Как выбрать Ethernet кабель для максимальной скорости интернет-соединения. Витая пара: способы обжима, схема соединений

Ethernet это технология организации локальных компьютерных сетей. Стандарт Ethernet определяет проводные соединения и электрические сигналы на физическом уровне сети. Ethernet появился в середине девяностых годов и стал самой распространённой технологией ЛВС, заменив такие технологии передачи данных, как Arcnet, FDDI и Token ring. Сети на базе технологии Ethernet бывают трех видов:


































Технология Стандарт Описание Тип кабеля Используемые пары Скорость передачи данных
Ethernet IEEE 802.3i 10Base-T UTP Cat.3-5 2 10 Мбит/с
Fast Ethernet IEEE 802.3u



UTP Cat.5/STP Type1A






100 Мбит/с
Gigabit Ethernet IEEE 802.3ab 1000Base-T UTP Cat.5 4 1000 Мбит/с

Для обжима сетевого кабеля используются стандартные разъемы RJ-45, которые в зависимости от вида "-витой пары"- бывают экранированными и неэкранированными, так же различают разъёмы для одножильных или многожильных "-витых пар"-. Конструктивно можно выделить составные разъёмные, выполненные со вставками и монолитные. Вставки являются направляющими, для проводников и упрощают заправку кабеля, но с точки зрения надёжности они уступают монолитным вариантам. Нумерация контактов разъёма RJ-45 представлена на рисунке ниже.




Обжим кабеля производится по следующей технологии:


Вначале осуществляется зачистка наружной изоляции кабеля, можно использовать или специальные клещи или аккуратно снять изоляцию обычными ножницами. Необходимый уровень зачистки кабеля &ndash- 1,2-1,5 см. Если витая пара экранирована, то заземление не срезается, а укладывается с разворотом в 180 градусов по направлению кабеля. После зачистки необходимо развести жилы "-витой пары"- в одной плоскости и выравнить их по длине. После данной подготовки производят заправку жил в разъем и их прессовку. После изготовления сетевого шнурка, его нужно прозвонить тестером или опробовать на оборудовании.
При организации сети по каналу 100 Мбит/сек используются 2 пары витой пары и используются жилы 1, 2 , 3 и 6. При организации гигабитной сети используются 4 пары, т.е. все 8 жил витой пары.
В сети Ethernet существует два типа кабелей. Первый тип используется для прямых соединений (хаб-свитч, компьютер-хаб) и кроссовер, который используется в локальных компьютерных сетях для прямого соединения двух компьютеров, без хаба. Тип кабеля для соединения разных портов можно выбрать по нижеприведённой таблице:















































Порт на концентраторе Что подсоединяется В какой порт Кабель
Обычный порт Концентратор/Коммутатор Обычный Перекрестный
Обычный порт Концентратор/Коммутатор Uplink Прямой
Обычный порт Сетевая карта Прямой
Порт Uplink Концентратор/Коммутатор Обычный Прямой
Порт Uplink Концентратор/Коммутатор Uplink Перекрестный
Порт Uplink Сетевая карта Перекрестный

И на последок несколько советов: при зачистке витой пары и её расплетении не нужно углубляться. Рабочая область не должна превышать 15 мм. При прокладке витой пары соблюдайте правила организации слаботочных кабельных систем и помните, что существуют такие понятия как наводки, изгибы и рабочая длина сети. Не соблюдение норм может привести к уменьшению качества сигнала, наводкам и разрушению кабеля.



Обжим прямого сетевого кабеля 10/100/1000Mbit.



Обжим кабеля компьютер-компьютер (crossover) 10/100Mbit.



Обжим кабеля компьютер-компьютер (crossover) 1000Mbit.

  • Системное администрирование
    • Tutorial
    • Что такое домен коллизий?
    • Сколько пар используется для Ethernet и почему?
    • По каким парам идет прием, а по каким передача?
    • Что ограничивает длину сегмента сети?
    • Почему кадр не может быть меньше определенной величины?

    Если не знаешь ответов на эти вопросы, а читать стандарты и серьезную литературу по теме лень - прошу под кат.

    Кто-то считает, что это очевидные вещи, другие скажут, что скучная и ненужная теория. Тем не менее на собеседованиях периодически можно услышать подобные вопросы. Мое мнение: о том, о чем ниже пойдет речь, нужно знать всем, кому приходится брать в руки «обжимку» 8P8C (этот разъем обычно ошибочно называют RJ-45). На академическую глубину не претендую, воздержусь от формул и таблиц, так же за бортом оставим линейное кодирование. Речь пойдет в основном о медных проводах, не об оптике, т.к. они шире распространены в быту.

    Технология Ethernet описывает сразу два нижних уровня модели OSI . Физический и канальный. Дальше будем говорить только о физическом, т.е. о том, как передаются биты между двумя соседними устройствами.

    Технология Ethernet - часть богатого наследия исследовательского центра Xerox PARC . Ранние версии Ethernet использовали в качестве среды передачи коаксиальный кабель, но со временем он был полностью вытеснен оптоволокном и витой парой. Однако важно понимать, что применение коаксиального кабеля во многом определило принципы работы Ethernet. Дело в том, что коаксиальный кабель - разделяемая среда передачи. Важная особенность разделяемой среды: ее могут использовать одновременно несколько интерфейсов, но передавать в каждый момент времени должен только один. С помощью коаксиального кабеля можно соединит не только 2 компьютера между собой, но и более двух, без применения активного оборудования. Такая топология называется шина . Однако если хотябы два узла на одной шине начнут одновременно передавать информацию, то их сигналы наложатся друг на друга и приемники других узлов ничего не разберут. Такая ситуация называется коллизией , а часть сети, узлы в которой конкурируют за общую среду передачи - доменом коллизий . Для того чтоб распознать коллизию, передающий узел постоянно наблюдает за сигналов в среде и если собственный передаваемый сигнал отличается от наблюдаемого - фиксируется коллизия. В этом случае все узлы перестают передавать и возобновляют передачу через случайный промежуток времени.

    Диаметр коллизионного домена и минимальный размер кадра

    Теперь давайте представим, что будет, если в сети, изображенной на рисунке, узлы A и С одновременно начнут передачу, но успеют ее закончить раньше, чем примут сигнал друг друга. Это возможно, при достаточно коротком передаваемом сообщении и достаточно длинном кабеле, ведь как нам известно из школьной программы, скорость распространения любых сигналов в лучшем случае составляет C=3*10 8 м/с. Т.к. каждый из передающих узлов примет встречный сигнал только после того, как уже закончит передавать свое сообщение - факт того, что произошла коллизия не будет установлен ни одним из них, а значит повторной передачи кадров не будет. Зато узел B на входе получит сумму сигналов и не сможет корректно принять ни один из них. Для того, чтоб такой ситуации не произошло необходимо ограничить размер домена коллизий и минимальный размер кадра. Не трудно догадаться, что эти величины прямо пропорциональны друг другу. В случае же если объем передаваемой информации не дотягивает до минимального кадра, то его увеличивают за счет специального поля pad, название которого можно перевести как заполнитель.

    Таким образом чем больше потенциальный размер сегмента сети, тем больше накладных расходов уходит на передачу порций данных маленького размера. Разработчикам технологии Ethernet пришлось искать золотую середину между двумя этими параметрами, и минимальным размером кадра была установлена величина 64 байта.

    Витая пара и дуплексный режим рабты
    Витая пара в качестве среды передачи отличается от коаксиального кабеля тем, что может соединять только два узла и использует разделенные среды для передачи информации в разных направлениях. Одна пара используется для передачи (1,2 контакты, как правило оранжевый и бело-оранжевый провода) и одна пара для приема (3,6 контакты, как правило зеленый и бело-зеленый провода). На активном сетевом оборудовании наоборот. Не трудно заметить, что пропущена центральная пара контактов: 4, 5. Эту пару специально оставили свободной, если в ту же розетку вставить RJ11, то он займет как раз свободные контакты. Таким образом можно использовать один кабели и одну розетку, для LAN и, например, телефона. Пары в кабеле выбраны таким образом, чтоб свести к минимуму взаимное влияние сигналов друг на друга и улучшить качество связи. Провода одной пару свиты между собой для того, чтоб влияние внешних помех на оба провода в паре было примерно одинаковым.
    Для соединения двух однотипных устройств, к примеру двух компьютеров, используется так называемый кроссовер-кабель(crossover) , в котором одна пара соединяет контакты 1,2 одной стороны и 3,6 другой, а вторая наоборот: 3,6 контакты одной стороны и 1,2 другой. Это нужно для того, чтоб соединить приемник с передатчиком, если использовать прямой кабель, то получится приемник-приемник, передатчик-передатчик. Хотя сейчас это имеет значение только если работать с каким-то архаичным оборудованием, т.к. почти всё современное оборудование поддерживает Auto-MDIX - технология позволяющая интерфейсу автоматически определять на какой паре прием, а на какой передача.

    Возникает вопрос: откуда берется ограничение на длину сегмента у Ethernet по витой паре, если нет разделяемой среды? Всё дело в том, первые сети построенные на витой паре использовали концентраторы. Концентратор (иначе говоря многовходовый повторитель) - устройство имеющее несколько портов Ethernet и транслирующее полученный пакет во все порты кроме того, с которого этот пакет пришел. Таким образом если концентратор начинал принимать сигналы сразу с двух портов, то он не знал, что транслировать в остальные порты, это была коллизия. То же касалось и первых Ethernet-сетей использующих оптику (10Base-FL).

    Зачем же тогда использовать 4х-парный кабель, если из 4х пар используются только две? Резонный вопрос, и вот несколько причин для того, чтобы делать это:

    • 4х-парный кабель механически более надежен чем 2х-парный.
    • 4х-парный кабель не придется менять при переходе на Gigabit Ethernet или 100BaseT4, использующие уже все 4 пары
    • Если перебита одна пара, можно вместо нее использовать свободную и не перекладывать кабель
    • Возможность использовать технологию Power over ethernet

    Не смотря на это на практике часто используют 2х-парный кабель, подключают сразу 2 компьютера по одному 4х-парному, либо используют свободные пары для подключения телефона.

    Gigabit Ethernet

    В отличии от своих предшественников Gigabit Ethernet всегда использует для передачи одновременно все 4 пары. Причем сразу в двух направлениях. Кроме того информация кодируется не двумя уровнями как обычно (0 и 1), а четырьмя (00,01,10,11). Т.е. уровень напряжения в каждый конкретный момент кодирует не один, а сразу два бита. Это сделано для того, чтоб снизить частоту модуляции с 250 МГц до 125 МГц. Кроме того добавлен пятый уровень, для создания избыточности кода. Он делает возможной коррекцию ошибок на приеме. Такой вид кодирования называется пятиуровневым импульсно-амплитудным кодированием (PAM-5). Кроме того, для того, чтоб использовать все пары одновременно для приема и передачи сетевой адаптер вычитает из общего сигнала собственный переданный сигнал, чтоб получить сигнал переданный другой стороной. Таким образом реализуется полнодуплексный режим по одному каналу.

    Дальше - больше

    10 Gigabit Ethernet уже во всю используется провайдерами, но в SOHO сегменте не применяется, т.к. судя по всему там вполне хватает Gigabit Ethernet. 10GBE качестве среды распространения использует одно- и многомодовое волокно, с или без уплотнением по длине волны , медные кабели с разъемом InfiniBand а так же витую пару в стандарте 10GBASE-T или IEEE 802.3an-2006.

    40-гигабитный Ethernet (или 40GbE ) и 100-гигабитный Ethernet (или 100GbE ). Разработка этих стандартов была закончена в июле 2010 года. В настоящий момент ведущие производители сетевого оборудования, такие как Cisco, Juniper Networks и Huawei уже заняты разработкой и выпуском первых маршрутизаторов поддерживающих эти технологии.

    В заключении стоит упомянуть о перспективной технологии Terabit Ethernet . Боб Меткалф, создатель предположил, что технология будет разработана к 2015 году, и так же сказал:

    Чтобы реализовать Ethernet 1 ТБит/с, необходимо преодолеть множество ограничений, включая 1550-нанометровые лазеры и модуляцию с частотой 15 ГГц. Для будущей сети нужны новые схемы модуляции, а также новое оптоволокно, новые лазеры, в общем, все новое

    UPD : Спасибо хабраюзеру , что подсказал, про то что разъем, который я всю жизнь называл RJ45 на самом деле 8P8C .
    UPD2: : Спасибо пользователю , что объяснил, почему используются контакты 1,2,3 и 6.

    Современный мир все больше входит в зависимость от объемов и потоков информации, идущей в различных направлениях по проводам и без них. Все началось достаточно давно и с более примитивных средств, чем сегодняшние достижения цифрового мира. Но описывать все виды и способы, при помощи которых один человек доносил нужные сведения до сознания другого, мы не намерены. В данной статье хочется предложить читателю рассказ о не так давно созданном и успешно развивающемся сейчас стандарте передачи цифровой информации, который называется Ethernet.

    Рождение самой идеи и технологии Ethernet происходило в стенах корпорации Xerox PARC вместе с другими первыми разработками этого же направления. Официальной датой изобретения Ethernet стало 22 мая 1973 года, когда Роберт Меткалф (Robert Metcalfe) составил докладную записку для главы PARC о потенциале технологии Ethernet. Однако запатентовали ее только через несколько лет.

    В 1979 году Меткалф ушёл из Xerox и основал компанию 3Com, главной задачей которой стало продвижение компьютеров и локальных вычислительных сетей (ЛВС). Заручившись поддержкой таких именитых компаний как DEC, Intel и Xerox был разработан стандарт Ethernet (DIX). После официальной публикации 30 сентября 1980 года он начал соперничество с двумя крупными запатентованными технологиями - token ring и ARCNET, которые впоследствии были полностью вытеснены, из-за их меньшей эффективности и большей себестоимости, чем продукция для Ethernet.

    Изначально по предложенным стандартам (Ethernet v1.0 и Ethernet v2.0) собирались использовать в качестве передающей среды коаксиальный кабель, но в дальнейшем пришлось отказаться от этой технологии и перейти на использование оптических кабелей и витой пары.

    Основным преимуществом в начале развития технологии Ethernet стал метод управления доступом. Он подразумевает множественные соединения с контролем несущей и обнаружение коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных при этом равна 10 Мбит/с, размер пакета от 72 до 1526 байт, в нем же описаны методы кодирования данных. Предельное значение рабочих станций в одном разделяемом сегменте сети ограничено числом 1024, но возможны и другие более малые значения при установке более жестких ограничений к сегменту тонкого коаксиала. Но такое построение очень скоро стало неэффективным и на смену ему в 1995 году пришел стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. На данный момент уже в полной мере используется 10 Gigabit Ethernet IEEE 802.3ae, обладающий скоростью в 10 000 Мбит/с. Кроме того, уже имеем разработки направленные на достижение скорости в 100 000 Мбит/с 100 Gigabit Ethernet, но обо всем по порядку.

    Очень важной позицией, лежащей в основе стандарта Ethernet, стал формат его кадра. Однако его вариантов существует довольно много. Вот некоторые из них:

      Variant I первенец и уже вышедший из применения.

      Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) - наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.

      Novell - внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

      Кадр IEEE 802.2 LLC.

      Кадр IEEE 802.2 LLC/SNAP.

      В качестве дополнения, Ethernet-кадр может содержать тег IEEE 802.1Q, для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

      Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

    Для различных типов кадра имеют и различные форматы и значения MTU.

    Функциональные элементы технологии G igabit Ethernet

    Отметим, что производители Ethernet-карт и других устройств в основном включают в свою продукцию поддержку нескольких предыдущих стандартов скоростей передачи данных. По умолчанию, используя автоопределение скорости и дуплексности, сами драйвера карты определяют оптимальный режим работы соединения между двумя устройствами, но, обычно, есть и ручной выбор. Так покупая устройство с портом Ethernet 10/100/1000, мы получаем возможность работать по технологиям 10BASE-T, 100BASE-TX, и 1000BASE-T.

    Приведем хронологию модификаций Ethernet , разделив их по скоростям передачи.

    Первые решения:

      Xerox Ethernet - оригинальная технология, скорость 3 Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.

      10BROAD36 - широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.

      1BASE5 - также известный, как StarLAN, стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

    Более распространенные и оптимизированные для своего времени модификации 10 Мбит/с Ethernet:

      10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») - первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. IEEE использует коаксиальный кабель, с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

      10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») - используется кабель RG-58, с максимальной длиной сегмента 200 метров. Для присоединения компьютеров друг к другу и подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

      StarLAN 10 - Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем, эволюционировал в стандарт 10BASE-T.

      10BASE-T, IEEE 802.3i - для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории 3 или категории 5. Максимальная длина сегмента 100 метров.

      FOIRL - (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1 км.

      10BASE-F, IEEE 802.3j - Основной термин для обозначения семейства 10 Mбит/с Eethernet-стандартов, использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.

      10BASE-FL (Fiber Link) - Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

      10BASE-FB (Fiber Backbone) - Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

    • 10BASE-FP (Fiber Passive) - Топология «пассивная звезда», в которой не нужны повторители – разработана, но никогда не применялась.

    Самый распространенный и недорогой выбор на момент написания статьи Быстрый Ethernet (100 Мбит/с) (Fast Ethernet ):

      100BASE-T - Основной термин для обозначения одного из трёх стандартов 100 Мбит/с Ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 100 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

      100BASE-TX, IEEE 802.3u - Развитие технологии 10BASE-T, используется топология «звезда», задействован кабель витая пара категории 5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

      100BASE-T4 - 100 MБит/с Ethernet по кабелю категории 3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

      100BASE-T2 - Не используется. 100 Mбит/с Ethernet через кабель категории 3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Mбит/с.

      100BASE-FX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну.

      100BASE-LX - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по паре одномодовых оптических волокон на длине волны 1310 нм.

      100BASE-LX WDM - 100 Мбит/с Ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 15 километров в полнодуплексном режиме по одному одномодовому оптическому волокну на длине волны 1310 нм и 1550 нм. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются либо цифрами (длина волны) либо одной латинской буквой A (1310) или B (1550). В паре могут работать только парные интерфейсы, с одной стороны передатчик на 1310 нм, а с другой на 1550 нм.

    Gigabit Ethernet

      1000BASE-T, IEEE 802.3ab - Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных - 250 Мбит/с по одной паре.

      1000BASE-TX, - Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Передающие и принимающие пары разделены физически по две пары в каждом направлении, что существенно упрощает конструкцию приемопередающих устройств. Скорость передачи данных - 500 Мбит/с по одной паре. Практически не используется.

      1000Base-X - общий термин для обозначения технологии Гигабит Ethernet со сменными трансиверами GBIC или SFP.

      1000BASE-SX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 770-860 нм, мощность излучения передатчика в пределах от -10 до 0 дБм при отношении ON/OFF (сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 17 дБм, насыщение приемника 0 дБм. Используя многомодовое волокно, дальность прохождения сигнала без повторителя до 550 метров.

      1000BASE-LX, IEEE 802.3z - 1 Гбит/с Ethernet технология использует лазеры с допустимой длиной излучения в пределах диапазона 1270-1355 нм, мощность излучения передатчика в пределах от 13,5 до 3 дБм, при отношении ON/OFF (есть сигнал/нет сигнала) не меньше 9 дБ. Чувствительность приемника 19 дБм, насыщение приемника 3 дБм. При использовании многомодового волокна дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 40 км).

      1000BASE-CX - Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

      1000BASE-LH (Long Haul) - 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

    Стандарт

    Тип кабеля

    Полоса пропускания (не хуже), МГц*Км

    Макс. расстояние, м *

    1000BASE-LX (лазерный диод 1300 нм)

    Одномодовое волокно (9 мкм)

    Многомодовое волокно
    (50 мкм)

    Многомодовое волокно
    (62,5 мкм)

    1000BASE-SX (лазерный диод 850 нм)

    Многомодовое волокно
    (50 мкм)

    Многомодовое волокно
    (62,5 мкм)

    Многомодовое волокно
    (62,5 мкм)

    Экранированная витая пара STP
    (150 ОМ)

    * стандарты 1000BASE-SX и 1000BASE-LX предполагают наличие дуплексного режима
    ** Оборудование некоторых производителей может обеспечивать большее расстояние, оптические сегменты без промежуточных ретрансляторов/усилителей могут достигать 100 км.

    Технические характеристики стандартов 1000Base-X

    10 Gigabit Ethernet

    Еще достаточно дорогой, но вполне востребованный, новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3a и должен войти в следующую ревизию стандарта IEEE 802.3.

      10GBASE-CX4 - Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

      10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

      10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

      10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

      10GBASE-SW, 10GBASE-LW и 10GBASE-EW - Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

      10GBASE-T, IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния - до 100 метров.

    И наконец, что мы знаем про 100-Gigabit Ethernet (100-GE), еще достаточно сырую, но вполне востребованную технологию.

    В апреле 2007 года, после собрания комитета IEEE 802.3 в Оттаве, исследовательской группой Higher Speed Study Group (HSSG) было принято мнение о технических подходах в формировании оптических и медных каналов 100-GE. На данное время окончательно сформирована рабочая группа 802.3ba по разработке спецификации 100-GE.

    Как и в предыдущих разработках, стандарт 100-GE будет учитывать не только экономические и технические возможности его осуществления, но и их обратную совместимость с имеющимися системами. На данное время потребность в таких скоростях неоспоримо доказана ведущими компаниями. Постоянно растущие объемы персонализированного контента, в том числе при доставке видео с порталов типа YouTube и других ресурсов, применяющих технологии IPTV и HDTV. Нужно упомянуть также видео по требованию. Все это определяет потребность в 100 Gigabit Ethernet операторов и сервис-провайдеров.

    Но на фоне большого выбора старых и перспективно новых технологических подходов в рамках группы Ethernet мы хотим более подробно остановиться на технологии, которая сегодня только приобретает полноценную массовость использования в связи с понижением стоимости ее компонентов. Gigabit Ethernet может полноценно обеспечить работу таких приложений, как потоковое видео, видеоконференции, передача сложных изображений предъявляющих повышенные требования к пропускной способности канал. Преимущества повышения скоростей передачи в корпоративных и домашних сетях становятся все более бесспорным, с падением цен на оборудование такого класса.

    Сейчас получил максимальную популярность стандарт IEEE. Принятый в июне 1998 года, он был утвержден как IEEE 802.3z. Но поначалу в качестве среды передачи использовался только оптический кабель. С утверждением в течение последующего года дополнения стандарта 802.3ab средой передачи стала неэкранированная витая пара пятой категории.

    Gigabit Ethernet является прямым потомком Ethernet и Fast Ethernet, хорошо зарекомендовавших себя за почти двадцатилетнюю историю, сохранив их надежность и перспективность использования. Наряду с предусмотренной обратной совместимостью с предыдущими решениями (кабельная структура остается неизменной) он обеспечивает теоретическую пропускную способность в 1000 Мбит/сек, что приблизительно равно 120 Мб в секунду. Стоит отметить, что такие возможности практически равны скорости 32-битной шины PCI 33 МГц. Именно поэтому гигабитные адаптеры выпускаются как для 32-битной PCI (33 и 66 МГц), так и для 64-битной шины. Наряду с таким увеличением скорости Gigabit Ethernet унаследовал все предыдущие особенности Ethernet, такие как формат кадров, технологию CSMA/CD (чувствительный к передаче множественный доступ с обнаружением коллизий), полный дуплекс и т.д. Хотя высокие скорости внесли и свои нововведения, но именно в наследовании старых стандартов состоит огромное преимущество и популярность Gigabit Ethernet. Конечно, сейчас предложены и другие решения, такие как ATM и Fibre Channel, но здесь сразу теряется главное преимущество для конечного потребителя. Переход на другую технологию ведет за собой массовую переделку и переоборудование сетей предприятия, тогда как Gigabit Ethernet позволит плавно наращивать скорость и не изменять кабельное хозяйство. Такой подход и позволил Ethernet-технологии занять доминирующее место в области сетевых технологий и завоевать более 80 процентов мирового рынка передачи информации.

    Структура построения сети Ethernet с плавным переходам на более высокие скорости передачи данных.

    Изначально все стандарты Ethernet разрабатывались с использованием в качестве среды передачи только оптического кабеля - так и Gigabit Ethernet получил интерфейс 1000BASE-X. Он основывается на стандарте физического уровня Fibre Channel (это технология взаимодействия рабочих станций, устройств хранения данных и периферийных узлов). Так как эта технология уже была одобрена ранее, такое заимствование сильно сократило время на разработку стандарта Gigabit Ethernet. 1000BASE-X

    Нас, как и простого обывателя, больше заинтересовал 1000Base-CX в виду его работы на экранированной витой паре (STP «twinax») на короткие расстояния и 1000BASE-T для неэкранированной витой пары категории 5. Главным отличием 1000BASE-T от Fast Ethernet 100BASE-TX стало то, что используются все четыре пары (в 100BASE-TX использовались только две). Каждая пара при этом может передавать данные со скоростью 250 Мбит/сек. Стандарт обеспечивает дуплексную передачу, причем поток по каждой паре обеспечивается в двух направлениях одновременно. В связи с сильными помехами при такой передаче технически реализовать гигабитную передачу по витой паре было намного сложнее, чем в 100BASE-TX, что потребовало разработки специальной скремблированной помехоустойчивой передачи, а также интеллектуального узла распознавания и восстановления сигнала на приеме. В качестве метода кодирования в стандарте 1000BASE-T было использовано 5-уровневое импульсно-амплитудное кодирование PAM-5.

    Критерии по выбору кабеля тоже стали более жесткими. Для уменьшения наводок, однонаправленной передачи, возвратных потерь, задержек и фазового сдвига, была принята к использованию категория 5e для неэкранированной витой пары.

    Обжим кабеля для 1000BASE-T производится по одной из следующих схем:

    Прямой (straight-through) кабель.

    Перекрестный (crossover) кабель.

    Схемы обжима кабеля для 1000BASE-T

    Нововведения коснулись и уровня MAC-стандарта 1000BASE-T. В Ethernet-сетях максимальное расстояние между станциями (коллизионный домен) определяется исходя из минимального размера кадра (в стандарте Ethernet IEEE 802.3 он равнялся 64 байтам). Максимальная длина сегмента должна быть такой, чтобы передающая станция могла обнаружить коллизию до окончания передачи кадра (сигнал должен успеть пройти в другой конец сегмента и вернуться обратно). Соответственно, при увеличении скорости передачи нужно либо увеличивать размер кадра, тем самым увеличивая минимальное время на передачу кадра, либо уменьшать диаметр коллизионного домена.

    При переходе к Fast Ethernet воспользовались вторым вариантом и сократили диаметр сегмента. В Gigabit Ethernet это было неприемлемо. Ведь в этом случае стандарт, наследовавший такие составляющие Fast Ethernet, как минимальный размер кадра, CSMA/CD и время обнаружения коллизии (time slot), сможет работать в коллизионных доменах диаметром не более 20 метров. Поэтому было предложено увеличить время на передачу минимального кадра. Учитывая, что для совместимости с предыдущими Ethernet минимальный размер кадра был оставлен прежним - 64 байта, а к кадру добавилось дополнительное поле carrier extension (расширение носителя), которое дополняет кадр до 512 байт, но поле не добавляется в случае, когда размер кадра больше 512 байт. Таким образом, результирующий минимальный размер кадра получился равным 512 байтам, время на обнаружение коллизии возросло, и диаметр сегмента увеличился до тех же 200 метров (в случае 1000BASE-T). Символы в поле carrier extension не несут смысловой нагрузки, контрольная сумма для них не вычисляется. При приеме кадра это поле отбрасывается еще на уровне MAC, поэтому вышележащие уровни продолжают работать с минимальными кадрами длиной 64 байта.

    Но и тут возникли подводные камни. Хоть расширение носителя и позволило сохранить совместимость с предыдущими стандартами, оно привело к неоправданной трате полосы пропускания. Потери могут достигать 448 байт (512-64) на кадр в случае коротких кадров. Поэтому стандарт 1000BASE-T был модернизирован - ввели понятие Packet Bursting (пакетная перегруженность). Она позволяет намного эффектней использовать поле расширения. А работает это следующим образом: если у адаптера или коммутатора есть несколько небольших кадров, требующих отправки, то первый из них отправляется стандартным образом, с добавлением поля расширения до 512 байт. А все последующие отправляются в оригинальном виде (без поля расширения), с минимальным интервалом между ними в 96 бит. И, что самое главное, этот межкадровый интервал заполняется символами расширения носителя. Это происходит до тех пор, пока суммарный размер отправляемых кадров не достигнет предела 1518 байт. Таким образом, среда не замолкает на всем протяжении передачи малых кадров, поэтому коллизия может возникнуть только на первом этапе, при передаче первого правильного малого кадра с полем расширения носителя (размером 512 байт). Этот механизм позволяет существенно повысить производительность сети, особенно при больших нагрузках, за счет уменьшения вероятности возникновения коллизий.

    Но и этого оказалось мало. Сначала Gigabit Ethernet поддерживал только стандартные размеры кадров Ethernet - от минимального 64 (дополняемых до 512) до максимального 1518 байт. Из них 18 байт занимает стандартный служебный заголовок, а для данных остается от 46 до 1500 байт соответственно. Но даже пакет данных размером 1500 байт слишком мал в случае гигабитной сети. Особенно для серверов, передающих большие объемы данных. Давайте немного посчитаем. Для передачи файла размером 1 гигабайт по незагруженной Fast Ethernet сети, сервер обрабатывает 8200 пакетов/сек и затрачивает на это минимум 11 секунд. В этом случае только на обработку прерываний у компьютера мощностью 200 MIPS уйдет около 10 процентов времени. Ведь центральный процессор должен обработать (посчитать контрольную сумму, передать данные в память) каждый пришедший пакет.

    Скорость

    10 Мбит/сек

    100 Мбит/сек

    1000 Мбит/сек

    Размер кадра

    Кадры/сек

    Скорость передачи данных, Мбит/сек

    Интервал между кадрами, мкс

    Характеристики передачи сетей Ethernet.

    В гигабитных сетях ситуация еще печальней - нагрузка на процессор возрастает примерно на порядок из-за сокращения временного интервала между кадрами и соответственно запросами на прерывания к процессору. Из таблицы 1 видно, что даже в наилучших условиях (использование кадров максимального размера) кадры отстоят друг от друга на временной интервал, не превышающий 12 мкс. В случае использования кадров меньшего размера этот временной интервал только уменьшается. Поэтому в гигабитных сетях узким местом, как ни странно, стал именно этап обработки кадров процессором. Поэтому на заре становления Gigabit Ethernet фактические скорости передачи были далеки от теоретического максимума - процессоры просто не справлялись с нагрузкой.

    Очевидным выходом из сложившейся ситуации является следующее:

      увеличение временного интервала между кадрами;

      перекладывание части нагрузки обработки кадров с центрального процессора на сам сетевой адаптер.

    В настоящее время реализованы оба метода. В 1999 году было предложено увеличить размер пакета. Такие пакеты получили название гига-кадры (Jumbo Frames), и их размер мог быть от 1518 до 9018 байт (в настоящее время оборудование от некоторых производителей поддерживает и большие размеры гига-кадров). Jumbo Frames позволили уменьшить нагрузку на центральный процессор до 6 раз (пропорционально своему размеру) и, таким образом, значительно повысить производительность. Например, максимальный пакет Jumbo Frame в 9018 байт, кроме 18-байтового заголовка, содержит 9000 байт под данные, что соответствует шести стандартным максимальным кадрам Ethernet. Выигрыш в производительности достигается не из-за избавления от нескольких служебных заголовков (трафик от их передачи не превышает нескольких процентов общей пропускной способности), а за счет уменьшения времени на обработку такого кадра. Точнее, время на обработку кадра осталось прежним, но вместо нескольких небольших кадров, каждый из которых потребовал бы для себя N тактов процессора и одно прерывание, мы обрабатываем только один, больший кадр.

    Довольно быстро развивающийся мир скорости обработки информации предоставляет все более быстрые и недорогие решения по использованию специальных аппаратных средств, для снятия части нагрузки по обработке трафика с центрального процессора. Используется и технология буферизации, обеспечивающая прерывание процессора для обработки нескольких кадров сразу. На данное время технология Gigabit Ethernet становится все более доступной для использования в домашних условиях, что напрямую заинтересует простого пользователя. Более быстрый доступ к домашним ресурсам обеспечит качественный просмотр видео большого разрешения, займет меньше времени для перераспределения информации и, наконец, позволит вживую кодировать видеопотоки на сетевые диски.

    При подготовке статьи использовались метериалы ресурсов http://www.ixbt.com/ и http://www.wikipedia.org/ .

    Статья прочитана 14104 раз(а)

    Подписаться на наши каналы

    Ещё десять лет назад домашний Интернет был редкостью, сейчас в городах он есть практически у всех. Причем устройство уже не одно, вот и приходится делать дома довольно разветвленную сеть, тянуть провода, устанавливать интернет-розетки. Провода для интернета называются витой парой. Заканчиваются они специальной вилкой-коннектором. Сам процесс подключения кабеля к коннектору называют «обжим витой пары». О том, что это такое и как сделать все своими руками и поговорим дальше.

    Витая пара — специальный кабель, который состоит из одной или более пар медных проводов в защитной оболочке, скрученных между собой с определенным шагом. Если в кабеле несколько пар, шаг их скрутки разный. Это позволяет уменьшить влияние проводников друг на друга. Используется витая пара для создания сетей передачи данных (Интернет). Кабель подключается к устройствам через специальные коннекторы, которые вставляются в стандартизованные разъемы оборудования.

    Виды и типы

    Витая пара может быть защищенной и нет. Защищенная пара имеет экраны из алюминиевой фольги или оплетки. Защита может быть общей — на кабель — и попарной — на каждую пару отдельно. Для прокладки в помещениях можно брать неэкранированный кабель (маркировка UTP) или с общим экраном из фольги (FTP). Для прокладки на улице лучше брать еще с дополнительной металлической оплеткой (SFTP). Если по трассе витая пара идет параллельно с электрическими кабелями, имеет смысл взять кабель с защитой каждой пары (STP и S/STP). Благодаря двойному экрану длина такого кабеля может быть более 100 м.

    Витая пара — кабель, который используют для подключения проводного интернета

    Еще есть витая пара многожильная и одножильная. Одножильные провода хуже гнутся, но имеет лучшие характеристики (сигнал можно предавать на большие расстояния) и лучше переносят обжим. Их используют при подключении интернет-розеток. В этом случае кабель фиксируется при монтаже и затем почти не изгибается.

    Многожильная витая пара хорошо гнется, но имеет большее затухание (хуже проходит сигнал), ее проще прорезать при обжиме, сложнее вставить в коннектор. Используется там, где важна гибкость — от интернет-розетки до оконечного устройства (компьютера, ноутбука, роутера).

    Выбор категории и защитной оболочки

    И несколько слов о цвете защитной оболочки и форме кабеля. Чаще всего встречается серая витая пара, но есть и оранжевая (ярко-красная). Первый вид — обычная, второй — в оболочке, не поддерживающей горение. Негорючую витую пару имеет смысл использовать в деревянных домах (на всякий случай), но особой необходимости в этом нет.

    По форме витая пара может быть круглой или плоской. Круглая витая пара используется практически везде, а плоская нужна только при прокладке по полу. Хотя никто вам не мешает пустить ее под плинтусом или в специальном плинтусе с .

    Количество пар

    В основном витая пара выпускается из 2 пар (4 провода) и 4 пар (8 проводов). По современным стандартами при скорости до 100 Мб/сек можно использовать двухпарные кабели (четыре провода). При скорости от 100 Мб/сек до 1 Гб/сек нужны 4 пары (восемь проводов).

    Лучше сразу брать кабель на 8 проводов…чтобы не пришлось перетягивать

    В настоящее время скорость передачи данных при Интернет соединении для частных домов и квартир не превышает 100 Мб/сек, то есть можно брать витую пару из 4 проводов. Но ситуация меняется настолько быстро, что нет гарантии, что через несколько лет порог в 100 Мб/сек будет превышен, а значит, придется перетягивать кабель. Собственно, уже сейчас есть тарифы со скоростью 120 Мбит/сек и выше. Так что лучше все-таки сразу тянуть 8 проводов.

    Что такое обжим витой пары и как его делать

    Для подключения к периферийному устройству витая пара заканчивается штекером специальной формы — коннектором, в бороздки которого заводятся провода. Заканчиваются эти бороздки медными контактными пластинами, а примерно посредине их длины перпендикулярно к плоскости пластин установлена металлическая пластина с прорезями (ножи). Когда происходит обжим витой пары, вставленные провода прижимаются к ножам, они прорезают защитную оболочку проводов, а сами плотно прижимаются к медному проводнику, обеспечивая хороший контакт.

    На первый взгляд такой способ соединения кажется ненадежным, но практика показала, что он, как минимум, не уступает качественной пайке, а порой еще и надежнее, так как шансы повредить изоляцию минимальны. Но хороший контакт обеспечивается только при условии соблюдения стандартов при изготовлении коннекторов и витой пары.

    Для обжима витой пары нужны специальные клещи с гнездом под разъем. В это гнездо вставляется разъем с заправленными в него проводами, потом клещи сжимаются до упора. На этом обжим витой пары окончен. Такой способ надежен, так как усилие клещи развивают стандартное, которое как раз необходимо для прорезания изоляции, но недостаточно для того чтобы повредить проводники. Такие обжимные клещи (или обжимки) стоят порядка 15-18$. Если вам надо установить несколько коннекторов, уже можно подумать о покупке такого оборудования. Если нужно оконечить всего один кусок кабеля, можно попробовать обойтись обычной отверткой или плоскогубцами.

    При обжиме витой пары отверткой, каждый проводок отдельно вдавливается в вдавливается в нож до прорезания оболочки. Способ не самый удобный — отвертка соскальзывает, сложно проконтролировать прорезана ли оболочка, нет уверенности в том, что провод не повредился. Но такой способ обжима тоже возможен.

    При обжиме витой пары плоскогубцами надо быть еще аккуратнее. Губками прижимаем пластину, но так как форма у плоскогубцев не заточена под разъем, легко пережать по краям провода или поломать корпус. Потому жмем понемногу, с одной и с другой стороны. Если середина не прожалась, возьмите отвертку и поправьте провода ей.

    Выбор схемы распиновки проводов

    Как вы догадываетесь, провода в коннекторе надо располагать в определенном прядке. Этот порядок на языке профессионалов называется «распиновка». В нашей стране приняты две схемы расположения проводов: прямая (568В) и перекрестная (kross-over на русском «кросс-овер», обозначается 568А). Прямая распиновка используется при соединении свича/хаба/роутера с компьютером или другим устройством, перекрестная — при соединении двух компьютеров напрямую. То есть, обычно используем прямую схему, которая маркируется 568B. Порядок проводов при обжиме витой пары в этом случае как на фото.

    Если посмотрите на эту схему, поймете, почему она называется прямой. Потому что если обжим витой пары делают с ее помощью, провода на обоих концах шнура (если делается он) располагаются одинаково.

    На следующей схеме приведена перекрестная схема распиновки витой пары. С названием тоже все понятно — на ответной стороне провода расположены в другом — перевернутом- порядке.

    Есть еще схема для обжима витой пары на 4 жилы (двухпарный кабель). Часть дорожек в коннекторе при этом остаются пустыми. Но порядок действий не меняется.

    Этот способ соединения используется только для подключения периферийных устройств, так что схема только прямая. Обратите внимание, на каждой схеме стоят цифры от 1 до 8. Они обозначают номер контакта. При укладке проводов в коннектор или при подключении к розетке, на корпусе ищите цифры. Они выдавлены, но на прозрачном или белом пластике рассмотреть их непросто. Найдя цифры 1 или 8 вы знаете, как надо держать коннектор и в каком порядке располагать провода.

    Порядок обжима витой пары

    Теперь собственно о самом процессе. При работе надо быть аккуратным, чтобы не повредить проводники или изоляцию в неположенном месте. Если нет специальных инструментов для зачистки изоляции, пользуются канцелярским или остро заточенным кухонным ножом. Чтобы не повредить изоляцию, сначала лишь немного ее надрезаете, потом кабель сгибаете. В полимерную оболочку специально добавляют мел, что делает ее хрупкой при изломе. Так что чуть надрезанная изоляция при изгибе лопается. Это что касается зачистки оболочки кабеля. Надо будет еще обрезать проводники, тут никаких особых хитростей — берете кусачки и откусываете.

    Порядок действий при обжиме витой пары такой:

    1. С кабеля аккуратно снимаем изоляцию. Делаем надрез на расстоянии около 15 мм от края, не стараясь прорезать оболочку насквозь. Затем беремся за кабель с двух сторон от разреза и сгибаем. Оболочка лопается по месту реза. Надо пару раз изменить направление изгиба, чтобы изоляция отделилась полностью. Затем просто тянем отделившийся кусок в сторону, он снимается без особых усилий.

    2. Проводники расправляем, если есть экран, его скручиваем и отгибаем в сторону. Провода выкладываем по цветам согласно требуемой схемы. Зажимаем их между большим и указательным пальцами, расправляем, чтобы они были прямыми и шли один возле другого.

    3. Берем кусачки, отрезаем провода так, чтобы они торчали начала изоляции на 9-10 мм.

    4. Берем коннектор RJ-45, поворачиваем «хвостиком» вниз, вставляем провода в желобки. Это, пожалуй, самая сложная часть. Без опыта они лезть на свои места не хотят.

    5. Вставленные провода продвигаем вперед до упора. При этом, если вы правильно отрезали провода, край изоляции упирается в риску на коннекторе. Именно такой обжим интернет кабеля будет работать без проблем. Если из коннектора выходит не кабель в оболочке, а торчат провода в изоляции, через некоторое время возможны проблемы, придется обжимать витую пару по-новой.

      «До упора» — это чтобы и провода дошли до конца желобков, и изоляция уперлась в бортик

    6. Берем клещи, в гнездо вставляем коннектор (там прорезь специальной формы, так что не ошибетесь), сжимаем ручки. На этом обжим витой пары закончен.

      Обжим витой пары, последний этап — прижимаем клещами

    Видео по теме

    Как ни описывай процессы словами, лучше посмотреть все в действии. Потому видео стоит посмотреть чтобы иметь полное представление о том, что придется делать и как. В следующем ролике рассказывают как обжать интернет кабель без специальных клещей.

    Процесс обжимки витой пары на 4 жилы не слишком отличается от восьмижильного, но есть определенные трудности при попытках заправить провода в нужные канавки.


    Интернет кабель может заканчиваться не только коннектором. Он может заходить в интернет-розетку. К ней тоже надо подвести витую пару и подключить ее.

    Не успело еще, как говорится, обсохнуть молоко на губах только что родившего­ся стандарта быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802.3 (если только кто-нибудь в срочном порядке не придумает называть стандарты, скажем, 802.3ы. В свое время, Бернард Шоу предлагал расширить английский алфавит и включить в него, в частности, букву «ы», но был не убедителен.).

    Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3u, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограничения его размера. Новый стандарт удовлетворил всем этим требованиям.

    Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на схеме "а", состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (схема "б"). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

    Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet .

    Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD . Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

    Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %.

    Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо.

    Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается.

    Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду. Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

    Кабели гигабитного Ethernet

    Название

    Тип

    Длина сегмента

    Преимущества

    1000Base-SX

    Оптоволокно

    550м

    Многомодовое волокно (50, 62,5 мкм)

    1000Base-LX

    Оптоволокно

    5000м

    Одномодовое (10 мкм) или многомодовое (50, 62,5 мкм) волокно

    1000Base-CX

    2 экранированные витые пары

    25м

    Экранированная витая пара

    1000Base-T

    4 неэкранированные витые пары

    100м

    Стандартная витая пара 5-й категории

    Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в таблице, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой вариант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой.

    1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное признание.

    Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это и будет самый популярный гигабитный Ethernet.

    Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу выбора кодовых слов. При этом принимаются в расчет следующие правила:

    Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

    Ни в одном кодовом слове не должно быть более шести нулей или шести единиц.

    Почему именно такие правила?

    Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком.

    Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц.

    Ссбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся computer science, не в восторге от того, что преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

    Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 нс для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения. Таким образом, один сигнал может означать 00, 01,10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна 125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления.

    1 Гбит/с - это довольно много. Например, если приемник отвлечется на какое-то дело в течение 1 мс и при этом забудет или не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго. В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet , хотя эти системы довольно сильно различаются).

    Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.

    Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт 802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.