Каноническая форма задачи линейного программирования. Различные формы записи задачи линейного программирования

канонической форме , если требуется максимизировать целевую функцию, все ограничения системы – уравнения и на все переменные наложено условие неотрицательности.

Задача линейного программирования задана в симметричной форме , если требуется максимизировать целевую функцию, все ограничения системы – неравенства «» (или минимизировать целевую функцию, все ограничения системы – неравенства «») и на все переменные наложено условие неотрицательности.

Набор чисел называется допустимым решением (планом) , если он удовлетворяет системе ограничений ЗЛП.

Множество всех допустимых решений называется областью допустимых решений (ОДР).

Допустимое решение , для которого достигается максимальное (минимальное) значение функции, называется оптимальным планом ЗЛП .

Термины «план» и «оптимальный план» возникли из экономических приложений.

Все три формы записи ЗЛП являются эквивалентными в том смысле, что имеются алгоритмы перехода от одной формы к другой. Таким образом, если имеется способ решения задачи в одной из форм, то всегда можно определить оптимальный план задачи, заданной в любой другой форме . Задача в симметричной форме решается графическим методом, а в канонической форме – симплекс–методом.

Рассмотрим алгоритмы перехода от одной формы к другой.


  • Симметричная  каноническая. Переход осуществляется путем добавления в левую часть каждого неравенства дополнительной неотрицательной переменной. Если неравенство было «≤», то балансовая переменная добавляется в левую часть неравенства со знаком «+». Если неравенство было «», то балансовая переменная добавляется в левую часть неравенства со знаком «–». Вводимые новые переменные называются балансовыми . Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) и используют, что min Z = –max (–Z).

  • Каноническая  симметричная. Для осуществления такого перехода находится общее решение системы уравнений – ограничений, целевая функция выражается через свободные переменные. Далее, воспользовавшись неотрицательностью базисных переменных, можно исключить их из задачи. Симметричная форма задачи будет содержать неравенства, связывающие только свободные переменные, и целевую функцию, зависящую только от свободных переменных. Значения базисных переменных находятся из общего решения исходной системы уравнений.

  • Общая  каноническая. Каждая переменная, на которую не было наложено условие неотрицательности, представляется в виде разности двух новых неотрицательных переменных. Неравенства преобразуются в уравнения путем введения в левую часть каждого неравенства балансовой переменной таким же образом, как это было описано при переходе от симметричной к канонической форме. Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) таким же образом, как это было описано при переходе от симметричной к канонической форме..
    1. Графический метод решения задачи линейного программирования

Графический метод применяется для решения ЗЛП, заданной в симметричной форме . Этот метод наиболее эффективно применяется для решения задач с двумя переменными, т.к. требует графических построений. В случае трех переменных необходимы построения в R 3 , в случае четырех переменных необходимы построения в R 4 и т.д.

Множество точек называется выпуклым , если для любых двух точек множества оно содержит отрезок, их соединяющий.

Пример 1

Следующие множества точек на плоскости являются выпуклыми:

Следующие множества точек на плоскости не являются выпуклыми:

Теорема 1 Пересечение любого количества выпуклых множеств является выпуклым множеством.

Теорема 2 Пусть имеются две произвольные точки и в пространстве R n . Тогда для любой точки отрезка [PQ ] должно выполняться: .где .

Гиперплоскостью в пространстве R n называется множество точек, удовлетворяющее уравнению . Заметим, что в двумерном случае гиперплоскостью является прямая.

Полупространством называется множество точек, удовлетворяющее одному из неравенств или . Гиперплоскость делит точки пространства на два полупространства. В двумерном случае гиперплоскостью является полуплоскость.

Теорема 3 Полупространство является выпуклым множеством.

Следствие Пересечение любого количества полупространств является выпуклым множеством.

Многогранником называется пересечение одного или более полупространств. Многогранник в двумерном случае называется многоугольником.

Пример 2

Следующие множества являются многоугольниками.

Ограниченное множество

Неограниченное множество


Единственная точка

Пустое множество


Точка выпуклого множества называется угловой , если она не лежит внутри никакого отрезка, соединяющего две другие точки из множества.

Пример 3

Угловыми точками треугольника являются его вершины (их три). Угловыми точками круга являются точки окружности, которая его ограничивает (их бесконечное число).

Угловая точка многогранника называется его вершиной .

Рассмотрим ЗЛП, заданную в симметричной форме.

Теорема 4 Оптимальный план ЗЛП соответствует вершине многогранника решений, определяемого ее системой ограничений.

Аналитическим методом решения задачи линейного программирования является симплексный метод. Для его применения задачи ЛП, представленные различным образом, должны быть приведены к канонической форме. Задача линейного программирования, записанная в виде (2.1.1)-(2.1.3), представляет собой развернутую форму записи общей задачи линейного программирования (ЗЛП).

Канонической задачей линейного программирования (КЗЛГТ) будем называть следующую задачу:

при ограничениях, имеющих вид равенств,


Если для задачи в форме (2.3.1)-(2.3.4) выполняется условие т = п, то ее решение сводится к решению системы уравнений

  • (2.3.2) . При этом задача не будет иметь решений, если условие
  • (2.3.3) не выполняется или система уравнений не имеет решения.

условие т

  • 1. Для перехода от задачи максимизации целевой функции (2.3.1) к задаче минимизации достаточно взять все коэффициенты Cj целевой функции с обратными знаками и решить полученную задачу на максимум. После нахождения максимума значение целевой функции надо взять с обратным знаком. Оптимальное решение останется прежним.
  • 2. Для перехода от ограничения типа «меньше или равно» к равенству в него необходимо со знаком «плюс»:

3. Для перехода от ограничения типа «больше или равно» к равенству в него необходимо ввести дополнительную неотрицательную переменную со знаком «минус»:

При этом в каждое неравенство вводится своя (п + /)-я дополнительная переменная.

  • 4. Все равенства, имеющие отрицательные свободные члены, делятся на -1, для того чтобы выполнялось условие (2.3.4).
  • 5. Если на некоторую переменнуюXj не накладывается условие неотрицательности , то делают замену переменных Xj=х". - х" x"j > 0, х"> 0. В преобразованной задаче все переменные неотрицательные.

Имеет место утверждение, что любую ЗЛП можно привести к канонической форме.

Пример 2.3.1. Преобразуем задачу, приведенную в примере 2.2.2, в каноническую форму. Целевая функция и система ограничений выглядят следующим образом:

Введем в первое неравенство дополнительную переменную jc 3 > 0 со знаком «плюс», во второе х 4 > 0 со знаком «минус» и в третье х 5 > 0 также со знаком «плюс». В результате получим систему ограничений задачи в канонической форме:

При этих ограничениях нужно найти максимальное значение функции:

Рассмотрим экономический смысл дополнительных переменных в канонической задаче оптимального использования ресурсов.

Пример 2.3.2. Задача оптимального использования ресурсов (задача о коврах) [ 17 J.

В распоряжении фабрики имеется определенное количество ресурсов трех видов: труд (80 человекодней), сырье (480 кг) и оборудование (130 станкочасов). Фабрика может выпускать ковры четырех видов. Информация о количестве единиц каждого ресурса, необходимых для производства одного ковра каждого вида, и о доходах, получаемых предприятием от единицы каждого вида товаров, приведена в табл. 2.3.1.

Требуется найти такой план выпуска продукции, при котором ее общая стоимость будет максимальной.

Экономико-математическая модель задачи Переменные : х х,х 2 , х 3 , х 4 - количество ковров каждого типа. Целевая функция - это общая стоимость продукции, которую необходимо максимизировать:

Ограничения по ресурсам :

Приведем задачу к канонической форме, вводя дополнительные переменные х 5 , х 6 и х 7:

Далее будет показано, что оптимальным планом выпуска продукции является вектор X* = (0; 30; 10; 0), значение целевой функции равно 150, т.е. для максимизации общей стоимости продукции необходимо выпустить 30 ковров второго вида и 10 ковров третьего вида. Подставим оптимальные значения вектора X в ограничения КЗЛП:

Получим, что ресурсы «труд» и «оборудование» используются полностью, ресурс «сырье» имеется в избытке:

В этом случае х в показывает, что сырья осталось 200 кг.

Таким образом, основные переменные x v х 2 , х 3 , х л означают количество ковров каждого типа, а дополнительные переменные х 5 , х 6 их 7 - объем недоиспользованных ресурсов.

Ответ. Оптимальный план выпуска продукции X* = (0; 30;

10; 0).

Планом , или допустимым решением , КЗЛП называется вектор X = (jc p х 2 ,..., х п ), удовлетворяющий условиям (2.3.2)-(2.3.4).

Если все компоненты базисного решения системы ограничений КЗЛП неотрицательны, то такое решение называется опорным решением или опорным планом. Число положительных компонент опорного плана не может превышать т.

Опорный план называется невырожденным, если он содержит т положительных компонент, в противном случае он называется вырожденным.

Оптимальным планом или оптимальным решением ЗЛП называется план, доставляющий наибольшее (наименьшее) значение линейной функции (2.3.1).

Множество всех планов ЗЛП (если они существуют) является выпуклым многогранником. Каждой угловой (крайней) точке многогранника решений соответствует опорный план (неотрицательные базисные решения системы уравнений КЗЛП). Каждый опорный план определяется системой т линейно независимых векторов, содержащихся в данной системе из п векторов Д, Д,..., А п. Если существует оптимальный план, то существует такая угловая точка многогранника решений, в которой линейная функция достигает своего наибольшего (наименьшего) значения.

Для отыскания оптимального плана достаточно исследовать только опорные планы. Верхняя граница количества опорных планов, содержащихся в задаче, определяется числом сочетаний С т п (см. параграф 1.4).

Пример 2.3.3. Получить решение задачи об оптимальном использовании ограниченных ресурсов (решить ЗЛ П):

Решение. Приведем задачу к каноническому виду путем введения дополнительных переменныхх 3 , х 4 и х 5:

Найдем все опорные планы системы ограничений данной КЗЛП (л? - 5; /77 - 3); их количество не превышает 10:

Используя метод Жордана - Гаусса (см. параграф 1.4), выписываем все базисные решения системы уравнений (табл. 2.3.2).

Номер

базис

ного

решения

Базис

План

Среди десяти базисных решений пять опорных:

Указанным опорным планам на рис. 2.3.1 отвечают соответственно следующие угловые точки и значения ЦФ в них:


Рис. 2.3.1.

Согласно теории ЛП оптимальное решение содержится среди опорных планов.

Таким образом, максимальное значение, равное 2300, целевая функция достигает в точке В на опорном плане Х 5 = (70; 80; 0; 60; 0).

Ответ. Оптимальный план задачи: х { = 70, х 2 = 80, значение целевой функции f(x v х 2) = 2300.

Задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.
Пример :

В каждой задаче ЛП ищутся значения переменных при условии, чтобы:

  • эти значения удовлетворяли некоторой системе линейных уравнений или неравенств;
  • при этих значениях целевая функция обращалась бы в минимум или максимум.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Одним из универсальных методов ЛП является симплексный метод, который, однако, можно применять, если задача ЛП имеет каноническую форму.

Определение . Задача ЛП имеет каноническую форму, если все ограничения системы состоят только из уравнений (кроме неравенств, выражающих неотрицательность переменных) и целевую функцию необходимо минимизировать.
Примером такой задачи ЛП в канонической форме является задача 1 – сбалансированная транспортная задача с системой ограничений (1) и целевой функцией (2).
Однако в большинстве экономических задач чаще всего в систему ограничений первоначально входят не только уравнения, а и неравенства.

Утверждение. Любая общая задача ЛП может быть приведена к канонической форме.
Приведение общей задачи ЛП к канонической форме достигается путем введения новых (их называют дополнительными) переменных.
Система ограничений (3) этой задачи состоит из четырех неравенств. Введя дополнительные переменные y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0, y 4 ≥ 0, можно перейти к системе ограничений:

Эти дополнительные переменные y i имеют абсолютно ясный экономический смысл, а именно означают величину неиспользованного времени работы (простоя машины i -го вида).
Например, если бы машины первого вида работали все 18 ч, то x + y = 18, следовательно, y 1 = 0. Но мы допускаем возможность неполного использования времени работы первой машины x + y <18. В этом случае y 1 приобретает положительное значение и может рассматриваться как неиспользованный лимит времени. Например, зная решение этой задачи из пункта 3.3.2, x = 12, y = 6, мы можем из системы ограничений (3.9) сделать вывод, что y 1 = y 2 = y 3 = 0, а y 4 = 12 – 6 = 6. Т. е. машины первого, второго, третьего вида используют свое рабочее время полностью. А вот четвертая машина загружена лишь наполовину, 6 часов, и при заданном оптимальном плане простаивает. Возможно, после таких выводов руководителю предприятия захочется загрузить ее другой работой, сдать в аренду на это время и т.д.
Итак, введением дополнительных переменных мы можем любое ограничение типа неравенства привести к уравнению.

Рассмотрим задачу о смеси. Система ограничений имеет вид:
Неравенства были обращены в сторону «больше», поэтому вводя дополнительные переменные y 1 , y 2 , y 3 ≥ 0, их необходимо вычесть из левой части, чтобы уравнять ее с правой. Получим систему ограничений в канонической форме:
Переменные y i также будут иметь экономический смысл. Если вы вспомните практическое содержание задачи, то переменная y 1 будет означать количество излишнего вещества А в смеси, y 2 –количество излишков вещества В в смеси, y 3 – излишки С в смеси.
Задача нахождения максимального значения целевой функции может быть сведена к нахождению минимума для функции –F ввиду очевидности утверждения max F = –min (– F). Посмотрите на рисунок: если в какой-то точке x = x 0 функция y = F (x ) достигает своего максимума, то функция y = –F (x ), симметричная ей относительно оси OX , в этой же точке x 0 достигнет минимума, причем F max = – (–F min) при x = x 0 .

Вывод. Для представления задачи ЛП в канонической форме необходимо:

  • неравенства, входящие в систему ограничений задачи, преобразовать в уравнения с помощью введения дополнительных переменных;
  • если целевая функция F →max (максимизируется), она заменяется на функцию –F → min (которая минимизируется).
Каноническая форма ЗЛП - задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.

Назначение сервиса . Онлайн-калькулятор предназначен для перехода ЗЛП к КЗЛП. Приведение задачи к канонической форме означает, что все ограничения будут иметь вид равенств, путем ввода дополнительных переменных.
Если на какую-либо переменную x j не наложено ограничение, то она заменяется на разность дополнительных переменных, x j = x j1 - x j2 , x j1 ≥ 0, x j2 ≥ 0.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
Как привести задачу линейного программирования к канонической форме

Математическая модель ЗЛП называется основной , если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической , если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис , определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (b i ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными , а все другие - свободными .

Решение системы называется базисным , если в нем свободные переменные равны 0, и оно имеет вид:
X баз = (0, 0; b 1 , …, b m), f(X баз) = c 0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение .

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны b i ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования .
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x 1 + 3x 2 → max при ограничениях:
2x 1 + 3x 2 ≤20
3x 1 + x 2 ≤15
4x 1 ≤16
3x 2 ≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x 3 , x 4 , x 5 , x 6 , которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x 3 . Во 2-ом неравенстве смысла (≤) вводим базисную переменную x 4 . В третьем неравенстве вводим базисную переменную x 5 . В 4-м неравенстве - базисную переменную x 6 . Получим каноническую форму модели:
2x 1 + 3x 2 + 1x 3 + 0x 4 + 0x 5 + 0x 6 = 20
3x 1 + 1x 2 + 0x 3 + 1x 4 + 0x 5 + 0x 6 = 15
4x 1 + 0x 2 + 0x 3 + 0x 4 + 1x 5 + 0x 6 = 16
0x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 1x 6 = 12
F(X) = 5x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 0x 6 → max

Пример №2 . Найти два опорных решения системы
x 1 + 2x 4 - 2x 5 = 4
x 3 + 3x 4 + x 5 = 5
x 2 + 3x 5 = 2

: Задачи линейного программирования (ЗЛП)

1. Линейное программирование

2. Виды задач линейного программирования

3. Формы записи ЗЛП

4. Каноническая форма задач линейного программирования

Линейное программирование

Линейное программирование - это раздел матпрограммирования, применяемый при разработке методов нахождения экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные.

По типу решаемых задач методы ЛП разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные учитывают особенности модели задачи, ее целевой функции и системы ограничений.

Главная особенность задач линейного программирования заключается в том, что экстремум целевой функции находится на границе области допустимых решений.

Рисунок 1 - Экстремум целевой функции

Математическая модель ЗЛП записывается следующим образом:

max (или min) Z=z(X),(1)

ОДР может быть представлена системой линейных уравнений или неравенств.

Вектор Х=(х 1 , х 2 , .... x п) является вектором управления или управляющим воздействия.

Допустимый план Х, при котором критерий оптимальности Z=z(X) достигает экстремального значения, называется оптимальным и обозначается через X*, экстремальное значение целевой функции -- через Z*=z(X*).

Виды задач линейного программирования

Методы линейного программирования широко применяются на промышленных предприятиях при оптимизации производственной программы, распределении ее по цехам и по временным интервалам, при ассортиментной загрузке оборудования, планировании грузопотоков, определении плана товарооборота и т. д.

Наиболее распространенный тип задач - задача оптимального использования ресурсов. Пусть некоторая производственная единица (цех, предприятие, объединение и т.д.), исходя из конъюнктуры рынка, технических возможностей и имеющихся ресурсов, может выпускать n различных видов продукции, известных под номерами j.

При выпуске продукции предприятие ограничено имеющимися ресурсами, количество которых обозначим m, а вектор ресурсов В = (b 1 , b 2 , ..., b т). Известны также технологические коэффициенты a ij , которые показывают норму расхода i-го ресурса на производство единицы j-ой продукции. Эффективность выпуска единицы j-и продукции характеризуется прибылью p j .

Требуется определить план выпуска продукции Х=(х 1 , х 2 , ..., x п), максимизирующий прибыль предприятия при заданных ресурсах.

Целевая функция выглядит следующим образом

при ограничениях

Часто ассортимент продукции устанавливается вышестоящей организацией, т. е. его объемы должны быть заключены в некоторых границах D н j и D в j:тогда задается следующее ограничение:

Модель задачи оптимального использования ресурсов лежит в основе моделей оптимизации годовой производственной программы предприятия . В модель включаются ограничения по фонду времени работы оборудования.

Сохраняя прежние обозначения, запишем через б j и с j соответственно отпускную цену и затраты на единицу j-й продукции. В качестве критерия оптимальности могут быть приняты:

1) максимум прибыли

2) минимум затрат на производство

3) максимум выпуска в стоимостном выражении (выручки от реализации продукции)

Пример. Предприятие может изготовлять четыре вида продукции 1, 2, 3 и 4. Сбыт любого ее объема обеспечен. Предприятие располагает в течение квартала трудовыми ресурсами в 100 человеко-смен, полуфабрикатами массой 260 кг, станочным оборудованием в 370 станко-смен. Нормы расхода ресурсов и прибыль от единицы каждого вида продукции представлены в табл.1.

Необходимо:

а) составить математическую модель задачи определения плана выпуска продукции, при котором достигается максимум прибыли;

б) решить задачу с требованием комплектации, чтобы количество единиц третьей продукции было в 3 раза больше количества единиц первой;

в) выяснить оптимальный ассортимент при дополнительных условиях: первого продукта выпускать не менее 25 единиц, третьего -- не более 30, а второго и четвертого -- в отношении 1:3.

Таблица 1

Исходные данные

Математическая модель задачи:

целевая функция:

max: Z=40x 1 +50x 2 +100x 3 +80x 4

при ограничениях:

а) на трудовые ресурсы:

2,5x 1 +2,5x 2 +2x 3 +1,5x 4 ? 100;

на полуфабрикаты:

4x 1 +10x 2 +4x 3 +6x 4 ? 260;

на станочное оборудование:

8x 1 +7x 2 +4x 3 +10x 4 ? 370;

условие неотрицательности:

б) дополнительное требование комплектации выразится условием

3x 1 =x 3 , т.е 3x 1 x 3 =0;

в) граничные условия и условие комплектации представим так: х 1 ?25,

х 3 ?30, 3*х 2 =х 4 .

Задача о размещении заказов или загрузке взаимозаменяемых групп оборудования . Речь идет о распределения заказов между m (i=1,…, m) предприятиями (цехами, станками, исполнителями) с различными производственными и технологическими характеристиками, но взаимозаменяемыми в смысле выполнения заказов. Требуется составить такой план размещения заказов, при котором задание было бы выполнено, а показатель эффективности достигал экстремального значения.

Сформулируем задачу математически. Пусть на т однородных группах оборудования нужно изготовить п видов продукции. План выпуска каждого вида продукции на определенный период задан набором х j (j=1,2, …п). Мощность каждого вида оборудования ограничена и равна b i . Известна технологическая матрица A=||a ij ||, где a ij --число единиц j-ой продукции, выпускаемой в единицу времени на i-м оборудовании. Матрица С - матрица затрат, где c ij --затраты, связанные с выпуском единицы j-й продукции на i-м оборудовании. Х -- вектор объема выпускаемой продукции.

Модель задачи примет следующий вид:

целевая функция -- минимизация расходов на реализацию всех заказов

при ограничениях:

а) по мощности оборудования

б) на выпуск продукции

в) условие неотрицательности

Данную задачу называют распределительной или задачей распределения.

Если по некоторым видам продукции допускается превышение плана, то ограничение (б) примет вид

В качестве целевой прибыли также можно принять:

а) максимум прибыли

б) минимум затрат станочного времени

Т.к. любая модель содержит упрощающие предпосылки, для корректного применения полученных результатов необходимо четкое понимание сути этих упрощений, что, в конечном счете, и позволяет сделать вывод об их допустимости или недопустимости. Наиболее существенным упрощением в рассмотренных моделях является предположение о прямопропорциональной (линейной) зависимости между объемами расхода ресурсов и объемами производства, которая задается с помощью норм затрат a ij . Очевидно, что это допущение далеко не всегда выполняется. Так объемы расхода многих ресурсов (например, основных фондов) изменяются скачкообразно - в зависимости от изменения программы производства Х. К другим упрощающим предпосылкам относятся предположения о независимости цен j от объемов x j , что справедливо лишь для определенных пределов их изменения. Данные «уязвимые» места важно знать еще и потому, что они указывают принципиальные направления усовершенствования модели.

Формы записи ЗЛП

Существует 3 формы записи ЗЛП:

1) в виде функций

max(или min)Z=,max(или min)Z=,

2) векторная форма

(скалярное произведение векторов)

при ограничениях

A 1 х 1 +A 2 х 2 +..+A n x n = B

Где векторы

С = (С 1, С 2 .. С n), Х = (Х 1, Х 2 .. Х n), и.

3) матричная форма

при ограничениях

где С = (с 1 , с 2 ,…с n),

Каноническая форма задач линейного программирования

Если все ограничения в задаче линейного программирования являются уравнениями и на все переменные x j налагаются условия неотрицательности, то она называется задачей линейного программирования в канонической форме или канонической задачей линейного программирования (КЗЛП).

при ограничениях

Для того чтобы перейти от ЗЛП к КЛЗП, необходимо перейти от ограничений неравенств к ограничениям равенствам и заменить переменные, которые не подчиняются условиям неотрицательности.

Правила приведения ЗЛП к каноническому виду:

1) если в ограничениях правая часть отрицательная, то следует умножить это ограничение на -1;

2) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;

3) если некоторая переменная xk не имеет ограничений по знаку, то она заменяется в целевой функции и во всех ограничениях разностью между двумя новыми неотрицательными переменными: xk=x * k - xl, где l - сводный индекс, x * k>=, xl>=0.

Рассмотрим пример. Приведем к канонической форме:

Введем в каждое уравнение системы ограничений выравнивающие переменные х 4 , х 5 , х 6 . Система запишется в виде равенств, причем в первое и третье уравнение системы ограничений переменные х 4 , х 6 вводятся в левую часть со знаком «+», а во второе уравнение вводится х 5 со знаком «-».

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть неотрицательными. Допустим, что

Подставляя данное выражение в систему ограничений и целевую функцию и записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

оптимизационный симплексный линейный программирование