Какие факторы влияют на степень избыточности данных. Сжатие без потерь и с потерями. Когда необходимо сжатие данных

Теория и стратегия представления данных

Сжатие данных широко используется в самых разнообразных контекстах программирования. Все популярные операционные системы и языки программирования имеют многочисленные инструментальные средства и библиотеки для работы с различными методами сжатия данных.

Правильный выбор инструментальных средств и библиотек сжатия для конкретного приложения зависит от характеристик данных и назначения самого приложения: потоковой передачи данных или работы с файлами; ожидаемых шаблонов и закономерностей в данных; относительной важности использования ресурсов ЦП и памяти, потребностей в каналах передачи и требований к хранению и других факторов.

Что понимается под сжатием данных? Если говорить кратко, то сжатие устраняет из данных избыточность ; в терминах же теории информации сжатие увеличивает энтропию сжатого текста. Однако оба этих утверждения по существу по существу верны в силу определения самих понятий. Избыточность может быть выражена в самых разных формах. Одним типом является последовательности повторяющихся битов (11111111). Вторым – последовательности повторяющихся байтов (XXXXXXXX). Однако чаще избыточность проявляется в более крупном масштабе и выражается либо закономерностями в наборе данных, взятом как единое целое, либо последовательностями различной длины, имеющими общие признаки. По существу, цель сжатия данных заключается в поиске алгоритмических преобразований представлений данных, которые позволят получить более компактные представления «типовых» наборов данных. Это описание может показаться несколько туманным, но мы постараемся раскрыть его суть на практических примерах.

Сжатие без потерь и с потерями

Фактически существуют два в корне различающихся подхода к сжатию данных: сжатие с потерями и без потерь. Эта статья, в основном, посвящена методам сжатия без потерь, но для начала полезно изучить различия. Сжатие без потерь предусматривает преобразование представления набора данных таким образом, чтобы затем можно было в точности воспроизвести первоначальный набор данных путем обратного преобразования (распаковки). Сжатие с потерями – это представление, которое позволяет воспроизводить нечто «очень похожее» на первоначальный набор данных. Преимущество использования методов сжатия с потерями заключается в том, что они зачастую позволяют получать намного более компактные представления данных по сравнению с методами сжатия без потерь. Чаще всего методы сжатия с потерями применяются для обработки изображений, звуковых файлов и видео. Сжатие с потерями в этих областях может оказаться уместным благодаря тому, что человек воспринимает битовую комбинацию цифрового изображения/звука не с «побитовой» точностью, а скорее оценивает музыку или изображение в целом.

С точки зрения «обычных» данных сжатие с потерями – неудачный вариант. Нам не нужна программа, которая делает «примерно» то, а не точно то, что было запрошено в действительности. То же касается и баз данных, которые должны хранить именно те данные, которые были в них загружены. По крайней мере, это не подойдет для решения большинства задач (и мне известно очень мало практических примеров использования сжатия с потерями за пределами тех данных, которые сами по себе описывают чувственное восприятие реального мира (например, изображений и звуков)).

Пример набора данных

В данной статье будет использоваться специально подготовленное гипотетическое представление данных. Приведем простой для понимания пример. В городе Гринфилд (штат Массачусетс, США) используются префиксы телефонных номеров 772- , 773- и 774- . (К сведению читателей за пределами США: в США местные телефонные номера являются семизначными и традиционно представляются в виде ###-####; префиксы назначаются в соответствии с географическим местоположением). Также предположим, что из всех трех префиксов чаще всего используется первый. Частями суффикса могут быть любые другие цифры с приблизительно равной вероятностью. Набор интересующих нас данных находится в «списке всех телефонных номеров, которые в настоящее время находятся в активном пользовании». Можно попробовать подобрать причину, почему это могло бы быть интересным с точки зрения программирования, но в данном случае это не важно.

Изначально интересующий нас набор данных имеет стандартное представление: многоколоночный отчет (возможно, сгенерированный в качестве результата выполнения какого-либо запроса или процесса компиляции). Первые несколько строк этого отчета могли бы выглядеть следующим образом:

Таблица 1. Многоколоночный отчет

============================================================= 772-7628 772-8601 772-0113 773-3429 774-9833 773-4319 774-3920 772-0893 772-9934 773-8923 773-1134 772-4930 772-9390 774-9992 772-2314 [...]

Сжатие пустых мест

Сжатие пустых мест может быть охарактеризовано в более общем смысле как «удаление того, что нас не интересует». Даже несмотря на то, что этот метод с технической точки зрения представляет собой метод сжатия с потерями, он все равно полезен для многих типов представлений данных, с которыми мы сталкиваемся в реальном мире. Например, даже несмотря на то, что HTML намного удобнее читать в текстовом редакторе при добавлении отступов и междустрочных интервалов, ни одно из этих «пустых мест» никак не влияет на визуализацию HTML-документа в Web-браузере. Если вам точно известно, что конкретный документ HTML предназначается исключительно для Web-браузера (или для какого-либо робота/поискового агента), то, возможно, будет неплохо убрать все пустые места, чтобы документ передавался быстрее и занимал меньше места в хранилище. Все то, что мы удаляем при сжатии пустых мест, в действительности не несет никакой функциональной нагрузки.

В случае с представленным примером из описанного отчета можно удалить лишь небольшую часть информации. Строка символов «=» по верхнему краю отчета не несет никакого функционального наполнения; то же самое касается символов «-» в номерах и пробелов между номерами. Все это полезно для человека, читающего исходный отчет, но не имеет никакого значения, если мы рассматриваем эти символы в качестве «данных». То, что мы удаляем, – это не совсем «пустое место» в традиционном смысле, но является им по сути.

Сжатие пустых мест крайне «дешево» с точки зрения реализации. Вопрос состоит лишь в считывании потока данных и исключении из выходного потока нескольких конкретных значений. Во многих случаях этап «распаковки» вообще не предусматривается. Однако даже если бы мы захотели воссоздать что-то близкое к оригиналу потока данных, это потребовало бы лишь небольшого объема ресурсов ЦП или памяти. Восстановленные данные не обязательно будут совпадать с исходными данными; это зависит от того, какие правила и ограничения содержались в оригинале. Страница HTML, напечатанная человеком в текстовом редакторе, вероятно, будет содержать пробелы, расставленные согласно определенным правилам. Это же относится и к автоматизированным инструментальным средствам, которые часто создают «обоснованные» отступы и интервалы в коде HTML. В случае с жестким форматом отчета, представленным в нашем примере, не существует никаких причин, по которым первоначальное представление не могло бы быть воссоздано каким-либо «форматирующим распаковщиком».

Групповое кодирование

Групповое кодирование (RLE) является простейшим из широко используемых методов сжатия без потерь. Подобно сжатию пустых мест, оно не требует особых затрат, особенно для декодирования. Идея, стоящая за данным методом, заключается в том, что многие представления данных состоят большей частью из строк повторяющихся байтов. Наш образец отчета является одним из таких представлений данных. Он начинается со строки повторяющихся символов «=» и имеет разбросанные по отчету строки, состоящие только из пробелов. Вместо того чтобы представлять каждый символ с помощью его собственного байта, метод RLE предусматривает (иногда или всегда) указание количества повторений, за которым следует символ, который необходимо воспроизвести указанное число раз.

Если в обрабатываемом формате данных преобладают повторяющиеся байты, то может быть уместным и эффективным использование алгоритма, в котором один или несколько байтов указывают количество повторений, а затем следует повторяемый символ. Однако если имеются строки символов единичной длины, для их кодирования потребуются два (или более) байта. Другими словами, для одного символа ASCII «X» входного потока мог бы потребоваться выходной битовый поток 00000001 01011000 . С другой стороны, для кодирования ста следующих друг за другом символов «X» использовалось бы то же самое количество битов: 01100100 01011000 , что весьма эффективно.

В различных вариантах RLE часто применяется избирательное использование байтов для указания числа повторений, в то время как остальные байты просто представляют сами себя. Для этого должно быть зарезервировано как минимум одно однобайтовое значение, которое в случае необходимости может удаляться из выходных данных. Например, в нашем образце отчета по телефонным номерам известно, что вся информация во входном потоке состоит из простых символов ASCII. В частности, у всех таких символов первый бит ASCII-значения равен 0. Мы могли бы использовать этот первый бит ASCII для указания на то, что байт указывает число повторений, а не обычный символ. Следующие семь битов байта итератора могли бы использоваться для указания числа повторений, а в следующем байте мог бы содержаться повторяющийся символ. Так, например, мы могли бы представить строку «YXXXXXXXX» следующим образом:

"Y" Iter(8) "X" 01001111 10001000 01011000

Этот пример не объясняет, как отбрасывать значения байта итератора и не предусматривает возможности использования более 127 повторений одного символа. Однако различные вариации RLE при необходимости решают и эти задачи.

Кодирование по методу Хаффмана

Кодирование по методу Хаффмана рассматривает таблицу символов как целый набор данных. Сжатие достигается путем нахождения «весовых коэффициентов» каждого символа в наборе данных. Некоторые символы используются чаще других, поэтому кодирование по методу Хаффмана предполагает, что частые символы должны кодироваться меньшим количеством бит, чем более редкие символы. Существуют различные варианты кодирования по методу Хаффмана, но исходный (и чаще всего применяемый) вариант включает поиск самого распространенного символа и кодирование его одним битом, например, 1. И если в закодированной последовательности встречается 0, это значит, что на этом месте находится другой символ, закодированный большим количеством бит.

Представим, что мы применили кодирование по методу Хаффмана для кодирования нашего примера (предположим, что мы уже подвергли отчет сжатию пустых мест). Мы могли бы получить следующий результат:

Таблица 2. Результаты кодирования по методу Хаффмана

Encoding Symbol 1 7 010 2 011 3 00000 4 00001 5 00010 6 00011 8 00100 9 00101 0 00111 1

Исходный набор символов (состоящий из чисел) может быть легко закодирован (без сжатия) в виде 4-х битных последовательностей (полубайтов). Приведенное кодирование по методу Хаффмана будет использовать до 5 битов для символов в наихудшем случае, что очевидно хуже кодирования с помощью полубайтов. Однако в лучшем случае потребуется всего 1 бит; при этом известно, что именно лучший случай будет использоваться чаще всего (так как именно этот символ чаще всего встречается в данных). Таким образом, мы могли бы закодировать конкретный телефонный номер следующим образом:

772 7628 --> 1 1 010 1 00010 010 00011

При кодировании с помощью полубайтов представление телефонного номера заняло бы 28 бит, в нашем же случае кодирование занимает 19 бит. Пробелы добавлены в пример только для лучшего восприятия; их присутствие в кодированных символах не требуется, так как по таблице кодов всегда можно определить, достигнут конец закодированного символа или нет (правда, при этом все равно необходимо отслеживать текущую позицию в данных).

Кодирование по методу Хаффмана по-прежнему является очень «дешевым» для декодирования с точки зрения процессорного времени. Однако оно требует поиска в таблице кодов, поэтому не может быть столь же «дешевым», как RLE. Кодирование по методу Хаффмана является довольно затратным, так как требует полного сканирования данных и построения таблицы частот символов. В некоторых случаях при использовании кодирования по методу Хаффмана уместным является «короткий путь». Стандартное кодирование по методу Хаффмана применяется к конкретному кодируемому набору данных, при этом в выходных данных вначале следует таблица символов. Однако если передается не одиночный набор данных, а целый формат с одинаковыми закономерностями встречаемости символов, то можно использовать глобальную таблицу Хаффмана. При наличии такой таблицы мы можем жестко запрограммировать поиск в своих исполняемых файлах, что значительно «удешевит» сжатие и распаковку (за исключением начальной глобальной дискретизации и жесткого кодирования). Например, если мы знаем, что наш набор данных будет представлять собой прозу на английском языке, то частоты появления букв хорошо известны и постоянны для различных наборов данных.

Сжатие по алгоритму Лемпеля-Зива

Вероятно, самым значимым методом сжатия без потерь является алгоритм Лемпеля-Зива. В этой статье речь пойдет о варианте LZ78, но LZ77 и другие варианты работают схожим образом. Идея, заложенная в алгоритме LZ78, заключается в кодировании потоковой последовательности байтов с использованием некоторой динамической таблицы. В начале сжатия битового потока таблица LZ заполняется фактическим набором символов, наряду с несколькими пустыми слотами. В алгоритме применяются таблицы разных размеров, но в данном примере с телефонными номерами (со сжатием пустых мест) используется таблица из 32 элементов (этого достаточно для данного примера, но может оказаться мало для других типов данных). Вначале мы заполняем первые десять слотов символами используемого алфавита (цифрами). По мере поступления новых байтов сначала выводится значение из таблицы, соответствующее самой длинной подходящей последовательности, а затем в следующий доступный слот записывается последовательность длиной N+1. В наихудшем случае мы используем 5 битов вместо 4 для отдельного символа, однако в большинстве случаев мы сможем обойтись 5 битами на несколько символов. Рассмотрим пример работы этого алгоритма (слот таблицы указан в квадратных скобках):

7 --> Поиск: 7 найдено --> добавлять нечего --> продолжить поиск 7 --> Поиск: 77 не найдено --> добавить "77" to --> вывести =00111 2 --> Поиск: 72 не найдено --> добавить "72" to --> вывести =00111 7 --> Поиск: 27 не найдено --> добавить "27" to --> вывести =00010 6 --> Поиск: 76 не найдено --> добавить "76" to --> вывести =00111 2 --> Поиск: 62 не найдено --> добавить "62" to --> вывести =00110 8 --> Поиск: 28 не найдено --> добавить "28" to --> вывести =00010

До сих пор мы не извлекли из этого никакой пользы, но давайте перейдем к следующему телефонному номеру:

7 --> Поиск: 87 не найдено --> добавить "87 to --> вывести =00100 7 --> Поиск: 77 найдено --> добавлять нечего --> продолжить поиск 2 --> Поиск: 772 не найдено --> добавить "772" to --> вывести =01011 8 --> Поиск: 28 найдено --> добавлять нечего --> продолжить поиск 6 --> Поиск: 286 не найдено --> добавить "286" to --> вывести =10000 ....

Приведенных операций должно быть достаточно для демонстрации работы модели. Хотя никакого заметного сжатия пока не достигнуто, уже видно, что мы повторно использовали слоты 11 и 16, закодировав по два символа одним выходным символом. Кроме того, мы уже накопили крайне полезную последовательность байтов 772 в слоте 18, которая впоследствии неоднократно будет встречаться в потоке.

Алгоритм LZ78 заполняет одну таблицу символов полезными (предположительно) записями, затем записывает эту таблицу, очищает ее и начинает новую. В такой ситуации таблица из 32 символов может оказаться недостаточной, так как будет очищена прежде, чем нам удастся неоднократно воспользоваться такими последовательностями, как 772 и ей подобные. Однако с помощью небольшой таблицы проще проиллюстрировать работу алгоритма.

В типичных наборах данных варианты метода Лемпеля-Зива достигают значительно более высоких коэффициентов сжатия, чем методы Хаффмана и RLE. С другой стороны, варианты метода Лемпеля-Зива тратят значительные ресурсы на итерации, а их таблицы могут занимать много места в памяти. Большинство существующих инструментальных средств и библиотек сжатия используют комбинацию методов Лемпеля-Зива и Хаффмана.

Правильная постановка задачи

Выбрав правильный алгоритм, можно получить значительный выигрыш даже по сравнению с более оптимизированными, но неподходящими методами. Точно так же правильный выбор представления данных зачастую оказывается важнее выбора методов сжатия (которые всегда являются своего рода последующей оптимизацией требуемых функций). Простой пример набора данных, приводимый в этой статье, служит отличной иллюстрацией ситуации, когда переосмысление проблемы будет более удачным решением, чем использование любого из приведенных методов сжатия.

Необходимо еще раз взглянуть на проблему, которую представляют данные. Так как это не общий набор данных и для него существуют четкие предварительные требования, то проблему можно переформулировать. Известно, что существует максимум 30000 телефонных номеров (от 7720000 до 7749999), некоторые из которых являются активными, а некоторые – нет. Перед нами не стоит задача вывести полное представление всех активных номеров. Нам просто требуется указать с помощью логического значения, активен данный номер или нет. Размышляя о проблеме подобным образом, мы можем просто выделить 30000 битов в памяти и в системе хранения и использовать каждый бит для индикации активности («да» или «нет») соответствующего телефонного номера. Порядок битов в битовом массиве может соответствовать телефонным номерам, отсортированным по возрастанию (от меньшего к большему).

Подобное решение на основе битового массива идеально со всех точек зрения. Оно требует ровно 3750 байт для представления набора данных; различные методы сжатия будут использовать меняющийся объем в зависимости от количества телефонных номеров в наборе и эффективности сжатия. Однако если 10000 из 30000 возможных телефонных номеров являются активными и если даже самому эффективному методу сжатия требуется несколько байтов на один телефонный номер, то битовый массив однозначно выигрывает. С точки зрения потребностей в ресурсах ЦП битовый массив не только превосходит любой из рассмотренных методов сжатия, но и оказывается лучше, чем обычный метод представления телефонных номеров в виде строк (без сжатия). Проход по битовому массиву и увеличение счетчика текущего телефонного номера могут эффективно выполняться даже во встроенном кэше современных процессоров.

Из этого простого примера можно понять, что далеко не каждая проблема имеет такое идеальное решение, как рассмотренная выше. Многие проблемы действительно требуют использования значительного объема ресурсов памяти, пропускной способности, хранилища и ЦП; и в большинстве подобных случаев методы сжатия могут облегчить или снизить эти требования. Но более важный вывод состоит в том, что перед применением методов сжатия стоит еще раз удостовериться, что для представления данных выбрана правильная концепция.

Посвящается памяти Клода Шеннона (Claude Shannon).

GORKOFF 24 февраля 2015 в 11:41

Методы сжатия данных

  • Алгоритмы

Мы с моим научным руководителем готовим небольшую монографию по обработке изображений. Решил представить на суд хабрасообщества главу, посвящённую алгоритмам сжатия изображений. Так как в рамках одного поста целую главу уместить тяжело, решил разбить её на три поста:
1. Методы сжатия данных;
2. Сжатие изображений без потерь;
3. Сжатие изображений с потерями.
Ниже вы можете ознакомиться с первым постом серии.

На текущий момент существует большое количество алгоритмов сжатия без потерь, которые условно можно разделить на две большие группы:
1. Поточные и словарные алгоритмы. К этой группе относятся алгоритмы семейств RLE (run-length encoding), LZ* и др. Особенностью всех алгоритмов этой группы является то, что при кодировании используется не информация о частотах символов в сообщении, а информация о последовательностях, встречавшихся ранее.
2. Алгоритмы статистического (энтропийного) сжатия. Эта группа алгоритмов сжимает информацию, используя неравномерность частот, с которыми различные символы встречаются в сообщении. К алгоритмам этой группы относятся алгоритмы арифметического и префиксного кодирования (с использованием деревьев Шеннона-Фанно, Хаффмана, секущих).
В отдельную группу можно выделить алгоритмы преобразования информации. Алгоритмы этой группы не производят непосредственного сжатия информации, но их применение значительно упрощает дальнейшее сжатие с использованием поточных, словарных и энтропийных алгоритмов.

Поточные и словарные алгоритмы

Кодирование длин серий

Кодирование длин серий (RLE - Run-Length Encoding) - это один из самых простых и распространённых алгоритмов сжатия данных. В этом алгоритме последовательность повторяющихся символов заменяется символом и количеством его повторов.
Например, строку «ААААА», требующую для хранения 5 байт (при условии, что на хранение одного символа отводится байт), можно заменить на «5А», состоящую из двух байт. Очевидно, что этот алгоритм тем эффективнее, чем длиннее серия повторов.

Основным недостатком этого алгоритма является его крайне низкая эффективность на последовательностях неповторяющихся символов. Например, если рассмотреть последовательность «АБАБАБ» (6 байт), то после применения алгоритма RLE она превратится в «1А1Б1А1Б1А1Б» (12 байт). Для решения проблемы неповторяющихся символов существуют различные методы.

Самым простым методом является следующая модификация: байт, кодирующий количество повторов, должен хранить информацию не только о количестве повторов, но и об их наличии. Если первый бит равен 1, то следующие 7 бит указывают количество повторов соответствующего символа, а если первый бит равен 0, то следующие 7 бит показывают количество символов, которые надо взять без повтора. Если закодировать «АБАБАБ» с использованием данной модификации, то получим «-6АБАБАБ» (7 байт). Очевидно, что предложенная методика позволяет значительно повысить эффективность RLE алгоритма на неповторяющихся последовательностях символов. Реализация предложенного подхода приведена в Листинг 1:

  1. type
  2. function RLEEncode(InMsg: ShortString) : TRLEEncodedString;
  3. MatchFl: boolean ;
  4. MatchCount: shortint ;
  5. EncodedString: TRLEEncodedString;
  6. N, i: byte ;
  7. begin
  8. N : = 0 ;
  9. SetLength(EncodedString, 2 * length(InMsg) ) ;
  10. while length(InMsg) >= 1 do
  11. begin
  12. MatchFl : = (length(InMsg) > 1 ) and (InMsg[ 1 ] = InMsg[ 2 ] ) ;
  13. MatchCount : = 1 ;
  14. while (MatchCount <= 126 ) and (MatchCount < length(InMsg) ) and ((InMsg[ MatchCount] = InMsg[ MatchCount + 1 ] ) = MatchFl) do
  15. MatchCount : = MatchCount + 1 ;
  16. if MatchFl then
  17. begin
  18. N : = N + 2 ;
  19. EncodedString[ N - 2 ] : = MatchCount + 128 ;
  20. EncodedString[ N - 1 ] : = ord (InMsg[ 1 ] ) ;
  21. else
  22. begin
  23. if MatchCount <> length(InMsg) then
  24. MatchCount : = MatchCount - 1 ;
  25. N : = N + 1 + MatchCount;
  26. EncodedString[ N - 1 - MatchCount] : = - MatchCount + 128 ;
  27. for i : = 1 to MatchCount do
  28. EncodedString[ N - 1 - MatchCount + i] : = ord (InMsg[ i] ) ;
  29. end ;
  30. delete(InMsg, 1 , MatchCount) ;
  31. end ;
  32. SetLength(EncodedString, N) ;
  33. RLEEncode : = EncodedString;
  34. end ;

Декодирование сжатого сообщения выполняется очень просто и сводится к однократному проходу по сжатому сообщению см. Листинг 2:
  1. type
  2. TRLEEncodedString = array of byte ;
  3. function RLEDecode(InMsg: TRLEEncodedString) : ShortString;
  4. RepeatCount: shortint ;
  5. i, j: word ;
  6. OutMsg: ShortString;
  7. begin
  8. OutMsg : = "" ;
  9. i : = 0 ;
  10. while i < length(InMsg) do
  11. begin
  12. RepeatCount : = InMsg[ i] - 128 ;
  13. i : = i + 1 ;
  14. if RepeatCount < 0 then
  15. begin
  16. RepeatCount : = abs (RepeatCount) ;
  17. for j : = i to i + RepeatCount - 1 do
  18. OutMsg : = OutMsg + chr (InMsg[ j] ) ;
  19. i : = i + RepeatCount;
  20. else
  21. begin
  22. for j : = 1 to RepeatCount do
  23. OutMsg : = OutMsg + chr (InMsg[ i] ) ;
  24. i : = i + 1 ;
  25. end ;
  26. end ;
  27. RLEDecode : = OutMsg;
  28. end ;

Вторым методом повышения эффективности алгоритма RLE является использование алгоритмов преобразования информации, которые непосредственно не сжимают данные, но приводят их к виду, более удобному для сжатия. В качестве примера такого алгоритма мы рассмотрим BWT-перестановку, названную по фамилиям изобретателей Burrows-Wheeler transform. Эта перестановка не изменяет сами символы, а изменяет только их порядок в строке, при этом повторяющиеся подстроки после применения перестановки собираются в плотные группы, которые гораздо лучше сжимаются с помощью алгоритма RLE. Прямое BWT преобразование сводится к последовательности следующих шагов:
1. Добавление к исходной строке специального символа конца строки, который нигде более не встречается;
2. Получение всех циклических перестановок исходной строки;
3. Сортировка полученных строк в лексикографическом порядке;
4. Возвращение последнего столбца полученной матрицы.
Реализация данного алгоритма приведена в Листинг 3.
  1. const
  2. EOMsg = "|" ;
  3. function BWTEncode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. LastChar: ANSIChar;
  6. N, i: word ;
  7. begin
  8. InMsg : = InMsg + EOMsg;
  9. N : = length(InMsg) ;
  10. ShiftTable[ 1 ] : = InMsg;
  11. for i : = 2 to N do
  12. begin
  13. LastChar : = InMsg[ N] ;
  14. InMsg : = LastChar + copy(InMsg, 1 , N - 1 ) ;
  15. ShiftTable[ i] : = InMsg;
  16. end ;
  17. Sort(ShiftTable) ;
  18. OutMsg : = "" ;
  19. for i : = 1 to N do
  20. OutMsg : = OutMsg + ShiftTable[ i] [ N] ;
  21. BWTEncode : = OutMsg;
  22. end ;

Проще всего пояснить это преобразование на конкретном примере. Возьмём строку «АНАНАС» и договоримся, что символом конца строки будет символ «|». Все циклические перестановки этой строки и результат их лексикографической сортировки приведены в Табл. 1.

Т.е. результатом прямого преобразования будет строка «|ННАААС». Легко заметить, что это строка гораздо лучше, чем исходная, сжимается алгоритмом RLE, т.к. в ней существуют длинные подпоследовательности повторяющихся букв.
Подобного эффекта можно добиться и с помощью других преобразований, но преимущество BWT-преобразования в том, что оно обратимо, правда, обратное преобразование сложнее прямого. Для того, чтобы восстановить исходную строку, необходимо выполнить следующие действия:
Создать пустую матрицу размером n*n, где n-количество символов в закодированном сообщении;
Заполнить самый правый пустой столбец закодированным сообщением;
Отсортировать строки таблицы в лексикографическом порядке;
Повторять шаги 2-3, пока есть пустые столбцы;
Вернуть ту строку, которая заканчивается символом конца строки.

Реализация обратного преобразования на первый взгляд не представляет сложности, и один из вариантов реализации приведён в Листинг 4.

  1. const
  2. EOMsg = "|" ;
  3. function BWTDecode(InMsg: ShortString) : ShortString;
  4. OutMsg: ShortString;
  5. ShiftTable: array of ShortString;
  6. N, i, j: word ;
  7. begin
  8. OutMsg : = "" ;
  9. N : = length(InMsg) ;
  10. SetLength(ShiftTable, N + 1 ) ;
  11. for i : = 0 to N do
  12. ShiftTable[ i] : = "" ;
  13. for i : = 1 to N do
  14. begin
  15. for j : = 1 to N do
  16. ShiftTable[ j] : = InMsg[ j] + ShiftTable[ j] ;
  17. Sort(ShiftTable) ;
  18. end ;
  19. for i : = 1 to N do
  20. if ShiftTable[ i] [ N] = EOMsg then
  21. OutMsg : = ShiftTable[ i] ;
  22. delete(OutMsg, N, 1 ) ;
  23. BWTDecode : = OutMsg;
  24. end ;

Но на практике эффективность зависит от выбранного алгоритма сортировки. Тривиальные алгоритмы с квадратичной сложностью, очевидно, крайне негативно скажутся на быстродействии, поэтому рекомендуется использовать эффективные алгоритмы.

После сортировки таблицы, полученной на седьмом шаге, необходимо выбрать из таблицы строку, заканчивающуюся символом «|». Легко заметить, что это строка единственная. Т.о. мы на конкретном примере рассмотрели преобразование BWT.

Подводя итог, можно сказать, что основным плюсом группы алгоритмов RLE является простота и скорость работы (в том числе и скорость декодирования), а главным минусом является неэффективность на неповторяющихся наборах символов. Использование специальных перестановок повышает эффективность алгоритма, но также сильно увеличивает время работы (особенно декодирования).

Словарное сжатие (алгоритмы LZ)

Группа словарных алгоритмов, в отличие от алгоритмов группы RLE, кодирует не количество повторов символов, а встречавшиеся ранее последовательности символов. Во время работы рассматриваемых алгоритмов динамически создаётся таблица со списком уже встречавшихся последовательностей и соответствующих им кодов. Эту таблицу часто называют словарём, а соответствующую группу алгоритмов называют словарными.

Ниже описан простейший вариант словарного алгоритма:
Инициализировать словарь всеми символами, встречающимися во входной строке;
Найти в словаре самую длинную последовательность (S), совпадающую с началом кодируемого сообщения;
Выдать код найденной последовательности и удалить её из начала кодируемого сообщения;
Если не достигнут конец сообщения, считать очередной символ и добавить Sc в словарь, перейти к шагу 2. Иначе, выход.

Например, только что инициализированный словарь для фразы «КУКУШКАКУКУШОНКУКУПИЛАКАПЮШОН» приведён в Табл. 3:

В процессе сжатия словарь будет дополняться встречающимися в сообщении последовательностями. Процесс пополнения словаря приведён в Табл. 4.

При описании алгоритма намеренно было опущено описание ситуации, когда словарь заполняется полностью. В зависимости от варианта алгоритма возможно различное поведение: полная или частичная очистка словаря, прекращение заполнение словаря или расширение словаря с соответствующим увеличением разрядности кода. Каждый из этих подходов имеет определённые недостатки. Например, прекращение пополнения словаря может привести к ситуации, когда в словаре хранятся последовательности, встречающиеся в начале сжимаемой строки, но не встречающиеся в дальнейшем. В то же время очистка словаря может привести к удалению частых последовательностей. Большинство используемых реализаций при заполнении словаря начинают отслеживать степень сжатия, и при её снижении ниже определённого уровня происходит перестройка словаря. Далее будет рассмотрена простейшая реализация, прекращающая пополнение словаря при его заполнении.

Для начала определим словарь как запись, хранящую не только встречавшиеся подстроки, но и количество хранящихся в словаре подстрок:

Встречавшиеся ранее подпоследовательности хранятся в массиве Words, а их кодом являются номера подпоследовательностей в этом массиве.
Также определим функции поиска в словаре и добавления в словарь:

  1. const
  2. MAX_DICT_LENGTH = 256 ;
  3. function FindInDict(D: TDictionary; str: ShortString) : integer ;
  4. r: integer ;
  5. i: integer ;
  6. fl: boolean ;
  7. begin
  8. r : = - 1 ;
  9. if D. WordCount > 0 then
  10. begin
  11. i : = D. WordCount ;
  12. fl : = false ;
  13. while (not fl) and (i >= 0 ) do
  14. begin
  15. i : = i - 1 ;
  16. fl : = D. Words [ i] = str;
  17. end ;
  18. end ;
  19. if fl then
  20. r : = i;
  21. FindInDict : = r;
  22. end ;
  23. procedure AddToDict(var D: TDictionary; str: ShortString) ;
  24. begin
  25. if D. WordCount < MAX_DICT_LENGTH then
  26. begin
  27. D. WordCount : = D. WordCount + 1 ;
  28. SetLength(D. Words , D. WordCount ) ;
  29. D. Words [ D. WordCount - 1 ] : = str;
  30. end ;
  31. end ;

Используя эти функции, процесс кодирования по описанному алгоритму можно реализовать следующим образом:
  1. function LZWEncode(InMsg: ShortString) : TEncodedString;
  2. OutMsg: TEncodedString;
  3. tmpstr: ShortString;
  4. D: TDictionary;
  5. i, N: byte ;
  6. begin
  7. SetLength(OutMsg, length(InMsg) ) ;
  8. N : = 0 ;
  9. InitDict(D) ;
  10. while length(InMsg) > 0 do
  11. begin
  12. tmpstr : = InMsg[ 1 ] ;
  13. while (FindInDict(D, tmpstr) >= 0 ) and (length(InMsg) > length(tmpstr) ) do
  14. tmpstr : = tmpstr + InMsg[ length(tmpstr) + 1 ] ;
  15. if FindInDict(D, tmpstr) < 0 then
  16. delete(tmpstr, length(tmpstr) , 1 ) ;
  17. OutMsg[ N] : = FindInDict(D, tmpstr) ;
  18. N : = N + 1 ;
  19. delete(InMsg, 1 , length(tmpstr) ) ;
  20. if length(InMsg) > 0 then
  21. AddToDict(D, tmpstr + InMsg[ 1 ] ) ;
  22. end ;
  23. SetLength(OutMsg, N) ;
  24. LZWEncode : = OutMsg;
  25. end ;

Результатом кодирования будут номера слов в словаре.
Процесс декодирования сводится к прямой расшифровке кодов, при этом нет необходимости передавать созданный словарь, достаточно, чтобы при декодировании словарь был инициализирован так же, как и при кодировании. Тогда словарь будет полностью восстановлен непосредственно в процессе декодирования путём конкатенации предыдущей подпоследовательности и текущего символа.

Единственная проблема возможна в следующей ситуации: когда необходимо декодировать подпоследовательность, которой ещё нет в словаре. Легко убедиться, что это возможно только в случае, когда необходимо извлечь подстроку, которая должна быть добавлена на текущем шаге. А это значит, что подстрока удовлетворяет шаблону cSc, т.е. начинается и заканчивается одним и тем же символом. При этом cS – это подстрока, добавленная на предыдущем шаге. Рассмотренная ситуация – единственная, когда необходимо декодировать ещё не добавленную строку. Учитывая вышесказанное, можно предложить следующий вариант декодирования сжатой строки:

  1. function LZWDecode(InMsg: TEncodedString) : ShortString;
  2. D: TDictionary;
  3. OutMsg, tmpstr: ShortString;
  4. i: byte ;
  5. begin
  6. OutMsg : = "" ;
  7. tmpstr : = "" ;
  8. InitDict(D) ;
  9. for i : = 0 to length(InMsg) - 1 do
  10. begin
  11. if InMsg[ i] >= D. WordCount then
  12. tmpstr : = D. Words [ InMsg[ i - 1 ] ] + D. Words [ InMsg[ i - 1 ] ] [ 1 ]
  13. else
  14. tmpstr : = D. Words [ InMsg[ i] ] ;
  15. OutMsg : = OutMsg + tmpstr;
  16. if i > 0 then
  17. AddToDict(D, D. Words [ InMsg[ i - 1 ] ] + tmpstr[ 1 ] ) ;
  18. end ;
  19. LZWDecode : = OutMsg;
  20. end ;

К плюсам словарных алгоритмов относится их большая по сравнению с RLE эффективность сжатия. Тем не менее надо понимать, что реальное использование этих алгоритмов сопряжено с некоторыми трудностями реализации.

Энтропийное кодирование

Кодирование с помощью деревьев Шеннона-Фано

Алгоритм Шеннона-Фано - один из первых разработанных алгоритмов сжатия. В основе алгоритма лежит идея представления более частых символов с помощью более коротких кодов. При этом коды, полученные с помощью алгоритма Шеннона-Фано, обладают свойством префиксности: т.е. ни один код не является началом никакого другого кода. Свойство префиксности гарантирует, что кодирование будет взаимно-однозначным. Алгоритм построения кодов Шеннона-Фано представлен ниже:
1. Разбить алфавит на две части, суммарные вероятности символов в которых максимально близки друг к другу.
2. В префиксный код первой части символов добавить 0, в префиксный код второй части символов добавить 1.
3. Для каждой части (в которой не менее двух символов) рекурсивно выполнить шаги 1-3.
Несмотря на сравнительную простоту, алгоритм Шеннона-Фано не лишён недостатков, самым существенным из которых является неоптимальность кодирования. Хоть разбиение на каждом шаге и является оптимальным, алгоритм не гарантирует оптимального результата в целом. Рассмотрим, например, следующую строку: «ААААБВГДЕЖ». Соответствующее дерево Шеннона-Фано и коды, полученные на его основе, представлены на Рис. 1:

Без использования кодирования сообщение будет занимать 40 бит (при условии, что каждый символ кодируется 4 битами), а с использованием алгоритма Шеннона-Фано 4*2+2+4+4+3+3+3=27 бит. Объём сообщения уменьшился на 32.5%, но ниже будет показано, что этот результат можно значительно улучшить.

Кодирование с помощью деревьев Хаффмана

Алгоритм кодирования Хаффмана, разработанный через несколько лет после алгоритма Шеннона-Фано, тоже обладает свойством префиксности, а, кроме того, доказанной минимальной избыточностью, именно этим обусловлено его крайне широкое распространение. Для получения кодов Хаффмана используют следующий алгоритм:
1. Все символы алфавита представляются в виде свободных узлов, при этом вес узла пропорционален частоте символа в сообщении;
2. Из множества свободных узлов выбираются два узла с минимальным весом и создаётся новый (родительский) узел с весом, равным сумме весов выбранных узлов;
3. Выбранные узлы удаляются из списка свободных, а созданный на их основе родительский узел добавляется в этот список;
4. Шаги 2-3 повторяются до тех пор, пока в списке свободных больше одного узла;
5. На основе построенного дерева каждому символу алфавита присваивается префиксный код;
6. Сообщение кодируется полученными кодами.

Рассмотрим тот же пример, что и в случае с алгоритмом Шеннона-Фано. Дерево Хаффмана и коды, полученные для сообщения «ААААБВГДЕЖ», представлены на Рис. 2:

Легко подсчитать, что объём закодированного сообщения составит 26 бит, что меньше, чем в алгоритме Шеннона-Фано. Отдельно стоит отметить, что ввиду популярности алгоритма Хаффмана на данный момент существует множество вариантов кодирования Хаффмана, в том числе и адаптивное кодирование, которое не требует передачи частот символов.
Среди недостатков алгоритма Хаффмана значительную часть составляют проблемы, связанные со сложностью реализации. Использование для хранения частот символов вещественных переменных сопряжено с потерей точности, поэтому на практике часто используют целочисленные переменные, но, т.к. вес родительских узлов постоянно растёт, рано или поздно возникает переполнение. Т.о., несмотря на простоту алгоритма, его корректная реализация до сих пор может вызывать некоторые затруднения, особенно для больших алфавитов.

Кодирование с помощью деревьев секущих функций

Кодирование с помощью секущих функций – разработанный авторами алгоритм, позволяющий получать префиксные коды. В основе алгоритма лежит идея построения дерева, каждый узел которого содержит секущую функцию. Чтобы подробнее описать алгоритм, необходимо ввести несколько определений.
Слово – упорядоченная последовательность из m бит (число m называют разрядностью слова).
Литерал секущей – пара вида разряд-значение разряда. Например, литерал (4,1) означает, что 4 бит слова должен быть равен 1. Если условие литерала выполняется, то литерал считается истинным, в противном случае - ложным.
k-разрядной секущей называют множество из k литералов. Если все литералы истинны, то и сама секущая функция истинная, в противном случае она ложная.

Дерево строится так, чтобы каждый узел делил алфавит на максимально близкие части. На Рис. 3 показан пример дерева секущих:

Дерево секущих функций в общем случае не гарантирует оптимального кодирования, но зато обеспечивает крайне высокую скорость работы за счёт простоты операции в узлах.

Арифметическое кодирование

Арифметическое кодирование – один из наиболее эффективных способов сжатия информации. В отличие от алгоритма Хаффмана арифметическое кодирование позволяет кодировать сообщения с энтропией меньше 1 бита на символ. Т.к. большинство алгоритмов арифметического кодирования защищены патентами, далее будут описаны только основные идеи.
Предположим, что в используемом алфавите N символов a_1,…,a_N, с частотами p_1,…,p_N, соответственно. Тогда алгоритм арифметического кодирования будет выглядеть следующим образом:
В качестве рабочего полуинтервала взять := 1; {Все символы в начале имеют одинаковую вероятность}
freq := freq - 0.20000;
total:= 256; {Сумма частот всех символов.}
{ В freq - небольшой остступ от 0 и макс.значения}
PC:= 0;{Кол-во уже закодированых байт }
Lo:= 0; range:= 256;
{- Кодирование -}
For q:= 1 To Size Do
Begin
{Нахождение интервала, соответствующего кодируемому символу}
cum_freq:= 0.1; {Начинаем накапливать вероятность}
For w:= 0 To data [q] - 1 Do
cum_freq:= cum_freq + freq [w];
{Изменяем range&lo}
range:= range / total;
Lo:= Lo + range * (cum_freq);
range:= range * freq ];
{Нормализация т.е вывод байтов, одинаковых у Lo и Hi(Hi=Lo+Range)}

Begin
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
{Обновления модели}
freq ] := freq ] + 1;
{Присваеваем кодируемому символу на 1 большую вероятность}
total:= total + 1;
End;
{Сжатие закончено, выводим остаток}
Lo:= Lo + range / 2;
Inc (PC);
compr := Trunc (Lo);
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;

Procedure decompress_range;{Процедура распаковки}
Var
temp: Extended;
ee: Extended;
Begin
{Инициализация модели и кодера}
For q:= 0 To 255 Do
freq [q] := 1;
freq := freq - 0.20000; { В freq - небольшой остступ от 0 и макс.значения}
total:= 256;
PC:= 4; {PC - номер байта, которые мы считываем}
code:= 0;
Lo:= 0; range:= 256;
{Считываем начальное, приближенное значение code.}
For q:= 1 To 4 Do
Begin
code:= code * 256 + compr [q] / 65536 / 256;
End;
w:= 0; {W- кол-во верно распакованных байт}
{Собственно расжатие}
While True Do
Begin
{Нахождения вероятности следующего символа}
temp:= (code- Lo) * total / range;
{Поиск символа, в интервал которого попадает temp}
sum:= 0.1; ssum:= 0.1;
For e:= 0 To 255 Do
Begin
sum:= sum + freq [e];
If sum > temp Then Break;
ssum:= sum;
End;
Inc (w);
{Проверка правильности распаковки}
{Сейчас в e – распакованный байт, и его можно выводить в файл}
If data [w] <> e Then Break; {Если неправильно распаковали - выходим}
If w = Size Then Begin Inc (w); Break End; {Если все распаковали выходим,}
{и модель не обновляем:-)}
{Обновления Lo&Hi(Растягивание)}
range:= range / total;
Lo:= Lo + range * (ssum);
range:= range * (freq [e]);
{Обновление модели(Делаем символ e более вероятным)}
freq [e] := freq [e] + 1;
total:= total + 1;
{Нормализация, уточнение числа}
While Trunc (Lo) = Trunc (Lo + range) Do
Begin
Inc (PC);
temp:=compr;
code:= (code - trunc(code)) * 256 + temp / 16777216;
Lo:= Frac (Lo) * 256;
range:= range * 256;
End;
End;
Dec (w);
{DONE_DECOMPRESS}
End;

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Сжатие файлов NTFS При использовании разделов с файловой системой NTFS вы можете задействовать ее возможности для сжатия файлов. При этом происходит более слабое сжатие, чем при использовании архивов ZIP или RAR, но выполняется оно гораздо быстрее. Файлы, сжатые с помощью NTFS,

Из книги Sound Forge 9 автора Квинт Игорь

Сжатие звука Формат WAVE достаточно точно сохраняет данные исходного аналогового сигнала, но является очень расточительным в отношении объема, занимаемого информацией. Тем не менее этот формат предпочтителен для первоначальной записи звуковых данных, которые

Из книги Microsoft Windows SharePoint Services 3.0. Русская версия. Главы 9-16 автора Лондер Ольга

Экспорт данных из базы данных Access 2007 в список SharePoint Access 2007 позволяет экспортировать таблицу или другой объект базы данных в различных форматах, таких как внешний файл, база данных dBase или Paradox, файл Lotus 1–2–3, рабочая книга Excel 2007, файл Word 2007 RTF, текстовый файл, документ XML

Из книги Реферат, курсовая, диплом на компьютере автора Баловсяк Надежда Васильевна

Форматы графических файлов. Сжатие изображения Работая с изображениями в Photoshop, можно хранить файл в одном из нескольких графических форматов. Наиболее популярными из них являются JPEG, TIFF и PSD.JPEG – это формат, позволяющий создать минимальный по размерам файл с наименьшей

Из книги Новейший самоучитель работы на компьютере автора Белунцов Валерий

Сжатие данных Редко используемые файлы, которые хочется все-таки держать на жестком диске, следует хранить в сжатом виде, чтобы они занимали меньше места. Сжатие файлов данных также может потребоваться, если в обычном виде они не помещаются на какой-либо носитель.При

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

4.7.1 Сжатие в PPP Может показаться не очень разумным включение одних и тех же октетов адреса и управления в каждый кадр. Партнеры на каждом конце связи PPP могут работать в режиме сжатия (compression) для исключения этих полей.Значения в поле протокола указывают, является ли

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

Из книги Этюды для программистов [неполностью, главы 1–24] автора Уэзерелл Чарлз

11. Меньше copy - меньше и вздору, или Избыточность текста и сжатие файла Все знают, что большинству людей свойственно излишнее многословие. Гораздо менее широко известно, что даже самые лаконичные высказывания можно было бы значительно сократить. Вообще, естественные

Из книги Macromedia Flash Professional 8. Графика и анимация автора Дронов В. А.

Сжатие видео во Flash. Кодеки On2 VP6 и Sorenson Spark В главе 1 мы уже говорили о видео. Давайте кратко повторим все, что уже успели узнать и, возможно, уже забыли.Итак, видеоинформация, хранящаяся в файле, практически всегда сжимается. Иначе и не получится: данные, содержащие

Из книги Фундаментальные алгоритмы и структуры данных в Delphi автора Бакнелл Джулиан М.

Глава 11. Сжатие данных. Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных.

Из книги Компьютерная обработка звука автора Загуменнов Александр Петрович

Сжатие данных Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об

Из книги Цифровая фотография. Трюки и эффекты автора Гурский Юрий Анатольевич

Сжатие с минимальной избыточностью Теперь, когда в нашем распоряжении имеется класс потока битов, им можно воспользоваться при рассмотрении алгоритмов сжатия и восстановления данных. Мы начнем с исследования алгоритмов кодирования с минимальной избыточностью, а затем

Из книги автора

Сжатие с использованием словаря Вплоть до 1977 года, основные усилия в области исследования алгоритмов сжатия концентрировались вокруг алгоритмов кодирования с минимальной избыточностью, подобных алгоритмам Шеннона-Фано или Хаффмана, и были посвящены либо

Из книги автора

Из книги автора

Сжатие данных Любой идеальный метод сжатия не должен допускать заметных потерь качества, то есть сокращение объема данных не должно приводить к потере информации. Это означает, что все изменения звукового сигнала должны быть ниже порога слышимости. Это особенно важно

Из книги автора

3.2. Размеры и сжатие файлов Для чего нужно сжимать изображение Картинка, полученная с помощью шестимегапиксельной камеры, должна занять 18 Мбайт памяти. Если изображение записывать в память в таком виде, то даже в запоминающее устройство большой емкости удастся уместить

Важнейшей задачей современной информатики является кодирование информации наиболее оптимальным способом.

Равномерное кодирование сообщений сохраняет его статистические свойства: количество символов в исходном сообщении будет равно количеству кодовых слов в закодированном варианте. Это свойство позволяет однозначно декодировать сообщения. Но равномерный код не позволяет уменьшить ресурсные затраты при передаче информации по каналам связи или ее хранении. Значит, для уменьшения информационного объема сообщения необходимы алгоритмы, позволяющие сжимать данные.

Один из подходов к решению проблемы сжатия информации заключался в отказе от одинаковой длины кодовых слов: часто встречающиеся символы кодировать более короткими кодовыми словами по сравнению с реже встречающимися символами.

Принцип неравномерного кода для уменьшения информационного объема сообщения был реализован в азбуке Морзе. Однако, применение кода переменной длины создавало трудности разделения сообщения на отдельные кодовые слова. Эта проблема была решена Морзе путем применения символа-разделителя – паузы.

Префиксные коды

Теоретические исследования К. Шеннона и Р. Фано показали, что можно построить эффективный неравномерный код без использования разделителя. Для этого он должен удовлетворять условию Фано : ни одно кодовое слово не является началом другого кодового слова . Коды, удовлетворяющие условию Фано называются префиксными.

Префиксный код - это код, в котором ни одно кодовое слово не является началом другого кодового слова.

Шеннон и Фано предложили алгоритм построения эффективных сжимающих кодов переменной длины (алгоритм Шеннона – Фано). Однако, в некоторых случаях алгоритм давал неоптимальное решение.

Код Хаффмана

В 1952 году Дэвид Хаффман, ученик Фано, предложил новый алгоритм кодирования и доказал оптимальность своего способа. Улучшение степени сжатия Хаффман достиг за счет кодирования часто встречающихся символов короткими кодами, реже встречающихся – длинными.

Построим код Хаффмана для текста «ОКОЛО КОЛОКОЛА КОЛ»

  1. Строим список свободных узлов, упорядоченных по убыванию частоты появления буквы.
  2. Выберем две наименее вероятные буквы и построим для них узел-предок («псевдобуква») с частотой, равной сумме частот узлов-потомков.
  3. Менее вероятной букве ставим в соответствие 1, более вероятной – 0 (в следующем проходе соблюдаем порядок расстановки 0 и 1).
  4. Удаляем обе буквы из списка, оставив их узел-предок.
  5. Повторяем шаги, начиная с пункта 2, до тех пор, пока не останется один узел («метабуква»). Этот узел будет считаться корнем дерева.

Для получения кода каждого символа движемся от корня дерева до данного символа, выписывая по ходу нули и единицы. В нашем примере символы имеют следующие коды:

  • О – 00
  • К – 01
  • Л – 10
  • Пробел – 110
  • А - 111