Как работает узип. Защита оборудования от импульсных перенапряжений и коммутационных помех

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты , разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Скачки напряжения пагубно влияют не только на электронику, но и на любую электротехнику в целом. Поэтому для защиты бытовых электроприборов требуется установка различных защитных устройств: ведь перепады напряжения могут вызвать различные неисправности. Одним из самых опасных видов считается импульсное перенапряжение, которое возникает по следующим причинам:

Для защиты от данного вида перенапряжений в быту и на производстве широко применяется специальное устройство УЗИП или ограничитель импульсных перенапряжений (ОПС).

Общая информация

Такое устройство защиты предназначено для установки в низковольтные (до 1000 В) силовые сети бытового и промышленного назначения. УЗИП обладает следующими достоинствами:

  • Техническая совершенность;
  • Эффективность и надежность защиты;
  • Невысокая стоимость.

Эти факторы позволяют установить устройство в каждом доме или квартире, и обеспечить надежную защиту всего электрооборудования от импульсных скачков напряжения.

Принцип работы

Основным элементом УЗИП является варистор, который выполнен из специального проводника. Уникальность разработки заключается в способности варистора пропускать электроток при многократно возросшем напряжении. При возникновении импульса сопротивление варистора падает до сотых долей Ома. В результате этого происходит шунтирование нагрузки, преобразование и рассеивание поглощенного импульса в виде тепловой энергии (нагревание корпуса).

Важно! Проводящий элемент варистора теряет свои характеристики после двух-трех разрядов молнии.

В большинстве моделей предусмотрено индикаторное окно, через которое можно визуально определить, является ли варистор работоспособным. Также в устройство защиты установлен предохранитель от сверхтоков.

Классификация

Нормативные акты предписывают установку трехуровневой защиты от импульсных перенапряжений. Для этого выпускаются и применяются УЗИП трех видов:

  1. Класс B. Устройство этого типа устанавливается на ВРУ или ГРЩ и предназначено для выравнивания входящего потенциала при прямом попадании молнии или возникновении коммутационных перенапряжений. При воздушном вводе и наличии громоотвода установка этого типа УЗИП обязательна;
  2. Класс C устанавливается на вводе в местах, где отсутствует вероятность прямого грозового разряда и при подземном вводном кабеле. Также такое устройство рекомендуется для подключения в качестве второго уровня защиты в жилых помещениях. В этом случае УЗИП обеспечивает защиту внутренней проводки, коммутационных соединений и розеточных групп от остаточного перенапряжения;
  3. Класс D предназначен для монтажа во внутренних электрощитах или непосредственно перед потребителем (электроприбором). Выполняет функцию защиты потребителей от остаточного перенапряжения, прошедшего предыдущие ограничители.

Ограничители перенапряжения D класса отличаются компактными размерами и могут быть выполнены в различном исполнении. Часто их устанавливают в распределительных коробках или на отдельную розеточную группу, к которой подключены электронные приборы.

Наиболее популярными считаются ограничители серии ОПС1, которым отдают предпочтение профессиональные электромонтажники. Рассмотрим эти устройства более подробно.

Серия ОПС1

Ограничительное устройство ОПС1 производится всех трех классов защиты: B, C, и D.

Для чего нужны защитные устройства?

ОПС1 способно защитить любое электрооборудование. Благодаря компактным размерам такое устройство подходит для установки и подключения в обычном электрощите квартиры, коттеджа или офиса. Установка УЗИП в таких помещениях поможет спасти дорогостоящую технику и компьютерное оборудование. В загородных коттеджах, оборудованных системой «умный дом» монтаж ОПС1 предписывается инструкцией производителя, поскольку электронная начинка очень чувствительна к импульсным перенапряжениям. Также подобная защита требуется любым автономным системам жизнеобеспечения, наблюдения и безопасности.

Поэтому такое устройство устанавливается не только в частном секторе и городских квартирах, но и в административных, офисных, коммерческих и других зданиях.

Особенности конструкции и характеристики

ОСП1 имеет стандартные размеры и модульное исполнение: это позволяет без проблем установить устройство на DIN-рейку. При этом прибор может иметь от 1 до 4 сменных модулей (в зависимости от класса). Сменный модуль (отработанный варисторный разрядник) легко заменяется новым: для этого в центре корпуса предусмотрены направляющие, в которые и вставляется новый модуль. Это позволяет быстро произвести замену без отключения проводов и демонтажа всего устройства.

Применяемый в модуле варистор изготавливается из керамической смеси и окиси цинка, с добавлением специальных примесей для получения уникальных запирающих свойств. Также в каждом блоке предусмотрена защита от повышенной токовой нагрузки.

Для контроля работоспособности сменного блока предусмотрено окно с цветным указателем состояния. Для обеспечения надежного контакта на зажимах (клеммах) выполнены насечки, обеспечивающие большую площадь соприкосновения. Это автоматически уменьшает сопротивление самого контакта.

В зависимости от класса защиты и производителя, ограничители перенапряжения имеют такие характеристики:

  • Класс защиты – IP;
  • Разрядный ток имеет форму 8/20 мкс;
  • Номинальное напряжение составляет 230–400 В;
  • Время срабатывания составляет не более 25 нс;
  • Напряжение защищаемой линии: от 1 до 2 кВ;
  • Максимальный разряд, который способно выдержать устройство: 10 – 60 кА.

Чтобы подключить устройство защиты, используются медные или алюминиевые провода сечением от 4 до 25 мм 2

Обратите внимание! При подключении ОПС1 важно соблюдать полярность. Для этого все клеммные зажимы на корпусе прибора имеют маркировку, какой провод следует подключить в этот разъем.

Схема подключения

Теперь давайте рассмотрим, что представляет собой схема подключения УЗИП в энергосеть на примере частного дома.

На примере показано, как правильно выполнить подключение ограничителей перенапряжения зонально: такая схема признана наиболее эффективной. Именно концепция трехступенчатой защиты с размещением УЗИП внутри помещения нашла наибольшее применение на практике. При этом важно для каждой зоны устанавливать соответствующий класс ограничителя.

Обратите внимание! При монтаже ОСП1 важно выдерживать правильное расстояние между приборами: между ними должно быть минимум 10 метров.

Зональная концепция защиты

Согласно принятым МЭК стандартам, любой объект, оборудованный электропроводкой, подразделяется на условные зоны. Деление (или классификация зон) осуществляется на основании теоретического воздействия грозового разряда: прямого или непрямого. С этой точки зрения выделяют несколько зон:

  • 0A: все точки электролиний в этой зоне подвержены прямому контакту с каналом молнии или грозовым разрядом, а также электромагнитным полем, возникающим вследствие этого природного явления;
  • 0B: эта зона относится к внешней среде дома или другого объекта, не попадающая под непосредственный контакт с молнией. Обычно эта зона надежно защищена правильно установленным молниеотводом. Стоит учитывать, что эта область подвержена воздействию сильнейшего электромагнитного поля;
  • Зона 1 относится к внутренней области здания. В этой области все точки электролинии не подвержены прямому удару молнии. Вследствие этого значение разрядного тока, проходящего через эту зону значительно ниже, чем во внешних областях. За счет экранирования стенами здания электромагнитного поля, его воздействие также снижено.

Деление на последующие внутренние области (зона 2, 3 и так далее), происходит в случае необходимости дальнейшего рассеивания импульсных токов или электромагнитного поля. Такое проектирование практикуется при необходимости размещения в этих зонах чувствительного электрооборудования или электронных устройств. Для каждой последующей области характерно уменьшение разрядного тока и влияния (мощности) электромагнитного поля.

Подводим итоги

Из этой статьи мы узнали назначение и конструктивные особенности ограничителей перенапряжений, важность их правильной установки. Также рассмотрели их классификацию, принцип работы и ознакомились с зональной концепцией защиты зданий и объектов.

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

Если Вы планируете установить в своем доме систему молниезащиты, а также если вы живете в грозовых районах, то нужно запланировать установку устройства защиты от импульсных перенапряжений, с кратким названием .

Устройства защиты импульсных перенапряжений первого класса

Наиболее востребованным, в бытовой защите, являются УЗИП (устройства защиты импульсных перенапряжений) первого класса. Их назначение, защита систем низкого напряжения (не более 1000 Вольт) распределения электроэнергии от следующих источников импульсных перенапряжений в сети:

1. -П.У.М, прямое попадание молнии, и не просто в воздух, а в смонтированную молниевую защиту дома или попадании в ВЛЭ, вблизи от дома, вернее вблизи от абонентского ввода в дом.2. -Другие грозовые разряды вдали от дома; 3. -Подключения ёмкостных и/или индуктивных нагрузок, а также КЗ в высоковольтных ЛЭП.

Как видите, из перечисленных назначений УЗИП, вполне разумно применение этого устройства, кроме перечисленных выше, если вблизи дома проходит высоковольтная ЛЭП.

Вывод первый

  • УЗИП (устройства защиты импульсных перенапряжений) обязательно в грозовых районах;
  • УЗИП обязательно если смонтирована система молниезащиты дома;
  • УЗИП рекомендовано в домах, вблизи которых проходят высоковольтные ЛЭП.

Примечание: Нужно обратить внимание, что УЗИП разделяются на разрядники, варисторы, газонаполненные разрядники. У каждого типа УЗИП свое назначение и свои характеристики. При выборе УЗИП, важно понимать, что большинство выпускаемых УЗИП, обеспечивают эффективную защиту, лишь в комплексных схемах защиты, то есть защите УЗИП на нескольких уровнях. С этой точки зрения, рассматривать отдельное применение УЗИП на вводе в дом не совсем корректно.

Схемы подключения УЗИП первого класса

Прежде, чем рассмотреть схемы подключения УЗИП первого класса, несколько рекомендаций по его установке:

  • УЗИП монтируются во , как можно ближе к вводу электропитания.
  • Допустима установка устройства в отдельном групповом щите, например, отдельной розеточной цепи ().
  • Соединительные проводники от выводов УЗИП должны быть медными сечением от 4 мм.
  • Суммарная длина проводников должна быть не более 50 см.

Есть два принципиально важных подключения УЗИП 1-ой классификации

  • ЗИП в цепях проводник-заземление (продольное или синфазное перенапряжение). Схема А.
  • ЗИП в цепях проводник-проводник (поперечное или противофазное перенапряжение). Схема Б.

Схема 1.

  • УЗИП (устройства защиты импульсных перенапряжений) 1-ой классификации ставятся после вводного защитного автомата, по следующим правилам:
  • N проводник заземлен на вводе в дом: Устройство ставится между L и PE проводниками;
  • N проводник НЕ заземлен на вводе в дом: Устройство ставится между L и PE проводниками и между N и PE проводниками.
  • N проводник заземлен на вводе в дом: Устройство ставится между L и PEN проводниками;
  • N проводник НЕ заземлен на вводе в дом: Устройство ставится между L и N проводниками и между N и PE проводниками.
  • N проводник отсутствует. УЗИП соединяем в средней точке, которую через другое УЗИП соединяем с землей (N\PE).

На практике схема 2 помехозащищенность оборудования.

6 схем подключения УЗИП в зависимости от системы заземления

Отдельного рассмотрения достойны схемы подключения УЗИП в цепях с заземлением TT. Здесь я их только приведу, и замечу, что более надежными являются подключение УЗИП по схеме 2 (противофазное перенапряжение).


схема подключений узип в TN-C и TN-C-S
схема подключений узип в TN-S
схема подключений узип в TT
схема подключений узип в IT

Выводы

По применению УЗИП первого класса, определенно можно сказать следующее.

  • Применение УЗИП в электрической сети частного дома, нельзя рассматривать, как обязательную рекомендацию, как например применение УЗО.
  • Усложняет ситуацию с применением УЗИП индивидуальность схемы заземления абонента, расположение вводного устройства и .
  • Именно по этому, нужно опираться, прежде всего, на инструкции производителя и прямые рекомендации специалиста, который видит ситуацию по месту.

Нормативные ссылки

  • Требования к УЗИП: ГОСТ Р 51992-2002;
  • МЭК (Международный стандарт) 61643 (2005);
  • EN (Евростандарт) 61643-11 (2002).

На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи - в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП - обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

Характеристики импульсов перенапряжения

Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада - для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
- первая - время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
- вторая - время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) - внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II (C) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) - защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование - если оно изготовлено в соответствии с ГОСТ);

Приборы защиты от импульсных перенапряжений

Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.
Разрядник
Разрядник - электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник - он переходит в исходное закрытое состояние до следующего импульса.


Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс - максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания разрядника (практически для всех разрядников - менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника - статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» - ведь мы заранее не знаем значение тока, который возникнет в сети...
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током - от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности - а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

Варистор
Варистор - полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна - варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

Небольшое видео натуралистических испытаний:) (подача на варистор диаметром 20 мм повышенного напряжения - превышение на 50 В)

Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II (C), III (D);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс - максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания варистора (практически для всех варисторов - менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора - статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора - практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact , который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 - 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока - так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

Краткий обзор производителей УЗИП
Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact ; Dehn ; OBO Bettermann ; CITEL ; Hakel . Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию - например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) - они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции - о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка - это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

Теги:

  • грозозащита
  • УЗИП
  • защита от перенапряжения
Добавить метки