Как найти поверхности уровня функции. Функции нескольких переменных

Чтобы

нескольких функций

скачать график

Построение графика функции онлайн

моментально .

Онлайн сервис моментально рисует график

Поддерживаются абсолютно все математические функции

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Построить график функции

Построение поверхности 3D

Введите уравнение

Построим поверхность, заданную уравнением f(x, y, z) = 0, где a < x < b, c < y < d, m < z < n.

Другие примеры:

  • y = x^2
  • z = x^2 + y^2
  • 0.3 * z^2 + x^2 + y^2 = 1
  • z = sin((x^2 + y^2)^(1/2))
  • x^4+y^4+z^4-5.0*(x^2+y^2+z^2)+11.8=0

Канонический вид кривой и поверхности

Вы можете определить вид кривой и поверхности 2-го порядка онлайн с подробным решением:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция — экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число — "Пи", которое примерно равно 3.14 sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция — Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание

Как построить график функции онлайн на этом сайте?

Чтобы построить график функции онлайн , нужно просто ввести свою функцию в специальное поле и кликнуть куда-нибудь вне его. После этого график введенной функции нарисуется автоматически. Допустим, вам требуется построить классический график функции «икс в квадрате». Соответственно, нужно ввести в поле «x^2».

Если вам нужно построить график нескольких функций одновременно, то нажмите на синюю кнопку «Добавить еще». После этого откроется еще одно поле, в которое надо будет вписать вторую функцию. Ее график также будет построен автоматически.

Цвет линий графика вы можете настроить с помощью нажатия на квадратик, расположенный справа от поля ввода функции. Остальные настройки находятся прямо над областью графика. С их помощью вы можете установить цвет фона, наличие и цвет сетки, наличие и цвет осей, наличие рисок, а также наличие и цвет нумерации отрезков графика. Если необходимо, вы можете масштабировать график функции с помощью колесика мыши или специальных иконок в правом нижнем углу области рисунка.

После построения графика и внесения необходимых изменений в настройки, вы можете скачать график с помощью большой зеленой кнопки «Скачать» в самом низу. Вам будет предложено сохранить график функции в виде картинки формата PNG.

Зачем нужно строить график функции?

На этой странице вы можете построить интерактивный график функции онлайн .

Построить график функции онлайн

Построение графика функции позволяет увидеть геометрический образ той или иной математической функции. Для того чтобы вам было удобнее строить такой график, мы создали специальное онлайн приложение. Оно абсолютно бесплатно, не требует регистрации и доступно для использования прямо в браузере без каких-либо дополнительных настроек и манипуляций. Строить графики для разнообразных функций чаще всего требуется школьникам средних и старших классов, изучающим алгебру и геометрию, а также студентам первых и вторых курсов в рамках прохождения курсов высшей математики. Как правило, данный процесс занимает много времени и требует кучу канцелярских принадлежностей, чтобы начертить оси графика на бумаге, проставить точки координат, объединить их ровной линией и т.д. С помощью данного онлайн сервиса вы сможете рассчитать и создать графическое изображение функции моментально .

Как работает графический калькулятор для графиков функций?

Онлайн сервис работает очень просто. В поле на самом верху вписывается функция (т.е. само уравнение, график которого необходимо построить). Сразу после ввода приложение моментально рисует график в области под этим полем. Все происходит без обновления страницы. Далее, можно внести различные цветовые настройки, а также скрыть/показать некоторые элементы графика функции. После этого, готовый график можно скачать, нажав на соответствующую кнопку в самом низу приложения. На ваш компьютер будет загружен рисунок в формате.png, который вы сможете распечатать или перенести в бумажную тетрадь.

Какие функции поддерживает построитель графиков?

Поддерживаются абсолютно все математические функции , которые могут пригодиться при построении графиков. Тут важно подчеркнуть, что в отличии от классического языка математики принятого в школах и ВУЗах, знак степени в рамках приложения обозначается международным знаком «^». Это обусловлено отсутствием на клавиатуре компьютера возможности прописать степень в привычном формате. Далее приведена таблица с полным списком поддерживаемых функций.

Приложением поддерживаются следующие функции:

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Примеры. Построить линии уровня функций, соответствующие значениям

Построить линии уровня функций, соответствующие значениям .

Полагая , получим уравнения соответствующих линий уровня:

Построив эти линии в декартовой системе координат хОу, получим прямые, параллельные биссектрисе второго и четвертого координатных углов (рис.1)

Напишем уравнения линий уровня:

, , , и .

Построив их в плоскости хОу, получим концентрические окружности с центром в начале координат (рис.2)

Линии уровня этой функции , , , и представляют собой параболы, симметричные относительно Оу с общей вершиной в начале координат (рис. 3).

2. Производная по направлению

Важной характеристикой скалярного поля является скорость изменения поля в данном направлении.

Для характеристики скорости изменения поля в направлении вектора вводят понятие производной поля по направлению.

Рассмотрим функцию в точке и точке .

Проведем через точки и вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .

Функция нескольких переменных. Общие свойства. Непрерывность функции. Линии уровня, поверхности уровня.Семинар 21

Определение 1
Если каждой паре (x,y) значений двух независимых друг от друга переменных
величин x,y из некоторой области их изменения D соответствует
определенное значение величины z, то z есть функция двух независимых
переменных x,y, определенных в области D.
Обозначение: z=f(x,y), z=F(x,y), и так далее.
Способы задания функции: аналитический, табличный, графический.
Определение 2
Совокупность пар (x,y) значений x,y, при которых определена функция
z=f(x,y), называется областью определения или областью существования этой
функции.
Пусть дана функция z=f(x,y), определенная в некоторой области G плоскости
OXY. Рассмотрим некоторую определенную точку
, лежащую в
области G или на ее границе.
Определение 3
Число А называется пределом функции f(x,y) при стремлении точки M(x,y) к
точке
, если для каждого числа
найдется такое число r>0, что
для всех точек M(x,y), для которых выполняется неравенство
имеет
место неравенство

Определение 4
Пусть точка
принадлежит области определения функции f(x,y).
Функция z=f(x,y) называется непрерывной в точке
, если имеет место
равенство
(1)
Причем точка M(x,y) стремится к точке
произвольным образом,
оставаясь в области определения функции.
Функция, непрерывная в каждой точке некоторой области, называется
непрерывной в этой области.
Если в некоторой точке
не выполняется условие (1), то точка
называется точкой разрыва функции z=f(x,y). Условие (1) может не
выполняться, например, в следующих случаях:
1) z=f(x,y) определена во всех точках некоторой окрестности точки
,
за исключением самой точки
.
2) z=f(x,y) определена во всех точках окрестности точки
, но не
существует
3) z=f(x,y) определена во всех точках окрестности точки
и
существует
, но
Определение 5
Линией уровня функции z=f(x,y) называется линия z=f(x,y)=с на плоскости
OXY, в точках которой функция сохраняет постоянное значение z=c.

Определение 6
Поверхностью уровня функции u=f(x,y,z) называется поверхность u=f(x,y,z)=с
плоскости, в точках которой функция сохраняет постоянное значение u=c.
Примеры с решениями
1. Найти область определения функции
.
Решение.
Функция принимает действительные значения при условии
или
, т. е. областью определения данной функции является круг радиуса
а с центром в начале координат, включая граничную окружность.
2. Найти область определения функции
.
Решение.
Функция определена, если
Областью определения
функции является плоскости, заключенная между двумя параболами
, за исключением точки О(0,0).
3. Найти область определения функции
.
Решение.
Данная функция зависит от трех переменных и принимает действительные
значения при
, т. е. область определения –
часть пространства, заключенная внутри полостей двуполостного
гиперболоида.

4. Найти линии уровня функции
Решение.
Уравнение семейства линий уровня имеет вид
.
Придавая С различные действительные значения, получим концентрические
окружности с центром в начале координат.
5. Найти поверхности уровня функции
Решение.
Уравнение семейства поверхностей имеет вид
.
Если С=0, то получаем
- конус.
Если С>0, то получаем
- семейство однополостных
гиперболоидов;
Если С<0, то получаем
- семейство двуполостных гиперболоидов;
Примеры для самостоятельного решения
1. Найти области определения функции
2. Найти линии уровня функций:

Определение . Пусть имеется п переменных величин, и каждому набору их значений (х х , х 2 ,..., х п ) из некоторого множества X соответствует одно вполне определенное значение переменной вели­чины z . Тогда говорят, что задана функция нескольких переменных z = f х , х 2 ,..., х п ) .

Переменные х х , х 2 ,..., х п называются независимыми переменными или аргументами, z - зависимой переменной, а символ f означа­ет закон соответствия. Множество X называется областью оп­ределения функции. Очевидно, это подмножество n-мерного пространства.

Функцию двух переменных обозначают z=f(x, у) . Тогда ее область определения X есть подмножество ко­ординатной плоскости Оху .

Окрестностью точки
называется круг, содержа­щий точку
(см. рис. 1).

Очевидно, круг на плоскости есть двумерный аналог интерва­ла на прямой.

При изучении функций нескольких переменных используется математи­ческий аппарат: любой функции z = f (x , у) можно по­ставить в соответствие пару функций одной переменной: при фиксированном значении х=х 0 функцию z =
и при фиксированном значении у=у 0 функцию z = f (x , у 0 ).

Графиком функции двух переменных z =
называется множе­ство точек трехмерного пространства (х, у, z), аппликата z кото­рых связана с абсциссой х и ординатой у функциональным соот­ношением z =
.

Для построения графика функции z=f(x, у) полезно рассмат­ривать функции одной переменной z = f (x , у 0 ) и z =
, пред­ставляющие сечения графика z = f (x , у) плоскостями, парал­лельными координатным плоскостям Oxz и Oyz , т.е. плоскостями у= у 0 и х=х 0 .

Пример 1. Построить график функции
.

Решение. Сечения поверхности
=
плоскостями, параллельными координатным плос­костямOyz и Oxz , пред­ставляют параболы (на­пример, при х = 0
, при у = 1
и т.д.). В се­чении поверхности кординатной плоско­стьюОху , т.е. плоско­стью z=0 , получается окружность
График функции представляет поверх­ность, называемую па­раболоидом (см. рис. 2)

Определение . Линией уровня функции двух переменных z=f{x, у) называется множество точек на плоскости, таких, что во всех этих точках значение функции одно и то же и равно С. Число С в этом случае называется уровнем.

На рис.3 изображены линии уровня, соответствую­щие значениям С=1 и С=2. Как видно, линия уровня состо­ит из двух непересекающихся кривых. Линия– самопере­секающаяся кривая.

Многие примеры линий уровня хорошо известны и привычны. Например, паралле­ли и меридианы на глобусе - это линии уровня функций широты и долготы. Синоптики публикуют карты с изображе­нием изотерм - линий уровня температуры.

Пример 2. Построить линии уровня функции
.

Решение. Линия уровня z = C это кривая на плоскости Оху, задаваемая уравнением х 2 + у 2 - 2у = С или х 2 + (у - I) 2 = С+1. Это уравнение окружности с центром в точке (0; 1) и радиусом
(рис. 4).

Точка (0; 1) - это вырожденная линия уровня, соответст­вующая минимальному значению функции z =-1 и достигаю­щемуся в точке (0; 1). Линии уровня - концентрические ок­ружности, радиус которых увеличивается с ростом z = C , при­чем расстояния между линиями с одинаковым шагом уровня уменьшаются по мере удаления от центра. Линии уровня по­зволяют представить график данной функции, который был ранее построен на рис. 2.

Частные производные

Дадим аргументу х приращение ∆х, аргументу у - приращение ∆у. Тогда функция z получит наращенное значение f(х+∆х, у+∆у). Величина z = f (x +∆ x , y +∆ y )- f { x , у) называется полным приращени­ем функции в точке (х; у). Если задать только приращение аргу­мента x или только приращение аргумента у, то полученные при­ращения функции соответственно иназываютсячастными.

Полное приращение функции, вообще говоря, не равно сумме частных, т.е.

Пример 15.6. Найти частные и полное приращения функции z = xy .

Решение. ;;.

Получили, что

Определение. Частной производной функции несколь­ких переменных по одной из этих переменных называется предел отношения соответст­вующего частного приращения функции к приращению рас­сматриваемой независимой переменной при стремлении последнего к нулю (если этот предел существует).

Обозначается частная производная так:
или
, или
.

Для нахождения производной
надо считать постоянной переменную у, а для нахождения
-переменную х. При этом сохраняются известные правила дифференцирова­ния.

Пример. Найти частные производные функции:

a) z = x ln y + .

Решение: Чтобы найти частную производную по х, считаем у постоянной величиной. Таким образом,
. Аналогично, дифференцируя по у, считаем х постоянной величиной, т.е
.

Дифференциал функции

Определение. Дифференциалом функции называется сумма про­изведений частных производных этой функции на приращения соот­ветствующих независимых переменных, т.е.

dz =
.
(1)

Учитывая, что для функций f(х, у)=х, g (x , у)=у согласно (1) df = dx =∆ x ; dg = dy =∆ y формулу дифференциала (1) можно запи­сать в виде dz = z " x dx + z " y dy (2) или

Определение. Функция z = f (x , у) называется дифференцируемой в точке (х, у), если ее полное приращение может быть представлено в виде (3), где dz - дифференциал функции, – ,бесконечно малые при
.

Достаточное условие дифферен­цируемости функции двух переменных.

Теорема. Если частные производные функции z " v (x , у) существу­ют в окрестности точки (х, у) и непрерывны в самой точке (х, у), то функция z = f { x , у) дифференцируема в этой точке.

Чтобы создать карту линий уровня:

  • Определите матрицу значений, которую нужно отобразить графически. Mathcad предполагает, что строки и столбцы представляют значения аргументов некой функции, равномерно располагаемые на осях координат. Затем Mathcad линейно интерполирует значения этой матрицы, чтобы сформировать линии одинакового уровня. Такие изолинии могут представлять изотермы, изобары, эквипотенциальные линии, линии тока или иметь иной физический смысл.
  • Выберите Карта линий уровня изCreate Contour Plot command меню Графика . Mathcad покажет прямоугольник с одним полем ввода, как на Рисунке 1.
  • Напечатайте имя матрицы в поле ввода. Как и при работе с выражением, Mathcad не создаст карту линий уровня, пока Вы не нажмете , или, в автоматическом режиме, не щёлкните вне области графика.

Рисунок 1: Пустое поле ввода отведено для имени матрицы.

Построенный график изображает линии, вдоль которых функция, значения которой представлены элементами матрицы, принимает постоянные значения. Поскольку разные линии соответствуют разным значениям, то они не пересекаются. При построении графика матрица ориентируется таким образом, что её (0.0) элемент соответствует нижнему левому углу графика, строки матрицы соответствуют постоянным значениям по оси ординат, а столбцы соответствуют постоянным значениям по оси абсцисс.

Форматируя чертёж, можно установить, должны ли проставляться значения функции на соответствующих им линиях уровня, насколько частыми они должны быть, и какие надписи и линии сетки появятся на осях. Всё это описано ниже в разделе “Форматирование карты линий уровня ”.

Линии уровня функции двух переменных

Ниже приведены стандартные этапы в создании карты линий уровня функции двух переменных, показанной на Рисунке 2:

  • Определите функцию двух переменных.
  • Решите, сколько точек нужно отложить по координатным осям. Введите дискретные аргументы i и j , чтобы индексировать эти точки. Например, если необходимо использовать 10 точек в каждом направлении, введите:

i:= 0 ..9 j:= 0 ..9

  • Определите x i и y j как равномерно располагаемые точки на осях x и y .
  • Заполните матрицу M значениями f(x i , y j).
  • Отобразите M в виде карты линий уровня.

Рисунок 2: Карта линий уровня функции двух переменных.

Обратите внимание, что в данном случае ось x графика идет направо, а ось y направлена вверх. Так как карта линий уровня создается помещением значений функции в матрицу, Mathcad не знает истинных значений x и y . По этой причине оси на карте линий уровня по умолчанию нормированы так, что координаты изменяются от -1 до 1. Можно вручную установить границы на осях вместо этих значений по умолчанию, выбрав Формат 3D графика из меню Графика при выделенной карте линий уровня, или двойным щелчком на графике. Затем установите необходимые значения в полях “Мин” и “Макс” на странице “Оси”.

Если каждой точке X = (х 1 , х 2 , …х n) из множества {X} точек n–мерного пространства ставится в соответствие одно вполне определенное значение переменной величины z, то говорят, что задана функция n переменных z = f(х 1 , х 2 , …х n) = f (X).

При этом переменные х 1 , х 2 , …х n называют независимыми переменными или аргументами функции, z - зависимой переменной , а символ f обозначает закон соответствия . Множество {X} называют областью определения функции (это некое подмножество n-мерного пространства).

Например, функция z = 1/(х 1 х 2) представляет собой функцию двух переменных. Ее аргументы – переменные х 1 и х 2 , а z – зависимая переменная. Область определения – вся координатная плоскость, за исключением прямых х 1 = 0 и х 2 = 0, т.е. без осей абсцисс и ординат. Подставив в функцию любую точку из области определения, по закону соответствия получим определенное число. Например, взяв точку (2; 5), т.е. х 1 = 2, х 2 = 5, получим
z = 1/(2*5) = 0,1 (т.е. z(2; 5) = 0,1).

Функция вида z = а 1 х 1 + а 2 х 2 + … + а n х n + b, где а 1 , а 2 ,…, а n , b - по стоянные числа, называют линейной . Ее можно рассматривать как сумму n линейных функций от переменных х 1 , х 2 , …х n . Все остальные функции называют нелинейными .

Например, функция z = 1/(х 1 х 2) – нелинейная, а функция z =
= х 1 + 7х 2 - 5 – линейная.

Любой функции z = f (X) = f(х 1 , х 2 , …х n) можно поставить в соответствие n функций одной переменной, если зафиксировать значения всех переменных, кроме одной.

Например, функции трех переменных z = 1/(х 1 х 2 х 3) можно поставить в соответствие три функции одной переменной. Если зафиксировать х 2 = а и х 3 = b то функция примет вид z = 1/(аbх 1); если зафиксировать х 1 = а и х 3 = b, то она примет вид z = 1/(аbх 2); если зафиксировать х 1 = а и х 2 = b, то она примет вид z = 1/(аbх 3). В данном случае все три функции имеют одинаковый вид. Это не всегда так. Например, если для функции двух переменных зафиксировать х 2 = а, то она примет вид z = 5х 1 а, т.е. степенной функции, а если зафиксировать х 1 = а, то она примет вид , т.е. показательной функции.

Графиком функции двух переменных z = f(x, у) называется множество точек трёхмерного пространства (х, у, z), аппликата z которых связана с абсциссой х и ординатой у функциональным соотношением
z = f (x, у). Этот график представляет собой некоторую поверхность в трехмерном пространстве (например, как на рисунке 5.3).

Можно доказать, что если функция – линейная (т.е. z = ax + by + c), то ее график представляет собой плоскость в трехмерном пространстве. Другие примеры трехмерных графиков рекомендуется изучить самостоятельно по учебнику Кремера (стр. 405-406).

Если переменных больше двух (n переменных), то график функции представляет собой множество точек (n+1)-мерного пространства, для которых координата х n+1 вычисляется в соответствии с заданным функциональным законом. Такой график называют гиперповерхностью (для линейной функции – гиперплоскостью ), и он также представляет собой научную абстракцию (изобразить его невозможно).

Рисунок 5.3 – График функции двух переменных в трехмерном пространстве

Поверхностью уровня функции n переменных называется множество точек в n–мерном пространстве, таких, что во всех этих точках значение функции одно и то же и равно С. Само число С в этом случае называется уровнем .

Обычно для одной и той же функции можно построить бесконечно много поверхностей уровня (соответствующих различным уровням).

Для функции двух переменных поверхность уровня принимает вид линии уровня .

Например, рассмотрим z = 1/(х 1 х 2). Возьмем С = 10, т.е. 1/(х 1 х 2) = 10. Тогда х 2 = 1/(10х 1), т.е. на плоскости линия уровня примет вид, представленный на рисунке 5.4 сплошной линией. Взяв другой уровень, например, С = 5, получим линию уровня в виде графика функции х 2 = 1/(5х 1) (на рисунке 5.4 показана пунктиром).

Рисунок 5.4 - Линии уровня функции z = 1/(х 1 х 2)

Рассмотрим еще один пример. Пусть z = 2х 1 + х 2 . Возьмем С = 2, т.е. 2х 1 + х 2 = 2. Тогда х 2 = 2 - 2х 1 , т.е. на плоскости линия уровня примет вид прямой, представленный на рисунке 5.5 сплошной линией. Взяв другой уровень, например, С = 4, получим линию уровня в виде прямой х 2 = 4 - 2х 1 (на рисунке 5.5 показана пунктиром). Линия уровня для 2х 1 + х 2 = 3 показана на рисунке 5.5 точечной линией.

Легко убедиться, что для линейной функции двух переменных любая линия уровня будет представлять собой прямую на плоскости, причем все линии уровня будут параллельны между собой.

Рисунок 5.5 - Линии уровня функции z = 2х 1 + х 2

Определение функции нескольких переменных

Рассматривая функции одной переменной, мы указывали, что при изучении многих явления приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у , выражается формулой S = ху . Каждой паре значений х и у соответствует определенное значение площади S ; S есть функция двух переменных.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х , у , z , выражается формулой V = xyz . Здесь V есть функция трех переменных х , у , z .

Пример 3. Дальность R полета снаряды, выпущенного с начальной скоростью v 0 из орудия, ствол которого наклонен к горизонту под углом , выражается формулой
(если пренебречь сопротивлением воздуха). Здесьg – ускорение силы тяжести. Для каждой пары значений v 0 и  эта формула дает определенное значение R , т.е. R является функцией двух переменных v 0 и .

Пример 4.
. Здесьи есть функция четырех переменных х , у , z , t .

Определение 1. Если каждой паре (х , у ) значений двух независимых друг от друга переменных величин х и у из некоторой области их изменения D , соответствует определенное значение величины z , то мы говорим, что z есть функция двух независимых переменных х и у , определенная в области D .

Символически функция двух переменных обозначается так:

z = f (x , y ), z = F (x , y ) и т.д.

Функция двух переменных может быть задана, например, с помощью таблицы или аналитически – с помощью формулы, как это сделано в рассмотренных выше примерах. На основании формулы можно составить таблицу значений функции для некоторых пар значений независимых переменных. Так, для первого примера можно составить следующую таблицу:

S = ху

В этой таблице на пересечении строки и столбца, соответствующих определенным значениям х и у , проставлено соответствующее значение функции S . Если функциональная зависимость z = f (x , y ) получается в результате измерений величины z при экспериментальном изучении какого-либо явления, то сразу получается таблица, определяющая z как функцию двух переменных. В этом случае функция задается только таблицей.

Как и в случае одной независимой переменной, функция двух переменных существует, вообще говоря, не при любых значениях х и у .

Определение 2. Совокупность пар (х , у ) значений х и у , при которых определяется функция z = f (x , y ), называется областью определения или областью существования этой функции.

Область определения функции наглядно иллюстрируется геометрически. Если каждую пару значений х и у мы будем изображать точкой М (х , у ) в плоскости Оху , то область определения функции изобразится в виде некоторой совокупности точек на плоскости. Эту совокупность точек будем также называть областью определения функции. В частности, областью определения может быть и вся плоскость. В дальнейшем мы будем главным образом иметь дело с такими областями, которые представляют собой части плоскости , ограниченные линиями . Линию, ограничивающую данную область, будем называть границей области. Точки области, не лежащие на границе, будем называть внутренними точками области. Область, состоящая из одних внутренних точек, называется открытой или незамкнутой . Если же к области относятся и точки границы, то область называется замкнутой . Область называется ограниченной, если существует такая постоянная С , что расстояние любой точки М области от начала координат О меньше С , т.е. |OM | < С .

Пример 5. Определить естественную область определения функции

z = 2х у .

Аналитическое выражение 2х у имеет смысл при любых значениях х и у . Следовательно, естественной областью определения функции является вся плоскость Оху .

Пример 6.
.

Для того чтобы z имело действительное значение, нужно, чтобы под корнем стояло неотрицательное число, т.е. х и у должны удовлетворять неравенству 1 – х 2 – у 2  0, или х 2 + у 2  1.

Все точки М (х , у ), координаты которых удовлетворяют указанному неравенству, лежат в круге радиуса 1 с центром в начале координат и на границе этого круга.

Пример 7.
.

Так как логарифмы определены только для положительных чисел, то должно удовлетворяться неравенство х + у > 0, или у >  х .

Это значит, что областью определения функции z является половина плоскости, расположенная над прямой у =  х , не включая самой прямой.

Пример 8. Площадь треугольника S представляет собой функцию основания х и высоты у : S = xy /2.

Областью определения этой функции является область х  0, у  0 (так как основание треугольника и его высота не могут быть ни отрицательны, ни нулем). Заметим, что область определения рассматриваемой функции не совпадает с естественной областью определения того аналитического выражения, с помощью которого задается функция, так как естественной областью определения выражения ху/ 2 является, очевидно, вся плоскость Оху .

Определение функции двух переменных легко обобщить на случай трех или более переменных.

Определение 3. Если каждой рассматриваемой совокупности значений переменных х , у , z , …, u , t соответствует определенное значение переменной w , то будем называть w функцией независимых переменных х , у , z , …, u , t и писать w = F (х , у , z , …, u , t ) или w = f (х , у , z , …, u , t ) и т.п.

Так же как и для функции двух переменных, можно говорить об области определения функции трех, четырех и более переменных.

Так, например, для функции трех переменных областью определения является некоторая совокупность троек чисел (х , у , z ). Заметим тут же, что каждая тройка чисел задает некоторую точку М (х , у , z ) в пространстве Оху z . Следовательно, областью определения функции трех переменных является некоторая совокупность точек пространства.

Аналогично этому можно говорить об области определения функции четырех переменных u = f (x , y , z , t ) как о некоторой совокупности четверок чисел (x , y , z , t ). Однако область определения функции четырех или большего числа переменных уже не допускает простого геометрического истолкования.

В примере 2 приведена функция трех переменных, определенная при всех значениях х , у , z .

В примере 4 приведена функция четырех переменных.

Пример 9. .

Здесь w – функция четырех переменных х , у , z , и , определенная при значениях переменных, удовлетворяющих соотношению:

Понятие функции нескольких переменных

Введем понятие функции нескольких переменных.

Определение 1. Пусть каждой точке М из множества точек {М } евклидова пространства E m по какому-либо закону ста­вится в соответствие некоторое число и из числового множес­тва U. Тогда будем говорить, что на множестве {М } задана функция и = f(M). При этом множества {М } и U называют­ся соответственно областью определения (задания) и областью изменения функции f(M).

Как известно, функция одной переменной у = f (x ) изобра­жается на плоскости в виде линии. В случае двух переменных область определения {М п } функции z = f(x, y) представляет собой некоторое множество точек на координатной плоскости Оху (рис. 8.1). Координата z называется аппликатой, и тогда сама функция изображается в виде некоторой поверхности в пространстве E 3 . Аналогичным образом функция от т пере­менных

определенная на множестве {М } евклидова пространства Е m , представляет собой гиперповерхность в евклидовом простран­стве Е m+1 .

Некоторые виды функций нескольких переменных

Рассмотрим примеры функций нескольких переменных и найдем их области определения.

Е 3 . Областью определения этой функции является все множест­во точек плоскости Оху. Область значений этой функции - промежуток }