …
  • ПРИЁМ
  • ПРИЁМ в Толковом словаре русского языка Ушакова:
    приёма, м. 1. только ед. действие по глаг. принять в 1, 2, 3, 4 и 13 знач. - принимать. Приём …
  • ПРИЕМ в Толковом словаре русского языка Ушакова:
    приемся, приешь, приешься, приест, приестся. Ед. ч. буд. вр. от приесть, …
  • ИЗЛУЧЕНИЕ в Толковом словаре русского языка Ушакова:
    излучения, ср. (книжн.). Действие по глаг. излучить-излучать и излучиться-излучаться. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное …
  • ПРИЁМ
    м. 1) Действие по знач. глаг.: принимать (1,2,4,6-10,13,15), принять (2). 2) а) Характер встречи, оказываемый кому-л. б) Восприятие чего-л., отношение …
  • ИЗЛУЧЕНИЕ в Толковом словаре Ефремовой:
    излучение ср. 1) Процесс действия по знач. глаг.: излучать (1), излучить. 2) Поток энергии, выделенной в окружающую …
  • ПРИЕМ
  • ИЗЛУЧЕНИЕ в Новом словаре русского языка Ефремовой:
    ср. 1. процесс действия по гл. излучать 1., излучить 2. Поток энергии, выделенной в окружающую …
  • ПРИЕМ
    м. 1. действие по гл. принимать 1., 2., 4., 6., 7., 8., 9., 10., 13., 15., принять 2. 2. Характер …
  • ИЗЛУЧЕНИЕ в Большом современном толковом словаре русского языка:
    ср. 1. процесс действия по гл. излучать 1., излучить 2. Результат такого действия; поток энергии, выделенной в окружающую …

Излучение и приём радиоволн

Излучение радиоволн - процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. Антенна).

Излучение радиоволн . Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц ) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1 ), существует другой участок В , удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В , ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает Колебательный контур , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ км.

Излучатели . Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO" двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2 ). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3 ). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4 ).

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3 ) лежит в плоскости, проходящей через диполь и радиус-вектор r , проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5 ).

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения R и, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6 ), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7 , а, б), что обусловлено принципом двойственности.

Если в стенках Радиоволновод а или объёмного резонатора (См. Объёмный резонатор), где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7 , в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн (См. Интерференция радиоволн), излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) π/2, где n - целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8 ), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка θ, наибольшим размером апертуры L и излучаемой длиной волны λ определяется формулами:

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9 ). С - постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10 ), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции (См. Дифракция) волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна (См. Зеркальные антенны) представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11 ). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приёмную В - в начале и в конце линии радиосвязи, то генератор, питающий антенну А , переключенный в приёмную антенну В , создаёт в приёмном устройстве, переключенном в антенну А , такой же ток, какой, будучи включенным в антенну А , он создаёт в приёмнике, включенном в антенну В . Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны λ и углом ψ между направлением v прихода волны и диполем. Существен также угол φ между направлением вектора электрической волны и диполем (рис. 12 ). Наилучшие условия приёма, при φ = 0. При φ = π/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 Ecos φ) 2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея - Джинса законом излучения (См. Рэлея - Джинса закон излучения) создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой T A . Мощность Р ш внешних шумов на входе антенны в полосе частот Δν приёмника равна:

Р ш =k T A Δν

(k - Больцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140-250 К; у остронаправленных антенн она составляет обычно 50-80 К, а специальными мерами её можно снизить до 15-20 К.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. - Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. - Л., 1950.

Под редакцией Л. Д. Бахража.

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1 / 8 периода Т колебаний тока.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Излучение и приём радиоволн" в других словарях:

    Электромагнитное, процесс образования свободного электромагнитного поля. (Термин «И.» применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля см. Максвелла уравнения, Электромагнитные волны.)… …

    Электромагнитное, в классич. электродинамике образование эл. магн. волн ускоренно движущимися заряж. ч цами (или перем. токами); в квант. теории рождение фотонов при изменении состояния квант. системы; термин «И.» употребляется также для… … Физическая энциклопедия

    ИЗЛУЧЕНИЕ - ИЗЛУЧЕНИЕ, или радиация, в общем смысле процесс переноса энергии от тела в окружающее пространство. Обыкновенно термин И. применяют к элементарным атомным или молекулярным процессам, различая при этом 2 вида И.: корпускулярное и световое. Перенос … Большая медицинская энциклопедия

    ИЗЛУЧЕНИЕ - распространяющиеся в пространстве (см.) какой либо природы или потоки каких либо частиц, а также процесс И. волн или потока частиц какой либо физ. системой; (1) И. электромагнитное: а) видимое оптическое И., непосредственно воспринимаемое глазом… … Большая политехническая энциклопедия

    Устройства для преобразования сигналов электромагнитного излучения (См. Излучение) (в диапазоне от рентгеновских лучей с длиной волны λ = 10 9 см до радиоволн с λ = 10 1 см, о приёмниках электромагнитного излучения с меньшей длиной волны… … Большая советская энциклопедия

Р. осуществляются с помощью передающих и приемных антенн. Излучение радиоволн. Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны l, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок , удаленный от А на расстояние, меньшее, чем l/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает колебательный контур , содержащий катушку индуктивности и конденсатор . В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем l/2. Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь , в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с l/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с l волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. . переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь , что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле , в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4). Волны, излучаемые диполем, имеют определенную поляризацию. Вектор напряженности электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r, проведенный от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости. Переменное электромагнитное поле возникает во всем пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряженностей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5). Полная мощность , излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны l. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с l/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника,

подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность. Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал . Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости. Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна . Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью m, на который намотана катушка из тонкого провода . Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, , б), что обусловлено принципом двойственности. Если в стенках радиоволновода или объемного резонатора, где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7, в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид. Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн, излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далеком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряженности поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) p/2, где n - целое число . В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми. В современной антенной технике применяются антенные решетки, содержащие до 1000 излучателей. Поверхность , на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решетку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре дает возможность изменять форму диаграммы направленности. Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q, наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами: для синфазного возбуждения и если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9). С - постоянные, зависящие от распределения амплитуды токов по апертуре. Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна дает направленное излучение. Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1, чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11). Линзы для радиоволн представляют собой трехмерные решетки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов. Прием радиоволн. Каждая передающая антенна может служить приемной. Если на электрический диполь действует распространяющаяся в пространстве волна, то ее электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приема и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приемную В - в начале и в конце линии радиосвязи, то генератор , питающий антенну А, переключенный в приемную антенну В, создает в приемном устройстве, переключенном в антенну А, такой же ток, какой, будучи включенным в антенну А, он создает в приемнике, включенном в антенну В. Принцип взаимности позволяет по свойствам передающей антенны определить ее характеристики как приемной. Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l, длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12). Наилучшие условия приема, при j = 0. При j = p/2 электрический ток в диполе не возбуждается, т. е. прием отсутствует. Если же 0 эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приема необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приемный диполь был перпендикулярен направлению распространения волны. При этом приемный диполь извлекает из приходящей волны столько энергии, сколько несет с собой эта волна, проходя через сечение в форме квадрата со стороной равной Шумы антенны. Приемная антенна всегда находится в таких условиях, когда на нее, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея - Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счет джоулевых потерь в проводниках и диэлектриках подводящих устройств. Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой TA. Мощность Рш внешних шумов на входе антенны в полосе частот Dn приемника равна: Рш =k TA Dn (k - Больцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счет боковых лепестков ее диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землей, высока; она может достигать 140-250 ; у остронаправленных антенн она составляет обычно 50-80 К, а специальными мерами ее можно снизить до 15-20 К. О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна. Лит.: Хайкин . Э., Электромагнитные волны, 2 изд., . - Л., 1964; Гольдштейн . Д., Зернов . В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. - Л., 1950. Под редакцией Л. . Бахража.