Как создать программу для программирования микроконтроллеров. Что нужно для программирования микроконтроллеров

Программирование микроконтроллеров

Введение

Раздел 2. Среды программирования. Схемы подключения микроконтроллера

Раздел 3. Практическая реализация программы на микроконтроллере

Список использованных источников

Введение

Актуальность темы. Микроконтроллеры используются во всех сферах жизнедеятельности человека, устройствах, которые окружают его. Простота подключения и большие функциональные возможности. С помощью программирования микроконтроллера можно решить многие практические задачи аппаратной техники.

Цель работы . На основе практического примера показать преимущественные характеристики использования микроконтроллеров, необходимости их внедрения в различные устройства.

Можно считать что микроконтроллер (МК) - это компьютер, разместившийся в одной микросхеме. Отсюда и его основные привлекательные качества: малые габариты; высокие производительность, надежность и способность быть адаптированным для выполнения самых различных задач.

Микроконтроллер помимо центрального процессора (ЦП) содержит память и многочисленные устройства ввода/вывода: аналого-цифровые преобразователи, последовательные и параллельные каналы передачи информации, таймеры реального времени, широтно-импульсные модуляторы (ШИМ), генераторы программируемых импульсов и т.д. Его основное назначение - использование в системах автоматического управления, встроенных в самые различные устройства: кредитные карточки, фотоаппараты, сотовые телефоны, музыкальные центры, телевизоры, видеомагнитофоны и видеокамеры, стиральные машины, микроволновые печи, системы охранной сигнализации, системы зажигания бензиновых двигателей, электроприводы локомотивов, ядерные реакторы и многое, многое другое. Встраиваемые системы управления стали настолько массовым явлением, что фактически сформировалась новая отрасль экономики, получившая название EmbeddedSystems (встраиваемые системы).

Достаточно широкое распространение имеют МК фирмы ATMEL, которые располагают большими функциональными возможностями.

Применение МК можно разделить на два этапа: первый - программирование, когда пользователь разрабатывает программу и прошивает ее непосредственно в кристалл, и второй - согласование спроектированных исполнительных устройств с запрограммируемым МК. Значительно облегчают отладку программы на первом этапе - симулятор, который наглядно моделирует работу микропроцессора. На втором этапе для отладки используется внутрисхемный эмулятор, который является сложным и дорогим устройством, зачастую недоступным рядовому пользователю.

В тоже время в литературе мало уделено внимания вопросам обучения программированию некоторых недорогих МК, в сочетании с реальными исполнительными устройствами.

Разработка макета программатора отличающегося простотой, наглядностью и низкой себестоимостью, становиться необходимой как для самого программирования кристаллов, так и для наглядного обучения широкого круга пользователей основам программирования МК.

Раздел 1. Назначение и область применения, их архитектура

Микроконтроллер - компьютер на одной микросхеме. Предназначен для управления различными электронными устройствами и осуществления взаимодействия между ними в соответствии с заложенной в микроконтроллер программой. В отличие от микропроцессоров, используемых в персональных компьютерах, микроконтроллеры содержат встроенные дополнительные устройства. Эти устройства выполняют свои задачи под управлением микропроцессорного ядра микроконтроллера.

К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.

В отличие от микроконтроллера контроллером обычно называют плату, построенную на основе микроконтроллера, но достаточно часто при использовании понятия "микроконтроллер" применяют сокращенное название этого устройства, отбрасывая приставку "микро" для простоты. Также при упоминании микроконтроллеров можно встретить слова "чип" или "микрочип", "кристалл" (большинство микроконтроллеров изготавливают на едином кристалле кремния), сокращения МК или от английского microcontroller - MC.

микроконтроллер программа микросхема электронный

Микроконтроллеры можно встретить в огромном количестве современных промышленных и бытовых приборов: станках, автомобилях, телефонах, телевизорах, холодильниках, стиральных машинах. и даже кофеварках. Среди производителей микроконтроллеров можно назвать Intel, Motorola, Hitachi, Microchip, Atmel, Philips, Texas Instruments, Infineon Technologies (бывшая Siemens Semiconductor Group) и многих других. Для производства современных микросхем требуются сверхчистые помещения.

Основным классификационным признаком микроконтроллеров является разрядность данных, обрабатываемых арифметико-логическим устройством (АЛУ). По этому признаку они делятся на 4-, 8-, 16-, 32 - и 64-разрядные. Сегодня наибольшая доля мирового рынка микроконтроллеров принадлежит восьмиразрядным устройствам (около 50 % в стоимостном выражении). За ними следуют 16-разрядные и DSP-микроконтроллеры (DSP - Digital Signal Processor - цифровой сигнальный процессор), ориентированные на использование в системах обработки сигналов (каждая из групп занимает примерно по 20 % рынка). Внутри каждой группы микроконтроллеры делятся на CISC - и RISC-устройства. Наиболее многочисленной группой являются CISC-микроконтроллеры, но в последние годы среди новых чипов наметилась явная тенденция роста доли RISC-архитектуры.

Тактовая частота, или, более точно, скорость шины, определяет, сколько вычислений может быть выполнено за единицу времени. В основном производительность микроконтроллера и потребляемая им мощность увеличиваются с повышением тактовой частоты. Производительность микроконтроллера измеряют в MIPS (Million Instruсtions per Second - миллион инструкций в секунду).

Термин контроллер образовался от английского слова to control - управлять. Эти устройства могут основываться на различных принципах работы от механических или оптических устройств до электронных аналоговых или цифровых устройств. Механические устройства управления обладают низкой надежностью и высокой стоимостью по сравнению с электронными блоками управления, поэтому в дальнейшем мы такие устройства рассматривать не будем. Электронные аналоговые устройства требуют постоянной регулировки в процессе эксплуатации, что увеличивает стоимость их эксплуатации. Поэтому такие устройства к настоящему времени почти не используются. Наиболее распространенными на сегодняшний день схемами управления являются схемы, построенные на основе цифровых микросхем.

В зависимости от стоимости и габаритов устройства, которым требуется управлять, определяются и требования к контроллеру. Если объект управления занимает десятки метров по площади, как, например, автоматические телефонные станции, базовые станции сотовых систем связи или радиорелейные линии связи, то в качестве контроллеров можно использовать универсальные компьютеры. Управление при этом можно осуществлять через встроенные порты компьютера (LPT, COM, USB или Ethernet). В такие компьютеры при включении питания заносится управляющая программа, которая и превращает универсальный компьютер в контроллер.

Использование универсального компьютера в качестве контроллера позволяет в кратчайшие сроки производить разработку новых систем связи, легко их модернизировать (путём простой смены программы) а также использовать готовые массовые (а значит дешёвые) блоки.

Если же к контроллеру предъявляются особенные требования, такие, как работа в условиях тряски, расширенном диапазоне температур, воздействия агрессивных сред, то приходится использовать промышленные варианты универсальных компьютеров. Естественно, что эти компьютеры значительно дороже обычных универсальных компьютеров, но всё равно они позволяют экономить время разработки системы, за счёт того, что не нужно вести разработку аппаратуры контроллера.

Декабрь 2015 г.

1. Преимущества предлагаемого способа

Схемы устройств на микроконтроллерах (МК) обычно отличаются сочетанием двух трудносовместимых качеств: максимальной простотой и высокой функциональностью. К тому же функциональность может в дальнейшем меняться и расширяться без внесения каких-либо изменений в схему - путём лишь замены программы (перепрошивкой). Эти особенности объясняются тем, что создатели современных МК постарались разместить на одном кристалле всё, что только может потребоваться разработчику электронного устройства - по крайней мере настолько, насколько это возможно. В результате произошло смещение акцента со схемотехнического и монтажного на программный. С использованием МК теперь меньше приходится "нагружать" схему деталями, между компонентами становится меньше соединений. Это, конечно, делает схему более привлекательной для её повторения как опытными, так и начинающими электронщиками. Но, как обычно, за всё приходится платить. Здесь тоже не обошлось без своих сложностей. Если купить новый МК, установить его в правильно собранную из исправных деталей схему и подать питание, то ничего не получится - устройство не будет работать. Микроконтроллеру нужна программа.

Казалось бы с этим тоже всё просто - в интернете можно встретить множество схем с бесплатными прошивками. Но тут возникает одна загвоздка: прошивку необходимо как-то "залить" в микроконтроллер. Для того, кто никогда этим раньше не занимался, такая задача зачастую становится проблемой и главным отталкивающим фактором, нередко заставляющим отказаться от прелестей использования МК и поискать схемы на "рассыпухе" и жесткой логике. А ведь всё не так уж сложно, как может показаться на первый взгляд.

Проанализировав публикации в интернете, можно заметить, что данная проблема решается чаще всего одним из двух путей: покупкой готового программатора или изготовлением самодельного. При этом публикуемые схемы самодельных программаторов очень часто неоправданно сложны - гораздо сложнее, чем это действительно необходимо. Конечно, если предполагается каждый день прошивать МК, лучше иметь "крутой" программатор. Но если надобность в такой процедуре возникает нечасто, от случая к случаю, то можно вообще обойтись без программатора. Нет, конечно, речь идет не о том, чтобы научиться делать это силой мысли. Имеется в виду, что понимая, как происходит взаимодействие программатора с микроконтроллером при записи и считывании информации в режиме его программирования, мы можем обойтись подручными средствами более широкого назначения. Эти средства должны будут заменить как программную, так и аппаратную части программатора. Аппаратная часть должна обеспечить физическое соединение с микросхемой МК, возможность подавать логические уровни на его входы и считывать данные с его выходов. Программная часть должна обеспечить работу алгоритма, управляющего всеми необходимыми процессами. Отметим также, что качество записи информации в МК не зависит от того, насколько "крутой" у вас программатор. Такого понятия, как "лучше записалось" или "хуже" не существует. Есть только два варианта: "записалось" и "не записалось". Это объясняется тем, что непосредственно процессом записи внутри кристалла руководит сам МК. Нужно лишь обеспечить ему качественное питание (отсутствие помех и пульсаций) и правильно организовать интерфейс. Если по результатам контрольного считывания ошибок не выявлено, то все в порядке - можно использовать контроллер по назначению.

Для того, чтобы, не имея программатора, записать в МК программу, нам потребуется преобразователь порта USB-RS232TTL и , а также . Конвертер USB-RS232TTL позволяет при помощи порта USB создать COM-порт, отличающийся от "настоящего" лишь тем, что на его входах и выходах используются логические уровни TTL, то есть напряжение в интервале от 0 до 5 вольт (подробнее можно почитать в статье " "). Такой конвертер в любом случае полезно иметь в "хозяйстве", так что если у вас его еще нет, непременно стоит приобрести. Что касается логических уровней, то в нашем случае TTL - это даже преимущество перед обычным COM-портом, потому что входы и выходы такого порта можно напрямую подключать к любому микроконтроллеру, питающемуся от напряжения 5 В, в том числе ATtiny и ATmega. Но не пытайтесь использовать обычный COM-порт - там используются напряжения в интервале от -12 до +12 В (либо -15...+15В). Непосредственное соединение с микроконтроллером в этом случае недопустимо!!!

Идея создания скрипта для программы "Перпетуум М", реализующего функции программатора, возникла после ознакомления с рядом публикаций в интернете, предлагающих те или иные решения по прошивке МК. В каждом случае обнаруживались серьезные недостатки или чрезмерные сложности. Часто попадались схемы программаторов, содержащие в себе микроконтроллер и при этом вполне серьезно давались советы типа: "... а чтобы запрограммировать микроконтроллер для этого программатора нам потребуется... правильно - другой программатор!". Далее предлагалось сходить к другу, поискать платную услугу и т.п. Качество программного обеспечения, распространяемого в сети для этих целей, также не впечатлило - замечено множество проблем как с функциональностью, так и с "мутностью" пользовательского интерфейса. Зачастую много времени нужно потратить, чтобы понять, как использовать программу - ее необходимо изучать даже ради осуществления простейших действий. Иная программа может долго и усердно что-то делать, но о том, что ничего в МК не записывается, пользователь узнает только после полного завершения всей прошивки и последующего контрольного считывания. Встречается и такая проблема: пользователь пытается выбрать из списка поддерживаемых кристаллов свой МК, а его в списке нет. В этом случае воспользоваться программой не удастся - внесение в список недостающих МК, как правило, не предусмотрено. Кроме того ручной выбор контроллера из списка выглядит странно, если учесть, что программатор во многих случаях может сам определить тип МК. Все это сказано не для того, чтобы облить грязью существующие продукты, а для того, чтобы объяснить причину появления скрипта к программе "Перпетуум М", описываемого в данной статье. Проблема действительно существует, и она касается в первую очередь новичков, которым не всегда удается преодолеть данную "стену", чтобы сделать свой первый шаг в мир микроконтроллеров. В предлагаемом скрипте учтены недостатки, обнаруженные в других программах. Реализована максимальная "прозрачность" работы алгоритма, предельно простой интерфейс пользователя, не требующий изучения и не оставляющий шанса запутаться и "не туда нажать". При отсутствии нужного МК среди поддерживаемых есть возможность самостоятельно добавить его описание, взяв нужные данные из документации, скачанной с сайта разработчика МК. И, самое главное - скрипт открыт для изучения и модификации. Каждый желающий может, открыв в текстовом редакторе, изучать и править его на свое усмотрение, изменяя на свой вкус существующие функции и добавляя недостающие.

Первая версия скрипта была создана в июне 2015 года. В этой версии реализована только поддержка Atmel"овских МК серий ATtiny и ATmega с функциями записи/чтения флэш-памяти, с настройкой конфигурационных бит, с автоматическим определением типа контроллера. Запись и чтение EEPROM не реализованы. Были планы дополнить функциональность скрипта: добавить запись и чтение EEPROM, реализовать поддержку PIC-контроллеров и т.д. По этой причине скрипт до сих пор не был опубликован. Но из-за нехватки времени осуществление задуманного затянулось, и, чтобы лучшее не становилось врагом хорошего, решено опубликовать имеющуюся версию. Если уже реализованных функций окажется недостаточно, прошу не огорчаться. В этом случае вы можете попробовать самостоятельно добавить нужную функцию. Не стану скрывать: идея создания данного скрипта изначально несет в себе еще и образовательный смысл. Разобравшись в алгоритме и добавив к нему что-то свое, вы сможете глубже понять работу МК в режиме программирования, чтобы в будущем не оказаться в положении девушки перед сломавшимся автомоблем, задумчиво разглядывающей его внутренности и не понимающей, почему "не едет".

2. Интерфейс МК в режиме программирования

Существует несколько различных способов перевести контроллер в режим программирования и работать с ним в этом режиме. Самым простым в реализации для контроллеров серий ATtiny и ATmega является, пожалуй, SPI. Им и воспользуемся.

Но, прежде чем приступить к рассмотрению сигналов, необходимых для формирования SPI, сделаем ряд оговорок. Микроконтроллер имеет конфигурационные биты. Это что-то вроде тумблеров, переключение которых позволяет менять некоторые свойства микросхемы в соответствии с нуждами проекта. Физически это ячейки энергонезависимой памяти, вроде тех, в которые записывается программа. Разница в том, что их очень мало (до трех байт для ATmega), и они не входят в адресное пространство какой-либо памяти. Запись и чтение конфигурационных данных выполняется отдельными командами режима программирования МК. Сейчас важно отметить, что некоторые конфигурационные биты влияют на саму возможность использования SPI. При некоторых их значениях может оказаться, что SPI нельзя будет использовать. Если вам попадется такой микроконтроллер, то метод, предлагаемый в данной статье, не поможет. В этом случае придется либо изменить настройки конфигурационных бит в программаторе, который поддерживает иной режим программирования, либо использовать другой микроконтроллер. Но данная проблема касается только бывших в употреблении МК, либо тех, с которыми уже кто-то неудачно "поигрался". Дело в том, что новые МК поставляются с настройками конфигурационных бит, не препятствующими использованию SPI. Это подтверждается и результатами испытаний скрипта-программатора для программы "Перпетуум М", во время которых были успешно прошиты четыре разных МК (ATmega8, ATmega128, ATtiny13, ATtiny44). Все они были новые. Начальная настройка конфигурационных бит соответствовала документации и не мешала использованию SPI.

Учитывая сказанное выше, следует обращать внимание на следующие биты. Бит SPIEN в явном виде разрешает или запрещает использование SPI, следовательно в нашем случае его значение должно быть разрешающим. Бит RSTDISBL способен превратить один из выводов микросхемы (заранее предопределенный) во вход сигнала "сброс", либо не превратить (в зависимости от записанного в этот бит значения). В нашем случае вход "сброс" необходим (при его отсутствии не получится перевести МК в режим программирования через SPI). Есть еще биты группы CKSEL, задающие источник тактового сигнала. Они не препятствуют использованию SPI, но их тоже необходимо иметь в виду, потому что при полном отсутствии тактовых импульсов, либо при их частоте ниже допустимой для заданной скорости SPI, также ничего хорошего не получится. Обычно у новых МК, имеющих внутренний RC-генератор, биты группы CKSEL настроены на его использование. Нас это вполне устраивает - тактирование обеспечено без каких-либо дополнительных усилий с нашей стороны. Ни кварцевый резонатор припаивать, ни внешний генератор подключать не нужно. Если же указанные биты содержат иную настройку, придется позаботится о тактировании в соответствии с настройкой. В этом случае может потребоваться подключение к МК кварцевого резонатора или внешнего тактового генератора. Но в рамках данной статьи мы не будем рассматривать, как это делается. Примеры подключения МК для программирования, содержащиеся в данной статье, рассчитаны на самый простой случай.

Рис. 1. Обмен данными по SPI в режиме программирования

Теперь обратимся к рисунку 1, взятому из документации на МК ATmega128A. На нем показан процесс передачи одного байта в МК и одновременного приема одного байта из МК. Оба эти процесса, как видим, используют одни и те же тактовые импульсы, поступающие от программатора в микроконтроллер на его вход SCK - один из выводов микросхемы, для которого в режиме программирования по SPI отведена такая роль. Еще две сигнальные линии обеспечивают прием и передачу данных по одному биту за такт. Через вход MOSI данные поступают в микроконтроллер, а с выхода MISO снимаются считываемые данные. Обратите внимание на две пунктирные линии, проведенные от SCK к MISO и MOSI. Они показывают, в какой момент микроконтроллер "проглатывает" выставленный на входе MOSI бит данных, и в какой момент сам выставляет на выход MISO свой бит данных. Все достаточно просто. Но чтобы ввести МК в режим программирования нам еще потребуется сигнал RESET. Не забудем также про общий провод GND и питание VCC. В общей сложности выходит, что к микроконтроллеру для его прошивки по SPI нужно подключить всего 6 проводков. Ниже разберем это подробнее, а пока добавим, что обмен данными с МК в режиме программирования по SPI выполняется пакетами по 4 байта. Первый байт каждого пакета в основном полностью отводится под кодирование команды. Второй байт в зависимости от первого может быть продолжением кода команды, либо частью адреса, а может иметь произвольное значение. Третий байт используется в основном для передачи адресов, но во многих командах может иметь произвольное значение. Четвертый байт обычно передает данные, либо имеет произвольное значение. Одновременно с передачей четвертого байта в некоторых командах принимаются данные, поступающие из МК. Подробности по каждой команде можно найти в документации на контроллер в таблице под названием "SPI Serial Programming Instruction Set". Пока отметим лишь, что весь обмен с контроллером построен из последовательности 32-битных пакетов, в каждом из которых передается не более одного байта полезной информации. Это не очень оптимально, но в целом работает неплохо.

3. Подключение МК для программирования

Чтобы обеспечить подачу на входы микроконтроллера всех необходимых сигналов для организации интерфейса SPI и чтение данных с его выхода MISO, не обязательно создавать программатор. Это легко осуществить при помощи самого обыкновенного конвертера USB-RS232TTL.

В интернете часто можно встретить информацию о том, что такие конвертеры неполноценны, что с ними ничего серьезного сделать нельзя. Но в отношении большинства моделей конвертеров такое мнение ошибочно. Да, существуют в продаже конвертеры, у которых доступны не все входы и выходы по сравнению со стандартным COM-портом (например, только TXD и RXD), имеющие при этом неразборную конструкцию (микросхема залита пластмассой - невозможно добраться до ее выводов). Но такие и покупать не стоит. В некоторых случаях получить недостающие входы и выходы порта можно, подпаяв проводки непосредственно к микросхеме. Пример такого "усовершенствованного" конвертера показан на рисунке 2 (микросхема PL-2303 - подробнее о назначении ее выводов в статье " "). Это одна из самых дешевых моделей, но обладающая своими преимуществами при использовании в самодельных конструкциях. Широко распространены и полнофункциональные шнуры-переходники со стандартным девятиконтактным разъемом на конце, как у COM-порта. От обычного COM-порта они отличаются только уровнями TTL и несовместимостью с устаревшим программным обеспечением и некоторым старым оборудованием. Можно еще отметить, что шнуры на микросхеме CH34x на различных экстремальных тестах показывают себя гораздо более надежными и стабильными по сравнению с преобразователями на PL-2303. Впрочем, при обычном использовании разница не заметна.

При выборе конвертера USB-RS232TTL следует также обращать внимание на совместимость его драйвера с версией используемой операционной системы.

Рассмотрим подробнее принцип соединения микроконтроллера и конвертера USB-RS232TTL на примере четырех разных моделей МК: ATtiny13, ATtiny44, ATmega8 и ATmega128. На рисунке 3 показана общая схема такого соединения. Вас может удивить, что сигналы RS232 (RTS, TXD, DTR и CTS) используются не по назначению. Но не стоит об этом беспокоиться: программа "Перпетуум М" способна работать с ними напрямую - устанавливать значения на выходах и читать состояния входа. Во всяком случае широко распространенные конвертеры USB-RS232TTL на микросхемах CH34x и PL-2303 такую возможность обеспечивают - это проверено. С другими популярными конвертерами также проблем быть не должно, так как для доступа к порту используются стандартные функции Windows.

Резисторы, показанные на общей схеме, в принципе можно не устанавливать, но все-таки лучше установить. Каково их назначение? Используя ТТЛ"овские входы и выходы конвертера и пятивольтное питание микроконтроллера, мы тем самым избавляемся от необходимости согласования логических уровней - все и так вполне корректно. Значит, соединения могут быть непосредственными. Но во время экспериментов бывает всякое. Например по закону подлости отвертка может упасть как раз в то место, куда она никак не могла бы упасть, и замкнуть то, что ни в коем случае нельзя замыкать. В роли "отвертки", конечно, может оказаться все, что угодно. Резисторы в этом случае иногда уменьшают последствия. Еще одно их назначение состоит в устранении возможного конфликта выходов. Дело в том, что по окончании программирования микроконтроллер переходит в обычный режим работы, и может так получиться, что его вывод, соединенный с выходом конвертера (RTS, TXD или DTR) тоже становится выходом, согласно только что записанной в МК программе. В этом случае будет очень нехорошо, если два напрямую соединенных выхода будут "бороться" - пытаться установить разные логические уровни. В такой "борьбе" кто-то может и "проиграть", а нам этого не надо.

Номиналы трех резисторов выбраны на уровне 4,3 КОм. Это касается соединений выход конвертера - вход микроконтроллера. Точность резисторов роли не играет: можно уменьшить их сопротивление до 1 КОм или увеличить до 10 КОм (но во втором случае увеличивается риск помех при использовании длинных проводов на пути к МК). Что же касается соединения вход конвертера (CTS) - выход микроконтроллера (MISO), то здесь применен резистор сопротивлением 100 Ом. Это объясняется особенностями входа использованного конвертера. Во время испытаний был использован конвертер на микросхеме PL-2303, входы которой, судя по всему, подтянуты к плюсу питания относительно низким сопротивлением (порядка нескольких сот Ом). Чтобы "перебить подтяжку" пришлось поставить резистор со столь маленьким сопротивлением. Впрочем, можно его вообще не ставить. На конвертере это всегда вход. Выходом он стать не может, а значит, конфликта выходов не будет при любом развитии событий.

Если микросхема имеет отдельный вывод AVCC для питания аналогово-цифрового преобразователя (например, ATmega8 или ATmega128), его следует соединить с выводом общего питания VCC. Некоторые микросхемы имеют более одного вывода питания VCC или более одного GND. Например, ATmega128 имеет 3 вывода GND и 2 вывода VCC. В постоянной конструкции одноименные выводы лучше соединить между собой. В нашем же случае на время программирования можно задействовать по одному выводу VCC и GND.

А вот как выглядит подключение ATtiny13. На рисунке показано назначение выводов, используемых при программировании через SPI. Рядом на фото - как временное подключение выглядит в реальности.


Кто-то может сказать, что это несерьезно - соединения на проводках. Но мы же с вами люди здравомыслящие. Наша цель состоит в том, чтобы запрограммировать микроконтроллер, затратив на это минимум времени и прочих ресурсов, а не в том, чтобы перед кем-то покрасоваться. Качество при этом не страдает. Метод "на проводках" в данном случае вполне эффективен и оправдан. Прошивка контроллера - процедура разовая, поэтому нет смысла обвешивать ее "стразиками". Если же предполагается менять прошивку в дальнейшем, не извлекая контроллер из схемы (в готовом изделии), то это учитывается в монтаже при изготовлении устройства. Обычно для этой цели устанавливается разъем (RESET, SCK, MOSI, MISO, GND), а МК может быть прошит даже после установки на плату. Но это уже творческие изыски. Мы же рассматриваем самый простой случай.

Теперь перейдем к МК ATtiny44. Здесь все примерно так же. По рисунку и фото даже новичку не составит труда разобраться с подключением. Подобно ATtiny44 можно подключать МК ATtiny24 и ATtiny84 - назначение выводов у этой троицы совпадает.


Еще один пример временного подключения контроллера для его программирования - ATmega8. Здесь выводов побольше, но принцип тот же - несколько проводков, и вот уже контроллер готов к "заливке" в него информации. Лишний черный провод на фото, идущий от вывода 13, в программировании участия не принимает. Он предназначен для снятия с него звукового сигнала после выхода МК из режима программирования. Это связано с тем, что во время отладки скрипта для "Перпетуум М" в МК закачивалась программа музыкальной шкатулки.


Часто один контроллер выпускается в разных корпусах. При этом назначение выводов для каждого корпуса распределено по-своему. Если корпус вашего контроллера не похож на тот, что изображен на рисунке, уточните назначение выводов по технической документации, скачать которую можно с сайта разработчика МК.

Для полноты картины посмотрим подключение микросхемы МК с большим числом "ножек". Назначение лишнего черного провода на фото, идущего от вывода 15, точно такое же, как в случае с ATmega8.


Вероятно, вы уже убедились, что все достаточно просто. Кто умеет считать выводы у микросхем (от метки по кругу против часовой стрелки), тот разберется. И не забывайте про аккуратность. Микросхемы любят аккуратных и не прощают небрежного к себе отношения.

Прежде чем переходить к программной части, убедитесь, что драйвер конвертера USB-RS232TTL корректно установлен (проверьте диспетчер устройств Windows). Запомните или запишите номер виртуального COM-порта, появляющегося при подключении конвертера. Этот номер нужно будет вписать в текст скрипта, о котором читайте ниже.

4. Скрипт - программатор для "Перпетуум М"

С аппаратной частью "программатора" разобрались. Это уже полдела. Теперь осталось разобраться с программной частью. Ее роль будет выполнять программа "Перпетуум М" под управлением скрипта, в котором и реализованы все необходимые функции по взаимодействию с микроконтроллером.

Архив со скриптом следует распаковать в ту же папку, где находится программа perpetuum.exe. В этом случае при запуске файла perpetuum.exe на экран будет выводиться меню со списком установленных скриптов, среди которых будет строка "Программатор МК AVR" (она может быть единственной). Именно эта строка нам и потребуется.

Скрипт находится в папке PMS в файле "Программатор МК AVR.pms". Этот файл можно просматривать, изучать и править при необходимости в обычном текстовом редакторе вроде "Блокнота" Windows. Перед использованием скрипта скорее всего потребуется внести изменения в текст, связанные с настройкой порта. Для этого уточните в диспетчере устройств Windows имя используемого порта и, при необходимости, внесите соответствующую поправку в строку "ИмяПорта="COM4";" - вместо цифры 4 может стоять другая цифра. Также при использовании другой модели конвертера USB-RS232TTL может потребоваться изменение настроек инвертирования сигналов (строки скрипта, начинающиеся со слова "Высокий"). Проверить инвертирование сигналов конвертером USB-RS232TTL можно с помощью одного из примеров, содержащегося в инструкции к программе "Перпетуум М" (раздел функций для работы с портом).

Во вложенной папке MK_AVR находятся файлы с описаниями поддерживаемых контроллеров. Если нужного контроллера среди них не окажется, вы можете добавить нужный самостоятельно, действуя по аналогии. Возьмите за образец один из файлов, и при помощи текстового редактора введите необходимые данные, взяв их из документации на свой микроконтроллер. Главное - будьте внимательны, вводите данные без ошибок, иначе МК не запрограммируется, или запрограммируется неправильно. В исходной версии поддерживаются 6 микроконтроллеров: ATtiny13, ATtiny24, ATtiny44, ATtiny84, ATmega8 и ATmega128. В скрипте реализовано автоматическое распознавание подключенного контроллера - вручную указывать не нужно. При отсутствии считанного из МК идентификатора среди имеющихся описаний, выдается сообщение, что распознать контроллер не удалось.

В архиве со скриптом содержится также дополнительная информация. В папке "inc-файлы контроллеров AVR" находится очень полезная и обширная коллекция файлов описаний контроллеров. Эти файлы используются при написании собственных программ для МК. Еще четыре папки "MusicBox_..." содержат файлы с программой на Ассемблере и готовой к закачке в МК прошивкой отдельно для ATtiny13, ATtiny44, ATmega8 и ATmega128. Если вы уже подключили один из этих МК для программирования, как это предложено в данной статье, то можете прямо сейчас его прошить - получится музыкальная шкатулка. Об этом ниже.

При выборе в меню скриптов строчки "Программатор МК AVR", скрипт начинает исполняться. При этом он открывает порт, посылает в МК команду перехода в режим программирования, принимает подтверждение от МК об успешном переходе, запрашивает идентификатор МК и отыскивает описание данного МК по его идентификатору среди имеющихся файлов с описаниями. Если не находит нужного описания, выдает соответствеющее сообщение. Если же описание найдено, далее открывается главное меню программатора. Его скриншот вы можете видеть на рисунке 8. Далее разобраться не сложно - меню очень простое.

В первой версии скрипта некоторые функции полноценного программатора не реализованы. Например, нет возможности читать и писать в EEPROM. Но если вы откроете скрипт в текстовом редакторе, то увидите, что он имеет очень небольшой размер при том, что основное в нем уже реализовано. Это говорит о том, что добавить недостающие функции не так уж и сложно - язык очень гибкий, он позволяет в небольшой программе реализовать богатую функциональность. Но для большинства случаев хватит даже имеющихся функций.

Некоторые ограничения функциональности описаны непосредственно в тексте скрипта:
//реализована запись только с нулевого адреса (Extended Segment Address Record игнорируется, LOAD OFFSET - тоже)
//порядок и непрерывность следования записей в HEX-файле не проверяется
//контрольная сумма не проверяется
Это касается работы с HEX-файлом, из которого берется код прошивки для МК. Если этот файл не искажен, проверка контрольной суммы ни на что не повлияет. Если искажен - средствами скрипта это выявить не удастся. Остальные ограничения в большинстве случаев не помешают, но иметь в виду их все-таки нужно.

5. Музыкальная шкатулка - простая поделка для начинающих

Если у вас есть один из этих микроконтроллеров: ATtiny13, ATtiny44, ATmega8 или ATmega128, вы можете легко превратить его в музыкальную шкатулку или музыкальную открытку. Для этого достаточно записать в МК соответствующую прошивку - одну из тех четырех, которые размещены в папках "MusicBox_..." в одном архиве со скриптом. Коды прошивок хранятся в файлах с расширением ".hex". Использовать ATmega128 для такой поделки, конечно, "жирновато", как и ATmega8. Но это может быть полезно для тестирования или экспериментов, иначе говоря - в учебных целях. Тексты программ на Ассемблере также прилагаются. Программы создавались не с нуля - за основу была взята программа музыкальной шкатулки из книги А.В.Белова "Микроконтроллеры AVR в радиолюбительской практике". Исходная программа претерпела ряд существенных изменений:
1. адаптирована для каждого из четырех МК: ATtiny13, ATtiny44, ATmega8 и ATmega128
2. ликвидированы кнопки - к контроллеру вообще ничего не нужно подключать, кроме питания и звукоизлучателя (мелодии воспроизводятся одна за другой в бесконечном цикле)
3. длительность каждой ноты уменьшена на длительность паузы между нотами для устранения нарушения музыкального ритма
4. подключена восьмая мелодия, незадействованная в книжной версии
5. из субъективного: некоторые "улучшайзинги" для оптимизации и более легкого восприятия алгоритма

В некоторых мелодиях слышится фальшь и даже грубые ошибки, особенно в "Улыбке" - в середине. Коды мелодий взяты из книги (а точнее - скачаны с сайта автора книги вместе с исходным asm-файлом) и не подвергались изменениям. Судя по всему, в кодировке мелодий имеются ошибки. Но это не проблема - кто "дружит" с музыкой, без труда во всем разберется и исправит.

В ATtiny13 из-за отсутствия 16-битного счетчика для воспроизведения нот пришлось использовать 8-битный, что привело к некоторому снижению точности звучания нот. Но на слух это мало заметно.

Насчет конфигурационных бит. Их настройка должна соответствовать состоянию нового микроконтроллера. Если ваш МК ранее где-то использовался, нужно проверить состояние его конфигурационных бит, и, при необходимости, привести их в соответствие настройкам нового микроконтроллера. Узнать состояние конфигурационных бит нового микроконтроллера можно из документации на этот МК (раздел "Fuse Bits"). Исключение составляет ATmega128. У этого МК имеется бит M103C, который включает режим совместимости с более старым ATmega103. Активизация бита M103C сильно урезает возможности ATmega128, причем у нового МК этот бит активен. Нужно сбросить M103C в неактивное состояние. Для манипуляций с конфигурационными битами используйте соответствующий раздел меню скрипта-программатора.

Схему музыкальной шкатулки приводить нет смысла: в ней только микроконтроллер, питание и пьезозвукоизлучатель. Питание подается точно так же, как мы это проделали при программировании МК. Звукоизлучатель подключается между общим проводом (вывод GND контроллера) и одним из выводов МК, номер которого можно посмотреть в файле с ассемблерным кодом программы (*.asm). В начале текста программы для каждого МК в комментариях имеется строчка: "звуковой сигнал формируется на выводе ХХ". При завершении работы скрипта - программатора микроконтроллер выходит из режима программирования и переходит в обычный режим работы. Сразу же начинается воспроизведение мелодий. Подключив звукоизлучатель, можно это проверить. Оставлять звукоизлучатель подключенным во время программирования кристалла можно только в том случае, если звук снимается с вывода, не задействованного в SPI, иначе дополнительная емкость на выводе может помешать программированию.



Запаивая еще одну микросхему на очередную плату или перерезая дорожку на плате в десятый раз для внесения очередных (но не последних) изменений в новое устройство, вы начинаете подумывать: «А не бросить мне это нудное занятие?!» Ваше новое устройство получается не таким, как вам бы хотелось, но и изменять схему и переделывать всё на плате вам уже надоело.
Перелистывая журналы по электронике, вы всё чаще встречаете слова: процессор, микроконтроллер, прошивка, программирование. Но эти слова для вас не имеют конкретного значения. Вы где-то слышали, а может даже и держали в руках то, о чем вы даже думаете с благоговейным трепетом… микроконтроллеры! То, что уменьшает размеры устройств, наделяя их недостижимыми для вас возможностями…Нет, вам, как электронщику, понятны общие идеи работы этих устройств, но об их практическом применении в своих изделиях не может быть и речи! Вы уже несколько раз пытались освоить микроконтроллеры, даже приобрели пару книг из серии «… для чайников» и скачали из интернета несколько популярных самоучителей. Проходило какое-то время, и всё останавливалось на самом интересном месте: схемы, показанные в книгах, вам были понятны, но вот методы создания программы для вас так и остались загадкой. Набрать несколько символов на английском (или каком-то там) языке в указанной книгой программе для вас не проблема. Но не ясна СУТЬ и МЕТОДЫ использования этих загадочных символов, последовательность которых в книге называли программой. Вы винили себя в тупости и откладывали идею освоения микроконтроллеров в дальний ящик. Да и зачем? Вы и так прекрасно справляетесь: у вас есть много-много микросхем, на которых вы разрабатываете свои устройства… Устройства на больших платах, которые вы долго-долго отлаживаете и переделываете…
Но знакомитесь с парнишкой из соседнего дома: он пишет программы, загружает их в микроконтроллер и то, что вам приходится отлаживать месяцами, он делает за несколько дней. Вы в панике, начинаете искать заброшенные книжки, и вспоминать всё ранее прочитанное… Он может, а вы – нет. Вы поближе знакомитесь с этим парнишкой, и под видом стороннего разговора начинаете расспрашивать его о микроконтроллерах и их возможностях. И он спокойно говорит о том, что контроллеры для него хобби. Вы просите его рассказать вам об их устройстве. Его ответы просты и незатейливы.

Микроконтроллеры. Что такое микроконтроллер?
Микроконтроллер - это маленький специализированный компьютер, по-русски микро-ЭВМ. Причем, эта микро-ЭВМ выполнена в одной микросхеме, на одном кристалле. Отсюда и полное название: «однокристальная микро-ЭВМ». Как и компьютер, микроконтроллер - это электронное устройство, работой которого управляет программа - последовательность команд, заранее загруженная в память. Эти команды выполняет процессор: этакий «мега-мозг», имеющий в своем составе АЛУ - арифметически-логическое устройство. Т.е, процессор «умеет» выполнять математические действия и производить логические операции над данными.

Разрядность процессора. Методы представления информации.
И процессор, и память - цифровые устройства, которые «понимают» сигналы только двух уровней: есть напряжение/ток, и нет напряжения/тока на линии. Эти два состояния принято записывать так: логическая единица - «1», и логический ноль - «0». Команды и данные - это набор единичек и нулей. Одна линия (называют разрядом) при двух её состояниях может передать только два значения. Но при увеличении количества разрядов увеличивается и количество значений: два разряда - уже четыре, а восемь разрядов - уже 256 значений. Разряд принято называть битом: один разряд это один бит. А набор из восьми разрядов - байтом: восемь бит это один байт. Но один байт имеет только 256 значений. Для передачи большего количества информации используется несколько, последовательно расположенных в памяти, байт. Два байта передают уже 65536 значений. Три байта - 16777216 значений! И так далее. Самыми распространенными являются процессоры, которые за одно действие могут обработать восемь разрядов, поэтому такие процессоры и называют восьмиразрядными.

Система команд процессора.
При разработке процессора в него закладывают возможность выполнения определенных команд. Команды, которые данный процессор в состоянии выполнять, называют набором команд. Что это за команды? Самые распространенные арифметические и логические команды, а также команды работы с портами - линиями связи процессора с внешним миром. Процессор, считав значение из ячейки памяти или состояние порта в собственную память - регистр, может произвести над ним математические или логические действия. Математически действия нам понятны: сложение, вычитание и другие. Под логическими действиями понимаются такие действия: сравнение - больше, меньше, равно; работа над разрядами ячейки памяти или регистра: обнуление или его установка, а также операции сдвига разрядов влево или вправо.

Память и её типы.
Данные могут быть считаны из памяти. Память - место, где какое-то время могут храниться программа и/или данные. Они могут храниться кратковременно - до отключения питания, или долговременно - независимо от наличия напряжения питания. Память первого типа используется для хранения промежуточных данных, используемых при выполнении различных операций. Поэтому её так и называют - «оперативная память». Память второго типа чаще используется для хранения программы. Типов долговременной памяти несколько: однократно программируемая память, память с электрическим стиранием и память, стираемая ультрафиолетовым или рентгеновским излучением. Физическое устройство и принцип работы памяти может быть разным, но суть одна: хранить данные. Для описания хранилища данных используют понятие «ячейка». Следовательно, чем больше ячеек, тем больше данных может быть сохранено. У каждой из ячеек имеется индивидуальный адрес. Процессор обращается к значению ячейки памяти именно по её адресу.

Порты. Режимы работы портов.
Данные так же могут быть получены из внешних устройств через линии связи - выводы микроконтроллера. Эти линии связи называют портами, а по-научному: устройства ввода и вывода данных. Выводы порта могут быть входами, с использованием которых процессор получает информацию извне от разных датчиков, или быть выходами, подавая сигналы на которые можно управлять внешними устройствами. В современных микроконтроллерах выводы практически всех портов двунаправленные, т.е., могут быть и входами, и выходами. Универсальные порты необходимо настраивать - установить режим работы на ввод или вывод. Для этого имеется специальная ячейка в памяти - регистр управления режимами работы порта. Например, для того, чтобы сделать входом необходимый вывод (разряд) порта, в разряд регистра управления записывают 1 или 0, в зависимости от модели микроконтроллера.

Периферийные устройства.
Но микроконтроллер содержит в своем составе не только процессор и память. Основную роль играют так называемые периферийные устройства: таймеры, счетчики, аналоговые компараторы, цифро-аналоговые и аналогово-цифровые преобразователи, устройства последовательного обмена информацией (часто их называют последовательным портом). Часто микроконтроллер имеет и некоторое количество ячеек энергонезависимой памяти (чаще всего Flash), в которой могут быть сохранены различные данные.

Семейства микроконтроллеров.
Наличие всех перечисленных устройств в составе микроконтроллера необязательно. Чаще всего производитель выпускает несколько моделей изделий, имеющих в своем составе различные периферийные устройства. Микроконтроллеры с одним типом процессора (и набором исполняемых машинных кодов), но различными периферийными устройствами, относят к одному семейству. Так и говорят: микроконтроллеры семейства ATtiny.

Многофункциональность выводов микроконтроллера.
Может возникнуть вопрос: как все эти устройства «общаются» с внешним миром, если у большинства микросхем в корпусе DIP не более 40 выводов? Для решения проблемы нехватки выводов используют метод объединения функций нескольких устройств с использованием одного вывода. Например, выводы одного из портов (8 разрядов – 8 выводов) также используется и для работы аналогово-цифрового преобразователя, а выводы другого порта - как входы аналоговых компараторов, последовательного порта или для подключения других встроенных узлов. Для управления режимами работы выводов используется специальный регистр управления режимами работы порта (о нем рассказывалось ранее, при объяснении принципов работы портов). В большинстве микроконтроллеров выводы имеют несколько функций. Если обратиться к технической документации на контроллер, то при описании функции вывода будет сделано замечание об основной и об альтернативной функции данного вывода. Например: PD0/RX - нулевой разряд порта D одновременно является и входом последовательного порта, PB1/Ain0 - первый разряд порта В одновременно является входом аналогового компаратора.

Алгоритмы. Программы.
Команды для процессора даются в определенном порядке, в соответствии с ранее разработанным алгоритмом. Алгоритм - это последовательность выполнения процессором. Причем команды должна быть понятна процессору, и при этом иметь однозначное толкование, без какой-либо самостоятельности при её выполнении. Алгоритм можно записывать словесно. Например: начало программы; сделать нулевой разряд порта входом; сделать седьмой разряд порта выходом; считать значение нулевого разряда порта; если он равен логической единице, то выполнить следующие действия: загрузить в седьмой разряд порта логическую единицу; вернуться к началу программы. Так мы описали алгоритм работы схемы, состоящей из выключателя, лампочки (или другой нагрузки) и источника питания. Результат выполнения будет таков: при нажатии кнопки на вход порта поступает напряжение, процессор выполняет программу - подает на выход порта напряжение. И пока контакты буду замкнуты, на выходе порта будет напряжение.
Но такое написание весьма сложно воспринимать. Поэтому были разработаны методы графического описания алгоритма. Вот пример графической записи вышеописанного алгоритма.
Рис. Алгоритм-1. Графический метод описания алгоритма

Команды ветвления: условный и безусловный переходы.
К особым командам процессора относятся команды условного и безусловного перехода. Для того чтобы понять это, необходимо объяснить такое понятие как «указатель адреса выполняемой команды». У процессора имеется специальный регистр, в котором хранится адрес выполняемой в текущий момент команды. При подаче питания этот регистр обнуляется - в него записывается ноль. Далее процессор начинает выполнять команды, хранящиеся в памяти, начиная с нулевого адреса - ведь в регистре указателя адреса выполняемой команды указан ноль. Выполнив команду, этот указатель инкриминируется, т.е., его значение увеличивается. Процессор считывает следующую команду из памяти по адресу, указанную в указателе. Т.е, команды выполняются последовательно. Нарушить последовательность выполнения программы можно, используя команды условного и безусловного переходов. Для этого в одной из ячеек памяти хранится команда, указывающая процессору изменить значение регистра указателя адреса выполняемой команды. Команда безусловного перехода указывает процессору изменить порядок последовательно выполнения программы и начать выполнять команды, хранящиеся в памяти, начиная с ранее указанного адреса.
Команда условного перехода сложнее: при ее выполнении проверяется выполнения какого-либо условия. Например, необходимо сравнить значение двух ячеек памяти. Если значение первой ячейки больше, то продолжить выполнение программы по адресу А, иначе (т.е., значение первой ячейки меньше) - перейти по адресу С.

Прерывания и их типы. Приоритеты прерываний.
Имеется еще один способ «заставить» процессор прекратить последовательное исполнение программы и перейти к выполнению программы по определенному адресу - вызвать «прерывание». Понятие прерывание появилось вместе с первыми процессорами. Всё дело в том, что процессор управляет менее скоростными, чем он, устройствами. Например, процессор должен обрабатывать данные до появления определенного сигнала. Приведем простой пример: процессор выполняет программу подсчета количества импульсов, поступивших на один из его портов. При нажатии кнопки процессор должен прервать выполнение этой программы и выполнить другую программу: включить какое-либо устройство (т.е., подать на один из разрядов порта логическую единицу - «1»). Как решить эту задачу? Можно в самой программе постоянно опрашивать необходимый разряд порта, к которому подключена кнопка. Но при этом часть ресурсов (скорости) процессора будет практически впустую тратиться на опрос порта. Второй способ - это использование прерываний. У процессора (следовательно, и у микроконтроллера) имеется специальный вывод. Обычно его обозначают как «Int» (англ. «Interrupt» - прерывание). При подаче сигнала на вывод «Int» происходят следующие действия:
- остановка выполнения основной программы,
- в оперативной памяти сохраняется значение регистра указателя адреса выполняемой команды (место прерывания выполнения программы),
- после чего в этот же регистр загружается новый адрес (зависит от желания производителя процессора),
- в ячейке памяти с указанным адресом расположена команда безусловного перехода: «перейти по адресу хх»,
- в памяти, начиная с ячейки с адресом хх, расположена еще одна программа, назовем ее служебной программой.

В нашем случае служебная программа должна выдать в порт логическую единицу, тем самым включив необходимое устройство. А вот тут начинается самое интересное: последней командой служебной программы является команда «выход из прерывания». Получив эту команду, процессор считывает из памяти ранее сохраненное значение регистра указателя адреса выполняемой команды и загружает его в этот регистр. Следовательно, процессор продолжает выполнение основной программы с прерванного места.
Но прерывание может быть вызвано не только внешними сигналами, но и внутренними устройствами самого микроконтроллера: таймерами, счетчиками, последовательными портами и даже энергонезависимой памятью. Опять-таки, делается это в основном для того, чтобы уменьшить количество выполняемых команд по анализу состояния этих периферийных устройств. Приведем пример: процесс записи данных в энергонезависимую память весьма длителен, за это время процессор может выполнить весьма большое количество команд. Поэтому процессор выполняет основную программу, в ней выдает команду на стирание энергонезависимой памяти, после чего продолжает выполнение основной программы. Как только очистка энергонезависимой памяти завершена схемы управления формируют сигнал прерывания от этой памяти. Процессор прерывает выполнение основной программы и начинается процесс записи данных в память. Данный способ выполнения какого-либо действия вне основной программы называют фоновым режимом. Так же часто говорят: «эта часть программы выполняется в фоновом режиме».
При работе с прерываниями необходимо быть осторожным: возможна ситуация, при которой выполнение программы и работа всего устройства может быть нарушена. Дело в том, что микроконтроллер имеет несколько прерываний. Для управления режимами работы прерываний имеется регистр управления прерываниями. Вы при настройке режимов работы прерываний вы разрешили работу нескольких прерываний - это нормальная ситуация. Но, получив внешний или внутренний сигнал прерывания основной программы и перейдя к выполнению программы обработки прерывания, вы не отключили прерывания. Процессор выполняет служебную программу и в этот момент он получает еще один сигнал прерывания. Процессор прерывает выполнение служебной программы и переходит к выполнению программы обработки нового прерывания. Несложно догадаться, к чему это может привести.
Для решения этой проблемы был разработан метод присвоения каждому из прерываний степени важности, или «приоритета прерывания». В зависимости от модели микроконтроллера приоритет прерываний может быть задан жестко (а программист лишь разрешает или запрещает обработку того или оного прерывания), или быть реализован программистов программно (т.е., приоритет прерывания зависит от предпочтений программиста и алгоритма реализации конкретной задачи).

Управляем процессором. Языки программирования. Трансляторы.
Машинные коды. Ассемблер.
Команды для процессора - последовательности единиц и нулей. Часто команды процессора называют машинными кодами, подчеркивая, что данные команды изначально рассчитаны на конкретного исполнителя - машину, но не человека. Запоминать команды из цифр (машинные коды) весьма сложно. Поэтому для упрощения работы был придуман способ замены цифровых последовательностей на более понятные человеку символьные сокращения. Например, для команды «загрузить данные» придумали понятное сокращение «ld» (англ. «load» - загрузить), для команды «сравнить» - «cp» (англ. «compare» - сравнение) и так далее. Данный метод символьной записи команд процессора называют «ассемблер». Если при работе с машинными кодами программист непосредственно вводит команды управления процессором в память устройства, то при работе с ассемблером между программой и процессором имеется своеобразный посредник, который преобразует символьные обозначения в машинные коды. Программу, являющуюся посредником, называют транслятором, т.е., переводчиком. Но тут есть маленький нюанс: ассемблером называют не только метод символьного обозначения цифровых команд (машинных кодов), но и программу-транслятор, которая помогает программисту перевести символьные обозначения команд непосредственно в машинные команды. Поэтому часто используется следующий прием: когда говорят о языке - пишут Ассемблер, когда о программе - просто ассемблер.
У Ассемблера есть огромное достоинство: программы, написанные на Ассемблере, очень быстро выполняются процессором. Дело в том, что Ассемблер - это практически машинная команда. Но у ассемблера есть и минусы: основной минус – сложность написания программ, второй - даже относительно несложные программы имеют большой обьем исходного текста, что затрудняет анализ программы.

Модульность программ. Часто повторяющиеся задачи.
Каждый программист за время своей работы накапливал определенное количество программ. Но многие программы содержат одинаковые действия. Например, во многих программах производится опрос клавиатуры и анализ нажатой кнопки. Значит, эту часть кода программы можно переносить из одной программы в другую. Из таких кусочков (модулей) постепенно сформировались библиотеки программ. Программисты стали «лепить» программу из модулей: т.е., вставляли необходимый модуль в необходимое место программы. Такой подход ускорял процесс написания программы и увеличивал надежность работы программы в целом за счет использования уже отлаженных модулей. Но с первых дней возникла проблема совместного использования модулей: ведь каждый программист писал модули по собственному «стандарту» - как ему было удобнее в тот или иной момент. Поэтому постепенно выработался стандарт (точнее, несколько стартов) написания этих модулей. В них была описана структура модулей для их более удобного «склеивания» в одну программу.

Языки программирования и их функциональное разделение.
Постепенно эти разрозненные стандарты использования модулей сформировали то, что позднее будет названо «языками программирования». Как и человеческие языки, язык программирования имеет несколько подуровней, которые определяют как написание отдельных слов (модулей) и методы их записи, так и правила их использования. Со временем языки программирования преобразовывались и видоизменялись. Постепенно все языки программирования разделились на несколько групп, в зависимости от «профессиональной ориентации»:
- прикладные языки программирования (FORTRAN для математиков, FoxPro для финансовых работников);
- универсальные (Pascal и Basic);
- системные (Ассемблер и Си).

Системные слова языки стали называть низкоуровневыми, т.е., программист работает на нижнем, наиболее приближенном к процессору, уровне. А языки, при работе с которыми программист не сталкивается с непосредственным управлением работой процессора, стали называть Языками Высокого Уровня (часто обозначают как ЯВУ). Не путайте это сокращение с названием языка «Ява» - «Java».

Трансляция программы. Методы трансляции программы.
Как и при использовании Ассемблера, программу, написанную на любом языке высокого уровня, необходимо преобразовать в понятные процессору команды. Вначале это делалось в ручную: в таблице находили команду на ассемблере и записывали ее в машинном коде. Для ускорения процесса преобразования (трансляции) программы были написаны специальные программы - трансляторы. Существует два метода трансляции программы: интерпретация и компиляция. Следовательно, и транслятор называют либо интерпретатор, либо компилятор. При использовании интерпретатора исходный текст программы анализируется и последовательно, команда за командой, выполняется интерпретатором. В интерпретаторе содержатся модули всех используемых действий. Такое покомандное преобразование очень медленное. Но данный метод имеет большой плюс: программу можно остановить, изменить ее код и продолжить её выполнение. Это удобно при отладке программы. Так же в данном случае мы имеем исходный текст программы и можем его многократно редактировать.
При использовании компилятора текст программы анализируется, и создается файл с машинными командами, так называемый исполняемый файл. Это обеспечивает очень высокую скорость выполнения откомпилированной программы - ведь преобразование текста программы в машинные коды происходит только один раз при её компиляции. Но изменить программу «на лету» не получится: необходимо изменить текст программы и заново её откомпилировать. Если исходный текст отсутствуют по какой-либо причине, то перекомпилировать программу невозможно, а изменить исполняемый файл крайне сложно.

Процесс создания программы. Среды разработки программ.
С появлением трансляторов процесс создания программы стал выглядеть так:
- разрабатывается алгоритм работы будущей программы,
- алгоритм кодируется (т.е., описывается в виде команд языка программирования),
- полученный код записывается в каком-либо текстовом редакторе,
- файл с текстом программы передается в транслятор,
- транслятор преобразовывает символьные команды в понятные процессору команды и сохраняет их в файл,
- этот файл загружают в память.
Как видим, программисту приходилось работать в нескольких программах. Чаще всего все эти программы писались разными производителями, поэтому совместимость этих программ между собой не гарантировалась. Их совместимость приходилось выяснять методом проб и ошибок.

Интегрированная среда разработки программ.
В последнее время появился новый подход: «Интегрированная Среда Разработки» (англ. «IDE»). Под интеграцией понимается выполнение в одной программе всего процесса создания программы: написав текст программы, программист щелчком мыши запускает трансляцию текста программы в машинные коды, после чего полученный исполняемый файл автоматически загружается в память процессорного устройства. Т.е., все делается в одной программе. Такой подход ускоряет работу программиста.

Первые сложности.
Все предыдущие главы были вводным курсом, готовящим вас к восприятию новой информации. На пути у нас имеется несколько проблем.
1. Большой объем разносторонней информации : электроника, устройство микроконтроллеров, алгоритмы, синтаксис языков программирования, описания работы с программным инструментарием. И как писать? Один читатель - хороший электронщик, но ни разу не писал программы, другой - программист, но электроника – на уровне радио кружка, третий - что-то среднее...

2. Выбор МК : если все микроконтроллеры хороши, то на основе какого изделия и какого производителя строить процесс дальнейшего обучения и практического применения микроконтроллеров?
Для того чтобы выбрать микроконтроллер для ОБУЧЕНИЯ нам необходимо выполнить следующие условия:
А) выбранный для обучения микроконтроллер должен быть доступным и недорогим.
Б) он должен быть современным изделием, но не самым новым.

Теперь подробнее о каждом пункте.
С пунктом А всё понятно: какой смысл изучать изделие, которое трудно приобрести или его цена заоблачная для новичка.
Пункт Б требует пояснения. Дело в том, что новые изделия всегда имеют какие-либо недоработки. Они обнаруживаются только через какие-то время, пока кто-то случайно не наткнётся на данную проблему в ходе работы с данным изделием. Но новинки не сразу попадают в новые конструкции: требуется время на написание программ для новых моделей. Тут присутствует человеческий фактор: у разработчиков уже имеются готовые решения на предыдущих моделях микроконтроллеров, и переходить на новые - сложно.
Также все новые микроконтроллеры имеют только фирменное описание. А оно написано на английском языке и с использованием многочисленных профессиональных терминов: ведь на профессионалов и рассчитано! А мы - ученики… Через какие-то время появляются примеры конструкций, более подробные описания с многочисленными комментариями и советами. Потом кто-то начнет переводить документацию на русский язык (не всё, но хотя бы самое сложное или наиболее часто используемое).
К новому микроконтроллеру может не быть и инструментария: компиляторы, отладчики и программаторы «не понимают» это изделие. Опять ожидание, пока авторы этих программ не обновят свои творения...

3. Необходимо выбрать язык программирования , на котором мы планируем писать программы для МК.
Выбор языка программирования - весьма щепетильное занятие. Для обучения программированию микроконтроллеров хотелось бы использовать язык программирования с простым синтаксисом: программист должен заниматься программой, но не ее оформлением!
Тут надо заранее сделать пояснение: в настоящее время среди разработчиков программ и устройств на микроконтроллерах популярны три «семейства» языков: Си (Пишут как «С»), Паскаль (Pascal) и Бейсик (BASIC). Паскаль изначально разрабатывался как инструмент изучения программированию. Бейсик самой структурой похож на Паскаль, но запись команд упрощена и требований к оформлению программы значительно меньше. Си – принято считать языком для профессионалов. Си – это как китайская философия: важен не только символ (команда), но и его начертание и цвет. Шутки шутками, но моё мнение таково: Си – это кошмар. Его использование оправдывается лишь в некоторых, весьма узко профильных, задачах. Но наша задача – попробовать свои силы, и минимально их тратить на задачи, не имеющих прямой связи с основной целью.

4. Нам необходима среда разработки программ для микроконтроллеров . Её выбор напрямую зависит от типа используемого МК и языка программирования.
Среда разработки программ очень важна для успешного освоения программирования микроконтроллеров. Писать программы в текстовом редакторе вроде «Блокнота» можно, но неудобно (проверено!). Да и в командной строке вызывать компилятор - дело неблагодарное в наш, графическо-оконный, век.
Выбор среды разработки напрямую зависит от микроконтроллера, на котором мы будет строить практическую часть обучения. Ко всему прочему нам надо иметь бесплатный инструментарий. Но, как показало тестирование таких программ, бесплатное ПО чаще всего имеет посредственное качество как с точки зрения и пользования, так и с точки зрения изучения программирования МК: наличие ошибок или недоработок в самих трансляторах создают дополнительные сложности и лишают уверенности в собственных силах.
Сойдет и демонстрационная версия, которая имела бы минимум ограничений и работала хотя бы пол года - именно такой срок необходим для получения навыков работы с микроконтроллерами в домашних условиях.

5. Программатор, с использованием которого будем загружать написанные программы в память МК . Выбор программатора также зависит от типа используемого МК. Есть, конечно, «универсальные» программаторы, позволяющие работать с разными микроконтроллерами и микросхемами памяти, но они дорогие. Да и не нужны в большинстве случаев. Поэтому проще изготовить что-то узкоспециализированное для данного семейства МК.
Но дело не столько в сложности схем программатора, а в методе подключения этого программатора к ПК. Тут необходимо пояснить: программатор - это электронный адаптер, преобразующий сигналы компьютерных интерфейсов (порты СОМ, LPT и USB) в сигналы, подаваемые на выводы МК для загрузки программы в его память. Электронным адаптером управляет программа ПК, которая и «заставляет» адаптер выдавать необходимые последовательности сигналов на выводы МК.
Если адаптер программатора, подключаемый к ПК через порты COM и LPT, возможно изготовить в домашних условиях - «на коленке», то изготовления такого адаптера, но подключаемого к USB порту, уже несколько проблематично: сердцем такого адаптера часто является… микроконтроллер. Тут возникает парадокс: для того чтобы запрограммировать МК нам необходимо запрограммировать МК.
Напрашивается логичный вопрос: а для чего изготавливать сложный адаптер, подключаемый к USB, когда можно сделать простой и подключить его к LPT или COM порту. Все дело в том, что многие (практически все) современные ПК не имеют в своем составе этих портов. Поэтому придется изготавливать более сложный адаптер для программирования МК.

Март 2010

Эти вопросы я задавал себе в марте, а сейчас уже конец ноября. Но это время не прошло даром: я нашел выход из ситуаций, описанных выше, и нашел ответы на все мучавшие меня вопросы. А теперь обо всём по порядку.

Ответ на вопрос номер 1
Если материалы предыдущих глав еще как-то можно было логически систематизировать и преподносить поэтапно, то материалы в последующих главах даются параллельно: одно подразумевает другое. Возможно, вам мой метод подачи новых материалов покажется несколько сумбурным, но придумать что-то более красивое по оформлению я не смог.

Ответ на вопрос номер 2
Микроконтроллер производства компании ATMEL ATMEGA48. Хорошо описан, выпускается уже несколько лет, не планируется к снятию с производства еще как минимум 3 года, имеет оптимальные технические параметры.

Ответы на вопросы 3 и 4
Среда программирования - BASCOM (производитель MCS Electronics, автор Марк Альбертс). Язык программирования по стилю и требованиям к оформлению текста программы схож с Паскалем, но синтаксис команд взят из BASIC.
Причины выбора:
- полнофункциональная демонстрационная версия компилятора (единственное ограничение: генерируемый компилятором код ограничен объемом 4 КБайт)
- желание автора программы сотрудничать (я сделал перевод сообщений интерфейса и справочной системы на русский язык, он добавил русский язык в эту программу)
- наличие русскоязычного форума пользователей данного компилятора

Ответ на вопрос номер 5
Совместить простоту схемы и USB не получилось. Было решено описать две модели программаторов: одна подключается к LPT порту компьютера, вторая к COM порту. При отсутствии этих портов вторая версия программатора может быть подключена к компьютеру с использованием преобразователя USB-COM. Так получаем связку USB-COM-программатор-микроконтроллер.
Первая модель программатора известна как STK-200/300, содержит микросхему буфера с третьим состоянием и несколько резисторов. Вторая модель - известный программатор USBasp.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Что такое микроконтроллер, и для чего он нужен. Давайте обратимся к его определению:

– микросхема, предназначенная для управления электронными устройствами, или по другому – простенький компьютер (микро-ЭВМ), способный выполнять несложные задачи.

То есть, по сути, микроконтроллер – это устройство, позволяющее воплотить в жизнь наши идеи (даже бредовые), но, естественно, в пределах своих возможностей. И самое главное, воплощение идеи в жизнь достигается не созданием навороченных электронных конструкций, а лишь только, в основном, силой нашей мысли (желаете стать волшебником?).
Наибольшей популярностью у радиолюбителей пользуются два вида микроконтроллеров:
PIC – фирмы Microchip Technology
AVR – фирмы Atmel

Сразу хочу сделать небольшое отступление и пояснить одну свою позицию. Я не собираюсь ни сейчас, ни потом, рассуждать о достоинствах того или иного вида микроконтроллеров, того или иного программного обеспечения, и вообще всего, что связано с микроконтроллерами, что-то советовать, но а тем более – навязывать читателям. Все это дело вкуса, личных предпочтений и поставленных конечных целей в изучении микроконтроллеров. Ну а так как “необъятное – не объять”, все свое дальнейшее повествование я буду вести применительно к микроконтроллерам AVR и, не очень распространенной, но мной любимой, программы “Algorithm Builder”. У разных типов микроконтроллеров, программ, есть, конечно, различия, но многое у них и общее. А познавать мир микроконтроллеров мы будем так, чтобы потом, полученные знания можно было бы без проблем применить и к PICам, и к любому программному обеспечению. И еще раз напомню, данная серия статей – моя попытка помочь тем, кто впервые услышал о существовании микроконтроллеров и желает постичь работу с ними.

Что нужно для того, чтобы научиться работать с микроконтроллерами? Я бы выделил несколько, на мой взгляд, главных условий:
1. Желание и настойчивость .
Тут все очень просто: есть желание – все получится. А желание с настойчивостью – вообще, вещь суперская.
2. Знание устройства микроконтроллера.
Здесь не важны глубокие знания (да может и вообще не нужны), но знать, что имеется “на борту” микроконтроллера необходимо. Только зная из чего состоит микроконтроллер, какие устройства в нем есть, их возможности, как они работают – только тогда мы сможем использовать возможности микроконтроллера на полную катушку.
3. Знание языка программирования и команд управления микроконтроллером.
Как будет работать микроконтроллер, какие задачи вы на него возлагаете и как он будет их выполнять, определяется заложенной в него программой – программой которую для микроконтроллера составляете вы сами. И на этом пункте мы остановимся несколько подробней, чтобы рассмотреть вопросы, которые могут появиться в будущем.

Программа (в переводе это слово означает – “предписание”) – предварительное описание предстоящих событий или действий.

К примеру, мы хотим, чтобы микроконтроллер мигал светодиодом. Простенькая задача, но тем не менее, для того, чтобы микроконтроллер выполнил эту задачу, мы предварительно должны, шаг за шагом, описать все действия микроконтроллера, написать программу, которую он должен выполнить для получения нужного нам результата – мигающий светодиод. Нечто, вроде такого:
♦ Зажечь светодиод:
- настроить вывод к которому подключен светодиод для работы на вывод информации
- подать на этот вывод логический уровень, который позволит зажечь светодиод
♦ Подождать некоторое время:
- перейти к подпрограмме формирующей паузу (которую тоже нужно “разжевать”)
- по выполнению подпрограммы паузы вернуться в основную программу
♦ Погасить светодиод:
- подать на вывод логический уровень, гасящий светодиод
и так далее.
С термином Программа неразрывно связан другой термин – Алгоритм (как Волк и Заяц, Том и Джерри).

Алгоритм – набор инструкций, описывающих порядок действия для достижения нужного результата.

Если в программе мы подробнейшим образом прописываем действия микроконтроллера, то в алгоритме мы определяем порядок действий микроконтроллера, на основе которых мы потом создадим программу. По аналогии с вышеприведенном примером:
♦ Зажечь светодиод
♦ Подождать некоторое время
♦ Погасить светодиод
и так далее.
Таким образом, алгоритм – это предшественник программы . И чем тщательно и продумано будет создан алгоритм, тем проще будет создавать программу.

Итого, программа для микроконтроллера – это последовательность действий микроконтроллера в виде набора команд и инструкций, которые он должен выполнить для достижения поставленных нами целей.

Команды для микроконтроллера имеют вид набора единичек и нулей:
00110101 011000100
так называемые – коды команд, а коды команд – это язык который понимает микроконтроллер. А для того, чтобы перевести наш алгоритм с русского языка на язык микроконтроллера – в эти самые наборы нулей и единичек, существуют специальные программы.
Эти программы позволяют описать порядок работы для микроконтроллера на более-менее понятном для нас языке, а затем перевести этот порядок на язык понятный микроконтроллеру, в результате чего получается так называемый машинный код – последовательность команд и инструкций (те самые нули и единички) которые только и понимает микроконтроллер. Текст программы, написанный программистом, называется исходным кодом . Перевод программы с языка программирования (исходного кода) на язык микроконтроллера (машинный код) производится трансляторами . Транслятор превращает текст программы в машинные коды, которые потом записываются в память микроконтроллера.
В таких программах порядок работы микроконтроллера описывается специальным языком – языком программирования. Язык программирования отличается от нашего, человеческого языка. Если наш язык общения служит в основном для того, чтобы обмениваться информацией, то:

Язык программирования – это способ передачи команд, инструкций, чёткого руководства к действию для микроконтроллера.

Существует множество языков программирования и их можно разделить на два типа:
языки программирования низкого уровня
языки программирования высокого уровня
Чем они отличаются. А отличаются они своей близостью к микроконтроллеру.
На заре зарождения микропроцессорной техники, программы писали в машинных кодах, то есть весь алгоритм работы последовательно прописывали в виде нулей и единичек. Вот так, примерно, выглядела программа:

01000110
10010011
01010010

Вряд-ли кто сможет разобраться в таком наборе комбинаций из двух цифр, а труд первых программистов был очень трудоемкий. Для облегчения своей жизни, программисты и стали создавать первые языки программирования. Так вот, чем ближе язык программирования к такому набору нулей и единиц тем больше он “низкого уровня”, а чем дальше от них – тем больше “высокого уровня”.
Самые распространенные языки программирования для микроконтроллеров:
- язык низкого уровня – Ассемблер
– язык высокого уровня – С (Си)
Давайте посмотрим на примере их различия (эти примеры абстрактные).
Допустим нам надо сложить два числа: 25 и 35.
В машинных кодах эта команда может выглядеть так:
00000101 1101001
На языке низкого уровня:
ADD Rd, Rr
На языке высокого уровня:
25+35
Различие языков низкого и высокого уровня видны невооруженным глазом, комментарии, как говорится, излишни.
Но давайте копнемся в этих примерах поглубже. Пример машинного кода разбирать не будем, так как он идентичен примеру на Ассемблере. По своей сути, Ассемблерные команды это те же машинные коды (команды) которым просто, чтобы не заблудиться в нулях и единицах, присвоены буквенные аббревиатуры. Ассемблерной командой ADD Rd, Rr мы ставим микроконтроллеру задачу сложить два числа, которые находятся (а для этого мы должны их туда предварительно записать) – первое в Rd, второе в Rr, а результат сложения поместить в Rd. Как видите мы ставим очень конкретную задачу микроконтроллеру: где взять, что с этим сделать и куда поместить результат. В этом случае мы работаем напрямую с микроконтроллером.
Команда на языке высокого уровня: 25+35 , привычная для нас математическая запись, радующая наш глаз. Но в этом случае мы не работаем напрямую с микроконтроллером, мы просто ставим ему задачу сложить два числа. Результат и последовательность действий в данном случае будет тот-же, что и при выполнении ассемблерной команды: сначала эти два числа будут куда-то записаны, затем сложены а результат куда-то помещен.
И вот тут кроется главное отличие языков высокого уровня и низкого уровня. Если в Ассемблере мы контролируем весь процесс (хотим мы того, или нет): мы знаем где записаны эти два числа, и мы знаем где будет находиться результат, то в языке высокого уровня мы процесс не контролируем. Программа сама решает куда предварительно записать числа и куда поместить результат. В большинстве случаев нам это и не надо знать, ведь для нас главное итог – число 60 на выходе. Как результат, программы на языках высокого уровня более читаемы, приятны для глаза и меньше по размеру – ведь нам не приходится “лезть во все дыры” и расписывать каждый шаг микроконтроллера, программа это делает потом за нас, когда компилирует ее – переводит в машинные коды. Но тут есть и минус. Два одинаковых алгоритма написанных на Ассемблере и на Си, после преобразования их в машинные коды будут иметь разный размер: программа написанная на Ассемблере будет на 20-40% короче программы написанной на Си – черт его знает, каким путем идет Си для достижения нужного нам результата. И бывают случаи, когда нет доверия к языку высокого уровня и в программе на Си делают вставки кода, написанные на Ассемблере.
Профессиональные программисты, как правило, знают несколько языков программирования (или работают в команде, в которой есть специалисты по разным языкам), творчески соединяя их возможности и преимущества в одной программе. Ну а нам, любителям, надо знать хотя бы один язык (для начала), и начинать надо (а я в этом твердо уверен, и никто меня не переубедит) с языка низкого уровня – Ассемблера.

Ну что, я думаю и тут нам все понятно, – язык программирования изучать надо, по-другому – никак.

Команды и инструкции для управления микроконтроллером.
У микроконтроллеров AVR более 130 различных команд, которые позволяют ему реализовать все заложенные в нем возможности. Но сразу скажу – мало кто из любителей знает их все и тем более пользуется всеми. Обычно, в любительской практике хватает знания и половины команд, а то и меньше. Но изучать команды надо. Чем больше команд вы будете знать, тем изощреннее (в хорошем смысле слова) и элегантнее программы будут получаться.

Арифметико-логическое устройство и организация памяти – память программ, память данных, энергонезависимая память


Всем привет. Как и обещал, с сегодняшнего дня начинаем изучать программирования AVR микроконтроллеров (на примере Atmega8). Тем же читателям, которым интересно программирование платы ардуино, не волнуйтесь, статьи по данному направлению будут продолжаться 🙂 .

Можно задать логичный вопрос, почему из ряда других микроконтроллеров (далее — МК) в качестве подопытного выбран именно МК AVR . На это есть несколько причин:

  • МК AVR повсеместно доступны;
  • У них достаточно невысокая цена;
  • В интернете можно найти много бесплатных программ, что помогут при работе с данными МК.
  • Кроме этого, существует великое множество написанных статей и форумов, на которых можно задать вопросы по данным МК AVR.

Как говорил ранее, в качестве подопытного будем использовать МК Atmega8 . Почему именно его?

Данный микроконтроллер может похвастаться наличием 3 портов ввода/вывода. Кроме этого он довольно дешевый.

Под портами, понимают шины данных, которые могут работают в двух противоположных направлениях (то бишь на вывод и на ввод).

У Atmega8 3 порта. Порт B состоит из 8 ножек-выводов (нумерация 0,1,2,3,4,5,6,7). Порт С состоит из 7 ножек-выводов (нумерация 0,1,2,3,4,5,6). Порт D состоит из 8 ножек-выводов (нумерация 0,1,2,3,4,5,6,7).

Запитывать микроконтроллер можно от 3,3 и 5 В. При напряжении питания 5 В максимальная частота тактирования составляет 16 МГц, а при напряжении питания 3,3 В – максимальная частота тактирования 8 МГц. Пока не будем заморачиваться относительно частот тактирования.

Питания подаётся на 7 ножку-вывод, а «земля» подводится к 8 ножке.

Скачивается бесплатно. Скачали, установили, запустили 🙂

Первое, с чего следует начать знакомство с Atmel Studio – это создание проекта.

Выбираем File -> new -> project .

Откроется окно выбора. Выбираем папку «Browse», в которой будем сохранять написанные проекты. Папку для проектов создал заранее.

Присваиваем имя проекту, в моём случае lesson_avr_1

Обратите внимание на галочку «create directory for solution». Если отметка стоит, то в той папке, которую мы выбрали для сохранения проектов, будет создана отдельная папка под текущий проект.

На этом всё – проект создан.

Займемся настройкой созданного нами проекта. Нажимаем Projest -> lesson_avr_1 properties или (alt+F7)

Переходим на вкладку Tool. Выбираем – симулятор. Совершенные нами действия сделают возможным отлаживать написанный код. Сохраняем изменения. Можно сохранить изменения в одном (текущем) файле или же во всех файлах проекта сразу. Закрываем настройки.