Как правильно подключить солнечные батареи. Как подключать солнечные батареи

Солнечная батарея является альтернативным источником питания, чаще всего их используют, когда нет возможности подключиться к обычной электроэнергии. Важно не только приобрести или собрать фотоэлемент, но и правильно подключить его к дому для подачи питания.

Схема солнечной батареи

В зависимости от производителя и формы установки, устройство может содержать следующие компоненты:

  • солнечные панели;
  • контроллер для заряда;
  • несколько инверторов;
  • провода для соединения.

На что обратить внимание при установке

Расчет для подключения солнечных батарей (Нажмите для увеличения) не сильно привередливы, а потому их можно установить практически в любом месте вашей крыши, балкона или же прямо на участке загородного дома. Главное в подключении, это соблюдение двух правил, без которых потребление электроэнергии будет практически невозможным :

  • угол наклона от горизонта;
  • ориентация расположения.

Так, поверхность должна стоять лицом на юг, так как чем больше лучей попадет на батарею под 90 градусов, тем лучше будет работать устройства. Нельзя назвать точные координаты и принцип размещения ведь все это зависит от вашей местности, климата, продолжительности времени года и является абсолютно уникальным. Если вы житель Московского региона, то ваш угол наклона будет составлять 15-20 градусов летом, и от 60 до 70 градусов зимой. Для того, чтобы батареи приносили максимальный эффект, необходимо менять их расположение каждое лето и зиму.

Имейте ввиду: солнечные установки не должны контактировать с холодными температурами, а потому если вы хотите установить их прямо на участке, поднимите фотоэлементы на 50 сантиметров от уровня земли, это убережет их от снега и переохлаждения.

Крепление устройства

Схема подключения солнечных панелей (Нажмите для увеличения) Солнечные батареи необходимо качественно закрепить в четырех точках, причем делать это необходимо на длинной стороне, во избежание повреждений.

Вы сможете сами выбрать наиболее удобный способ для крепления фотоэлементов:

  • фиксаторами;
  • болтами через отверстия внизу рамки.

Не стоит делать новые дырки для того, чтобы прикрепить панель, обычно, рамы уже предусматривают все варианты. Если же вы каким-либо образом повредите панель или же просверлите в ней дополнительные дыры, ваша гарантия больше не будет действовать.

Подключение батареи

Схема подключения солнечных батарей (Нажмите для увеличения) Структура солнечной батареи достаточно сложная, а потому при сборке необходимо последовательно производить подключение всех компонентов, соответственно схеме:

  1. Возьмите кабель из меди и подключите аккумулятор к контроллеру с помощью кабеля (в нем есть специальный значок батареи), плюсом к плюсу, и соответственно минусом к минусу.
  2. Подключите фотоэлемент к контролеру таким же образом. Чтобы не перепутать, на контролере вы увидите знак солнечной батареи. Если вы хотите подключить не одну батарею, а несколько, то каждую последующую необходимо устанавливать параллельно предыдущей.
  3. После этого приступайте к подключению инвертора к аккумулятору, по принципу – плюсом к плюсу, минусом к минусу.

Обратите внимание: если последовательность подключения будет прервана, контроллер может сломаться.

Как подключить солнечную панель, смотрите в следующем видео:

Как своими руками изготовить солнечную батарею?

Сейчас многие дачники, а также люди, проживающие в частном секторе, интересуются установкой солнечных батарей. Это реально позволяет сэкономить на электроэнергии. По крайней мере, в летний сезон пока мы часто бываем на даче, не помешает дополнительное электричество. Летом солнечное излучение интенсивное и батареи при правильном расположении могут вырабатывать немало. А для тех, у кого на участке не подведено электричество, солнечная батарея может стать единственным источником тока. Беда в том, что солнечные батареи стоят довольно дорого (одна панель 18 вольт, 40-50 ватт обойдётся в 300─500$). Но можно сэкономить, если сделать их самостоятельно. В этой статье речь пойдёт о том, как сделать солнечную батарею своими руками. Ниже будет описан процесс изготовления, в котором объединён опыт из различных материалов и роликов на youtube.

Для начала стоит определиться с тем, что понадобиться в работе, и сколько это стоит.


Ниже перечислены основные материалы:
  • Фотоэлементы. На Алиэкспресс можно найти фотоэлементы из монокристаллического кремния мощностью 4,7 ватта и напряжением 0,5 вольта. Десять штук обойдутся в 1200─1500 р. Для панели 18 вольт нужно 36 штук. То есть, берём 40 примерно за 5─6 тысяч рублей;
  • Фанера или пластик. Используется в качестве подложки, на которую будут крепиться фотоэлементы. Стоимость (300─400 р.);
  • Алюминиевый или стальной профиль для рамки (400─500 р.);
  • Стекло (500 р.);
  • Диод Шоттки (30─50 р.);
  • Крепёж, герметик, провода, флюс, шина и другое по мелочи (500 р.).

Теперь непосредственно о самом процессе.

Для начала следует отсортировать элементы по вырабатываемому ими напряжению. Номинал, который указывают производители на своих фотоэлементах, составляет 0,5 вольта. Но это в идеальных условиях на солнце. При проверке в обычных условиях значения будут 0,2─0,35 вольта. Ваша задача ─ сформировать из элементов группы, мало отличающиеся по напряжению. Например, группа 0,32─0,35 вольта, 0,28─0,31 и так далее.

Это нужно сделать, поскольку один элемент в группе, имеющий значительно меньшее напряжения, будет выступать в роли сопротивления. Он будет тормозить процесс выработки электричества.


Естественно, что сортировка имеет смысл, когда у вас много фотоэлементов, которые пойдут на разные панели по 36 штук для выработки конечного напряжения 18 вольт. Если у вас количество только на одну панель, то сортировать их бессмысленно, поскольку устанавливать их всё равно нужно все.

Подготовка и пайка шин к фотоэлементам

Перед тем, как сделать солнечную батарею, проводится пайка медных шин к фотоэлементам. Они припаиваются на специальные дорожки, которые проходят сквозь элементы. Лучше всего использовать шину шириной 1,8 миллиметра и толщиной 0,16. Флюс используется обычный – канифоль со спиртом. Для удобства лучше использовать флюс в виде карандаша. Шину и флюс можно найти в магазинах, торгующих радиоэлектронными компонентами. Всё это обойдётся в 100─150 рублей.



Предварительно нужно нарезать отрезки шин длиной, необходимой для соединения двух элементов. Здесь не забудьте учесть расстояние между соседними элементами. То есть, надо прикинуть, как они будут располагаться на панели.

На дорожку фотоэлемента наносится небольшое количество флюса. Сверху накладывается шина и по ней проводится паяльником. Сильно нажимать не следует. Нужно сделать ровный шов без заусенцев, чтобы в дальнейшем они не мешали при сборке солнечной батареи. Шины нужно припаять ко всем фотоэлементам (36 штук) для солнечной батареи. Не забывайте после пайки протирать шов спиртом. Там остаётся много флюса, который там совершенно ни к чему. Для этого можно использовать косметические ватные палочки.

После этого выполняется пайка для объединения фотоэлементов в последовательную цепочку. Для этого шины припаиваются к контактным площадкам с обратной стороны элемента. Места пайки также протираются для удаления остатков флюса.

Оптимальный вариант для панели из 36 элементов спаять их в 4 ряда по 9 элементов. В результате сама солнечная батарея будет иметь оптимальную площадь.

Соединение элементов в батарею

Получившиеся 4 ряда соединённых элементов нужно объединить в готовую солнечную батарею. Для этого их нужно выложить на стекле и соединить толстыми медными шинами. Для этого лучше использовать шины толщиной 5 миллиметров. В разрыв плюсового вывода ставится диод Шоттки. Это нужно для того, чтобы впоследствии без проблем подключить несколько солнечных панелей в параллельную сборку. И не беспокоиться, что ток будет перетекать обратно. Защиту от этого обеспечит диод Шоттки. Элементы следует располагать так, как они будут находиться в готовой солнечной батарее. То есть, за стеклом рабочей стороной к свету. Делаем это по следующей схеме.


Что касается подложки, то лучше, конечно, использовать стекло. Также подходят плексиглас, оргстекло. Разнообразные пластики выигрывают в весе, прочности и удобстве. Однако их легко может «повести» при постоянной работе на солнце. Солнечная батарея существенно разогревается, что и приводит к короблению пластика. А это неизбежно приведёт к порче фотоэлементов.

В идеале нужен такой материал, который поглощает инфракрасный спектр солнечного излучения и имеет минимальный коэффициент преломления. Лучше всего на эту роль подходит минеральное стекло, но оно достаточно дорогое.

К стеклу фотоэлементы лучше всего крепить с помощью самоклеящейся плёнки. Выбирать следует ту, которая предназначена для работы в атмосферных условиях. Этот вариант наиболее дешёвый и простой в исполнении. Встречаются примеры, когда панели солнечной батареи закрепляют между стёклами, а все швы промазываются герметиком. Это тоже рабочий вариант, но хлопот получается значительно больше. Некоторые специалисты, вообще, рекомендуют проводить герметизацию с помощью эпоксидного компаунда.

Существуют 3 варианта соединения солнечных панелей между собой:

Последовательное соединение

Параллельное соединение

Последовательно-параллельное соединение солнечных панелей.

Данная статья как раз для того, чтобы разобраться в каждом из них.

Возможные варианты подключения солнечных батарей (солнечных панелей)

Существуют 3 варианта соединения солнечных батарей между собой:

Последовательное соединение;

Параллельное соединение;

Последовательно-параллельное соединение.

Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных батарей:

Номинальное напряжение солнечной батареи - как правило 12В или 24В;
. Напряжение при пиковой мощности Vmp - напряжение при которой батарея выдает максимальную мощность;
. Напряжение холостого хода Voc - напряжение в отсутствии нагрузки (важно при выборе контроллера заряда);

Напряжение максимальное в системе Vdc - определяет максимальное количество батарей объединенных вместе;
. Ток Imp - ток при максимальной мощности батареи;
. Ток Isc - ток короткого замыкания, максимально возможный ток батареи.

Мощность солнечной батареи определяется как произведение Напряжения и тока в точке максимальной мощности - Vmp х Imp

В зависимости от того какая схема подключения солнечных батарей выбрана, будут определяться характеристики системы солнечных батарей и подбираться соответствующий контроллер заряда.

Рассмотрим каждую схему соединения:

1) Последовательное соединение солнечных батарей :

При таком соединении минусовая клемма первой батареи соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.

При последовательном соединении нескольких батарей, напряжение их всех будет складываться. Ток системы будет равен току батареи с минимальным током. По этой причине не рекомендуется соединять последовательно батареи с различным значением тока максимальной мощности, поскольку работать они будут не в полную силу.

Рассмотрим на примере:

Имеем 4 солнечных монокристаллических батареи со следующими характеристиками:

Номинальное напряжение: 12В
. Напряжение при пиковой мощности Vmp: 18.46 В
. Напряжение холостого хода Voc: 22.48В
. Напряжение максимальное в системе Vdc: 1000В
. Ток в точке максимальной мощности Imp: 5.42А
. Ток короткого замыкания Isc: 5.65А

Соединив последовательно 4 таких батареи мы получим на выходе номинальное напряжение 12Вх 4=48В. Напряжение холостого хода = 22,48В х 4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.


2) Параллельное соединение солнечных батарей

В данном случае батареи соединяются при помощи специальных Y - коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.

При таком соединении напряжение на выходе каждой батареи будет равны между собой и равны напряжению на выходе из системы батарей. Ток от всех батарей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от них.

Рассмотрим на примере все тех же 4х батарей:

Соединив параллельно 4 таких батареи мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А х 4 = 21,68А.

3) Последовательно-параллельное соединение солнечных батарей

Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения батарей, мы можем регулировать напряжение и ток на выходе из системы нескольких батарей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.

В случае такого подключения соединенные последовательно цепочки батарей объединяют параллельно.

Вернемся к нашему примеру с 4-мя батеями:

Соединив по 2 батареи последовательно и затем объединим их соединив цепочки батарей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных батарей 12В х 2=24В, напряжение холостого хода будет равно 22,48В х 2=44,96В, а ток при этом будет равен 5,42А х2=10,84А.


Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.

О том как подобрать контроллер заряда можно прочитать

Принципиальные схемы солнечных батарей и вариантов их присоединения к управляющим и преобразующим устройствам не является большой сложностью. Практическая сложность общей схемы, с конкретными значениями характеристик всех элементов, заключается в правильном расчете нагрузки, настройке контроллера зарядки и контроллера отбора энергии от других источников.

На примере рисунка рассмотрим некоторые нюансы, связанные с разнонаправленностью панелей, что приводит к различной освещенности панелей. Кроме этого, рассмотрим типы контроллеров зарядки АБК.

Размещение нескольких панелей в одной плоскости не вызывает особых проблем в схемотехнике и практическом подключении. Панели, размещенные в разных плоскостях, пусть близких, работают по-другому. Более освещенная панель (более близкая к точке максимальной мощности) генерирует электричество, часть которого идет на нагрев другой панели, т.к. ток течет по пути наименьшего сопротивления.

И есть два способа избежать этих потерь:

  • Установить на каждую панель свой контроллер. Имеет смысл, если это мощные панели (более 1 кВт) или панели разнесены на большое расстояние.
  • Установить отсекающие (запирающие) диоды. Некоторые производители комплектуют диодами свои панели и предусматривают их место в распределительной коробке. Кстати, внутри панели (схема панели) предусматривается наличие диодов между модулями (пластинами), что позволяет получать максимальную мощность и не "греть" пластину с более низкими показателями.

Другая мелочь, на которую мало обращают внимание - это падение напряжения в проводах низковольтной части системы и потери в соединениях. Например, при длине кабеля 1 м сечением 4 кв. мм при прохождении тока в 80 А с напряжением 12 В падение напряжения составит 0,383 В (3,19 %) или 30,6 Вт. В "скрутках" падение составляет 0,1-0,3 В.

Красным цветом указано несоответствие передаваемой мощности сечению провода, при котором происходит сильный пожароопасный нагрев.

Контроллер зарядки АКБ

Контроллер зарядки батареи предназначен для перераспределения генерируемой электроэнергии. Приоритетом является поддержание АБК в заряженном состоянии, а при полной зарядке - направление энергии на инвертор.

Различают два способа организации контроля зарядки:

  • PWM (ШИМ) контроллер - устройство, генерирующее собственные измерительные импульсы с частотой (около 1 Гц) для контроля состояния батареи в широком диапазоне характеристик (широко-импульсный). Схема с простой релейной логикой, т.е. выше напряжения на АКБ (кислотные АКБ - 16,2 В) - выключил зарядку, ниже - снова включил.
  • MPPT-контроллер с процессором постоянно отслеживает положение точки максимальной мощности (ТММ) солнечной батареи по току и напряжению. Другое плечо контроллера отслеживает состояние АКБ. Процессор сопоставляет данные и определяет значения тока и напряжения, направляемые на АКБ в зависимости от уровня зарядки.

Оба типа контроллеров обеспечивают комфортный режим работы батареи и не имеют решающих преимуществ друг перед другом. Преимуществом МРРТ можно назвать наглядность процесса его работы и возможность накопления информации.

Схема солнечной батареи с дополнительными источниками тока

Надежность электроснабжения с применением солнечной батареи значительно повышается, когда она работает в комплексе с другими источниками или, как дополнительный источник к системе централизованного энергоснабжения. В любом случае общая схема усложняется появлением дополнительных устройств контроля и управления.

Солнечная батарея и ветрогенератор

Схемы, в которых соседствуют различные источники энергии, должны строиться на общей характеристике - одинаковое напряжение источников, т.к. иначе потребуются разные контроллеры зарядки и, возможно, инверторы (если разброс по мощности источников большой), а схема блока АКБ позволяет подстраиваться под напряжение источников.

Подключение источника с генератором переменного тока с параметрами сети несколько изменяет схему подключения. На рисунке представлен самый общий вариант без блока подзарядки АКБ (контроллер и трансформатор с выпрямителем, которые отбирают энергию от внешнего источника переменного тока).

Схема подключения усложняется в случае, если автономная система подключена к централизованной сети. В России не отрегулированы ситуации, когда частный потребитель может отдавать излишки энергии в сеть. Кроме этого, переключение не бывает "гладким", т.е. происходит перепад напряжения длительностью 0,3-1 секунды в зависимости от сложности переключателя.

Сложность схемы подключения возрастает с подключением других источников. Вот некоторые вопросы, которые приходится рассматривать при сложной комплектации:

  • Согласование характеристик источников, устройств управления и преобразования энергии,
  • Надежность системы, в сочетании с проблемами утилизации избыточной энергии.

В целом ряде ситуаций могут оказать помощь наши специалисты. Для этого можно использовать сервисы сайта: онлайн-консультант и форму обратной связи.

Автономные системы электроснабжения загородных объектов позволяют жить в комфорте даже вдалеке от централизованных коммуникаций. Нередко наряду с традиционными схемами используют альтернативные, основанные на использовании энергии солнца.

Чтобы гелиосистема функционировала правильно, необходима грамотно составленная схема подключения солнечных батарей. Потребуется комплект качественного оборудования, способный справляться с возложенными обязанностями.

Мы расскажем, как грамотно спланировать размещение компонентов мини-электростанции. Вы узнаете, как выбрать технические устройства для сборки системы и как их правильно подключить. С учетом наших советов вы сможете соорудить эффективно действующую установку.

Рассмотрим, как устроена и работает гелиосистема для загородного дома. Главное ее назначение – преобразовать энергию солнца в электричество 220 В, которое является основным источником питания для домашних электроприборов.

Основные части, из которых состоит СЭС:

  1. Батареи (панели), преобразующие солнечное излучение в ток постоянного напряжения.
  2. Контроллер, регулирующий заряд АКБ.
  3. Блок аккумуляторных батарей.
  4. Инвертор, преобразующий напряжение АКБ в 220 В.

Конструкция батареи продумана таким образом, что позволяет оборудованию функционировать в различных погодных условиях, при температуре от -35ºС до +80ºС.

Выходит, что правильно установленные будут работать с одинаковой производительностью и зимой, и летом, но при одном условии – в ясную погоду, когда солнце отдает максимальное количество тепла. В пасмурную эффективность работы резко снижается.

Эффективность СЭС в средних широтах велика, но не настолько, чтобы полностью обеспечивать электричеством большие дома. Чаще гелиосистема рассматривается как дополнительный или резервный источник электроэнергии

Вес одной батареи на 300 Вт равен 20 кг. Чаще всего панели монтируют на крышу, фасад или специальные стойки, установленные рядом с домом. Необходимые условия: разворот плоскости в сторону солнца и оптимальный наклон (в среднем 45° к поверхности земли), обеспечивающий перпендикулярное падение солнечных лучей.

При возможности устанавливают трекер, отслеживающий движение солнца и регулирующий положение панелей.

Верхняя плоскость батарей защищена закаленным противоударным стеклом, которое легко выдерживает удары града или тяжелые снежные наносы. Однако необходимо следить за целостностью покрытия, иначе поврежденные кремниевые пластины (фотоэлементы) перестанут работать

Контроллер выполняет насколько функций. Кроме основной – автоматической регулировки заряда АКБ, регулирует подачу энергии от солнечных батарей, предохраняя тем самым аккумулятор от полной разрядки.

При полном заряде контроллер автоматически отключает АКБ от системы. Современные устройства оборудованы панелью управления с дисплеем, показывающим напряжение батарей.

Для самодельных гелиосистем лучшим выбором являются гелевые аккумуляторы, отличающиеся сроком бесперебойного функционирования 10-12 лет. После 10-летней работы их емкость уменьшается примерно на 15-25 %. Это необслуживаемые и абсолютно безопасные устройства, не выделяющие вредных веществ.

Зимой или в пасмурную погоду панели также продолжают работать (если их регулярно очищать от снега), но выработка энергии снижается в 5-10 раз

Стоит знать, что бытовые электростанции способны обслуживать постоянно работающий холодильник, периодически запускаемый погружной насос, телевизор, систему освещения. Чтобы обеспечить энергией функционирование котла или даже микроволновки, потребуется более мощное и очень дорогое оборудование.

Простейшая схема солнечной электростанции, включающая главные составные элементы. Каждый из них выполняет свою функцию, без которой работа СЭС невозможна

Существуют и другие, более сложные , однако данное решение является универсальным и наиболее востребованным в быту.

Шаги подключения батарей к оборудованию СЭС

Подключение происходит поэтапно, обычно в следующем порядке: сначала соединяют контроллер с аккумулятором, затем контроллер с солнечными панелями, затем аккумулятор с инвертором, и уже в последнюю очередь делают разводку по потребителям.

Этап #1: подключение к аккумулятору

Аккумуляторы занимают в сети четко определенное место. Они подключены к солнечным панелям не напрямую, а через контроллер, который регулирует их загрузку/разгрузку. С другой стороны аккумуляторный блок подсоединяют к инвертору, преобразующему ток.

Таким образом, схема подключения к аккумулятору выглядит так:

  • производим соединение аккумулятор/контроллер (затем контроллер/солнечные батареи);
  • соединяем аккумулятор и инвертор.

Возможны и другие варианты подключения, но данный является оптимальным, так как сохраняет незатраченную энергию, а при необходимости отдает ее потребителям.

Существует два варианта приобретения аккумуляторов: в составе полностью готовой к установке солнечной электростанции или отдельно, по заданным параметрам. Недорогой китайский комплект стоит не более 2000 рублей

Если одного аккумулятора недостаточно, приобретают несколько батарей с одинаковыми характеристиками. Их устанавливают в одном месте и подключают последовательно.

Для удобства использования и обслуживания блоки устанавливают на металлическом стеллаже с полимерным покрытием.

Рассмотрим, как аккумулятор подключается к контроллеру и инвертору.

Галерея изображений

Следующий шаг – подключение контроллера к солнечным панелям, а аккумуляторного блока – к инвертору.

Этап #2: подключение к контроллеру

Рассмотрим вариант, который часто используют на практике владельцы загородных домов. Они заказывают недорогое оборудование производства КНР на одной из интернет-площадок.

Бюджетный контроллер с минимальным количеством настроек, оснащенный тремя парами клемм, способный обслужить блок солнечных батарей мощностью 150 Вт. Стоимость – 1300 рублей

Подключение происходит в следующем порядке:

  • Сначала к контроллеру подключают блок аккумуляторных батарей. Это производится намеренно, чтобы проверить, как прибор выявит номинальное напряжение сети (стандартные значения – 12 В, 24 В). При соединении с АКБ используют первую пару клемм.
  • Затем присоединяют непосредственно солнечные панели , используя прилагающиеся к ним провода, а у контроллера – вторую пару клемм.
  • В последнюю очередь устанавливают оборудование для ночного освещени я – именно для этого и предназначена третья пара клемм. Кроме низковольтного освещения, которое действует исключительно после наступления темноты и запитывается от АКБ, другое оборудование использовать нельзя.

При любом виде подключения необходимо следить за полярностью.

Несоблюдение полярности приводит к мгновенной поломке контроллера, а также выходу из строя деталей солнечных панелей.

Схема подключения контроллера с тремя парами клемм. Ночное освещение (12 В) – необязательная функция, поэтому некоторые ее просто не используют. Включение лампочек можно настроить по времени: для работы в вечерние или утренние часы (+)

Контроллер и АКБ постоянно взаимодействуют. Например, во время пиковых нагрузок АКБ представляет собой буфер, осуществляющий защиту контроллера от выхода из строя.

Эти два прибора, как и остальные элементы системы, нельзя рассматривать по отдельности. При сборке солнечной электростанции следует иметь в виду каждое устройство, даже если конкретное подключение его не касается.

Пошаговая инструкция по подключению солнечных панелей к контроллеру

Галерея изображений

После подключения контроллера к аккумулятору и панелям присоединяем инвертор и, при необходимости, низковольтные осветительные приборы.

Этап #3: подключение к инвертору

Инвертор необходимо включать в систему, если приборы в доме работают от 220 В. Но бывают исключения, когда солнечные батареи устанавливают для системы 12 В, в этом случае инвертор не нужен.

Место установки инвертора в системе солнечной электростанции – между аккумуляторным блоком и потребителями энергии, то есть домашними бытовыми устройствами, приборами освещения и др. (+)

Приобретается прибор так же, как и остальные части гелиосистемы: в составе комплекта СЭС или отдельно.

Порядок действий при подключении инвертора к аккумулятору:

Галерея изображений

Если вы ранее не занимались установкой солнечных электростанций, рекомендуем приобретать не отдельные приборы, а систему в комплекте.

Преимущество готовой для монтажа системы – в соответствии параметров оборудования (правильно подобранные по мощности аккумуляторы, необходимое количество солнечных панелей, набор проводов для быстрого подключения).

Логично, что совместимые по емкости, напряжению и мощности приборы будут намного эффективнее преобразовывать солнечную энергию и обеспечивать дом электричеством. Фактически бесплатную «зеленую энергию» можно использовать с , энергоснабжения бытовых устройств.

Выводы и полезное видео по теме

Владельцы загородного жилья уже давно оценили достоинства альтернативной энергии и активно используют СЭС в качестве постоянного или резервного источника. Полезные рекомендации от пользователей солнечных электростанций помогут вам с монтажом собственной системы.

Видео #1. Пошаговый инструктаж по сборке и подключению:

Видео #2. Разбор нередко встречающихся ошибок при выборе и установке оборудования:

Видео #3. Обзор одного из вариантов домашней установки:

Использование альтернативной энергии для нужд человечества – это действительно большой технологический скачок. Сегодня каждый домовладелец может самостоятельно собрать и подключить солнечную электростанцию, питающую дом электричеством. С учетом окупаемости и экологической чистоты это практичное и результативное решение.

Хотите рассказать о том, как собрали небольшую солнечную электростанцию собственными руками? Есть интересные факты и полезные сведения по теме статьи? Пишите, пожалуйста, комментарии в расположенном ниже блоке, делитесь впечатлениями, мнением и тематическими фотоснимками.