Кодирования сообщений с использованием двух сигналов. Кодирование и декодирование сигналов в системах опознавания. Системы с трёхуровневым кодированием

В этом разделе мы кратко опишем методы кодирования сигнала, согласно которым фильтруют выход источника в определённом числе частотных полос или подполос и раздельно кодируют сигнал в каждой подполосе. Кодирование сигнала может быть выполнено во временной области в каждой подполоске или в частотной области, в которой представлен временной сигнал каждой подполоски.

Кодирование подполосок. При кодировании подполосок (КПП) сигналов речи и изображения суммарный сигнал разделяется на небольшое число частотных подполосок, а в каждой из них сигнал кодируется раздельно. При кодировании речи, например, низкочастотные полосы сигнала содержат большую часть спектральной энергии. В дополнение к этому шум квантования более заметен на слух в низкочастотной области. Следовательно, для представления сигнала в низкочастотных полосах надо использовать больше бит, а в высокочастотных – меньше.

Расчёт фильтров особенно важен для достижения хорошей рабочей характеристики КПП. На практике обычно используются квадратурно-зеркальные фильтры (КЗФ), так как они имеют наилучшую характеристику, определённую их совершенными конструктивными свойствами (см. Вайданатен, 1993). Используя КЗФ для КПП, низкочастотную полосу сигнала неоднократно делят пополам, что создаёт октавно-полосных фильтров. Выход каждого КЗФ подвергается децимации с коэффициентом 2 для уменьшения частоты стробирования. Например, предположим, что полоса частот сигнала речи простирается до 3200 Гц. Первая пара КЗФ перекрывает спектр в нижней полосе (0...1600 Гц) и верхней полосе (1600...3200 Гц). Затем нижняя полоса снова расщепляется на нижнюю (0...800 Гц) и верхнюю (800...1600 Гц) полосы путём использования другой пары КЗФ. Третье деление другой парой КЗФ может расщепить полосу 0...800 Гц на низкую (0...400 Гц) и высокую (400...800Гц). Таким образом, тремя парами КЗФ мы получаем сигналы в частотных полосах 0...400, 400...800, 800...1600 и 1600...3200 Гц. Временной сигнал в каждой полосе может теперь кодироваться с различной точностью. На практике для кодирования сигнала в каждой подполоске используется адаптивная ИКМ.

Адаптивное преобразующее кодирование. При адаптивном преобразующем кодировании (АПК) сигнал источника стробируется и делится на группы из отсчётов. Данные каждой группы преобразуются в спектральную область для кодирования и передачи. В декодере источника каждая группа спектральных отсчётов преобразуется обратно во временную область и пропускается через цифро-аналоговый преобразователь. Для достижения эффективного кодирования предусматривают больше бит для более важных спектральных коэффициентов и меньше бит для менее важных спектральных коэффициентов. Дополнительно при проектировании адаптивного распределения общего числа битов для спектральных коэффициентов мы можем адаптироваться к возможной меняющейся статистике сигнала источника. Целью выбора преобразования из временной области в частотную область является получение некоррелированных спектральных отсчётов. В этом смысле преобразование Карунена-Лоэва (ПКЛ) является оптимальным, поскольку оно даёт некоррелированные спектральные значения. Но ПКЛ в общем случае трудно выполнить (см. Винц, 1973). Дискретное преобразование Фурье (ДПФ) и дискретное косинус-преобразование ДКП являются приемлемыми альтернативами, хотя они субоптимальны. Из них ДКП даёт хорошую рабочую характеристику, сравнимую с ПКЛ, и оно обычно используется на практике (см. Кампанелла и Робинсон, 1971; Зелинский и Ноль, 1977).

При кодировании речи "с использованием АПК возможно получить качественную передачу при скорости передачи около 9000 бит/с.

1.1 ОСНОВНЫЕ ПОНЯТИЯ

Кодирование – преобразование элементов дискретного сообщения в последовательности кодовых символов. Обратное преобразование – декодирование .

Устройства, осуществляющие эти операции автоматически, называются соответственно кодером и декодером . Кодек – устройство, объединяющее кодер и декодер.

Код – алгоритм (правило), по которому осуществляется кодирование.

Кодовая комбинация (слово) – последовательность кодовых символов, соответствующая одному элементу дискретного сообщения.

Кодовый алфавит – весь набор кодовых символов.

Основание кода m – число символов в кодовом алфавите. Если m=2 код называется двоичным , m>2 – многопозиционным (недвоичным) .

Разряд – значащая позиция кодового слова.

Разрядность (значность) кода n – число символов в кодовой комбинации. Если n=const, то код называется равномерным , n≠const – неравномерным .

Кодеры и декодеры легче сделать для равномерных двоичных кодов.

1.2 СИСТЕМА ПЕРЕДАЧИ ДИСКРЕТНЫХ СООБЩЕНИЙ

Рисунок 1.1 – Структурная схема системы передачи дискретных сообщений.

Источник выдает дискретное сообщение. Для формирования дискретного сообщения из непрерывного используется дискретизация по времени и по уровню.

Кодирование источника (сжатие данных) применяется для снижения технических затрат на хранение и передачу информации.

Криптографическое кодирование (шифрование) применяется для предотвращения несанкционированного доступа к информации.

Кодирование канала (помехоустойчивое кодирование) применяется для повышения достоверности передачи информации по каналу с помехами.

1.3 СЖАТИЕ ДАННЫХ

Сжатие возможно, т.к. данные на выходе источника содержат избыточную и/или плохо различимую информацию.

Плохо различимая информация - информация, которая не воздействует на ее приемник. Подобная информация сокращается или удаляется при использовании сжатия с потерями . При этом энтропия исходной информации уменьшается. Сжатие с потерями применяется при сжатии цифровых изображений и оцифрованного звука.

Приемы, применяемые в алгоритмах сжатия с потерями:

Использование модели – подбор параметров модели и передача только одних параметров;

Предсказание – предсказание последующего элемента и передача величины ошибки;

Дифференциальное кодирование – передача изменений последующего элемента при сравнении с предыдущим.

Избыточная информация – информация, которая не добавляет знаний о предмете. Избыточность может быть уменьшена или устранена с помощью сжатия без потерь (эффективного кодирования) . При этом энтропия данных остается неизменной. Сжатие без потерь применяется в системах передачи данных.

Приемы, применяемые в алгоритмах сжатия без потерь:

Кодирование длин последовательностей – передача числа повторяющихся элементов;

Кодирование словаря – использование ссылок на переданные ранее последовательности, а не их повторение;

Неравномерное кодирование – более вероятным символам присваиваются более короткие кодовые слова.

1.4 КОДИРОВАНИЕ СЛОВАРЯ

Позволяет уменьшить избыточность, вызванную зависимостью между символами. Идея кодирования словаря состоит в замене часто встречающихся последовательностей символов ссылками на образцы, хранящиеся в специально создаваемой таблице (словаре). Данный подход основан на алгоритме LZ, описанном в работах израильских исследователей Зива и Лемпеля.

1.5 НЕРАВНОМЕРНОЕ КОДИРОВАНИЕ

Позволяет уменьшить избыточность, вызванную неравной вероятностью символов. Идея неравномерного кодирования состоит в использовании коротких кодовых слов для часто встречающихся символов и длинных – для редко возникающих. Данный подход основан на алгоритмах Шеннона-Фано и Хаффмана.

Коды Шеннона-Фано и Хаффмана являются префиксными. Префиксный код – код, обладающий тем свойством, что никакое более короткое слово не является началом (префиксом) другого более длинного слова. Такой код всегда однозначно декодируем. Обратное неверно.

Код Шеннона-Фано строится следующим образом. Символы источника выписываются в порядке убывания вероятностей (частот) их появления. Затем эти символы разбиваются на две части, верхнюю и нижнюю, так, чтобы суммарные вероятности этих частей были по возможности одинаковыми. Для символов верхней части в качестве первого символа кодового слова используется 1, а нижней – 0. Затем каждая из этих частей делится еще раз пополам и записывается второй символ кодового слова. Процесс повторяется до тех пор, пока в каждой из полученных частей не останется по одному символу.

Пример1.1:

Таблица 1.1 – Построение кода Шеннона-Фано.

Вероятность

Этапы разбиения

Алгоритм Шеннона-Фано не всегда приводит к построению однозначного кода с наименьшей средней длиной кодового слова. От отмеченных недостатков свободен алгоритм Хаффмана.

Код Хаффмана строится следующим образом. Символы источника располагают в порядке убывания вероятностей (частот) их появления. Два самых последних символа объединяют в один вспомогательный, которому приписывают суммарную вероятность. Полученные символы вновь располагают в порядке убывания вероятностей, а два последних объединяют. Процесс продолжается до тех пор, пока не останется единственный вспомогательный символ с вероятностью 1. Для нахождения кодовых комбинаций строится кодовое дерево. Из точки, соответствующей вероятности 1, направляются две ветви. Ветви с большей вероятностью присваивается символ 1, с меньшей – 0. Такое ветвление продолжается до достижения вероятности каждого символа. Двигаясь по кодовому дереву сверху вниз , записывают для каждого символа кодовую комбинацию.

Пример1.2:

Таблица 1.2 – Построение кода Хаффмана.

Рисунок 1.2 – Кодовое дерево для кода Хаффмана.

Преобразование сигналов

Погрешности и шумы квантования.

Квантование по уровню, равномерное и неравномерное квантование.

Преобразование сигналов.

Канал есть совокупность технических средств между источником сообщений и потребителœем. Технические устройства, входящие в состав канала, предназначены для того, чтобы сообщения дошли до потребителя наилучшим образом – для этого сигналы преобразуют. Такими полезными преобразованиями сигнала являются модуляция, рассмотренная ранее и преобразование непрерывных сигналов в дискретные. Соответственно, каналы классифицируют по состояниям – непрерывные и дискретные .

Сигналы, несущие информацию о состоянии какого-либо объекта или процесса, по своей природе непрерывны, как непрерывны сами процессы. По этой причине такие сигналы называют аналоговыми, т.к. они являются аналогом отображаемого ими процесса или состояний объекта. Число значений, ĸᴏᴛᴏᴩᴏᴇ может принимать аналоговый сигнал, бесконечно. Соответственно, каналы, по которым передаются эти сигналы, также являются аналоговыми.

В АТС задача часто сводится к тому, чтобы различить конечное число состояний объекта͵ к примеру, занята рельсовая цепь или свободна. Для передачи этого числа состояний достаточно сравнить принимаемый сигнал с некоторым опорным сигналом. В случае если он больше опорного, объект находится в одном состоянии, меньше – в другом. Чем больше число состояний объекта͵ тем больше должно быть опорных уровней.

С другой стороны, информацию о состоянии объекта потребителю достаточно получать не непрерывно во времени, а периодически, и, если период опроса увязать со скоростью изменения состояний объекта͵ то потребитель не будет иметь потерь информации.

В результате преобразований непрерывного сигнала, называемых квантованием и дискретизацией получают отсчеты сигнала, рассматриваемые как числа в той или иной системе счисления. Эти отсчеты являются дискретными сигналами . Эти числа преобразуют в кодовые комбинации электрических сигналов, которые и передают по линии связи как непрерывные. При использовании в качестве носителя постоянного состояния получают последовательность видеоимпульсов. При крайне важности этой последовательностью модулируют гармоническое колебание и получают последовательность радиоимпульсов.

Под кодированием понимают преобразование дискретных сигналов в последовательность или комбинацию некоторых символов. Символ кода - ϶ᴛᴏ элементарный сигнал , отличающийся от другого символа кодовым признаком . Число значений кодовых признаков принято называть основанием кода – m . Число символов в кодовой комбинации п определяет длину кода. В случае если длина кода для всœех комбинаций постоянна, код принято называть равномерным. Чаще всœего используются равномерные двоичные (m =2) коды. Максимальное число кодовых комбинаций при равномерном кодировании: N = m n .

Представление непрерывных сигналов отсчетами, а отсчетов – совокупностью символов принято называть цифровыми видами модуляции . Из них наиболее распространенными являются импульсно-кодовая модуляция (ИКМ) и дельта-модуляция (ДМ).

Рассмотрим ИКМ. Пусть нам нужно передать непрерывный сигнал с диапазоном изменения от нуля до 15 вольт. Считаем, что нам достаточно передать 16 уровней, ᴛ.ᴇ. N = 16. Отсюда, если m = 2, то n = 4. Кодируем: 0 В – 0000, 1 В – 0001, 2 В – 0010, 3 В – 0011 и т.д. Эти числа в виде импульсов и пауз поступают в линию связи, затем в приемнике декодируются и превращаются, если нужно, снова в непрерывный сигнал. Преобразование непрерывного сигнала в дискретный осуществляется в устройствах, называемых аналого-цифровыми преобразователями (АЦП), обратные преобразования – в устройствах цифро-аналогового преобразования (ЦАП).


  • - Кодирование и декодирование сигналов

    В процессе кодирования амплитуда каждого квантованного по уровню АИМ отсчета представляется в виде двоичной последовательности, содержащей m символов. Как говорилось выше, для качественной передачи телефонного сигнала при равномерном и неравномерном квантовании... [читать подробенее]


  • - Кодирование сигналов в режиме УВД.

    Форматы кодов в СВРЛ. Самолетные ответчики в системе вторичной радиолокации. Радиолокационные самолетные ответчики. Структурная схема ВРЛ Параметры кодов запроса Код запроса Кодовый интервал Информационное содержание Нормы ИКАО... [читать подробенее]


  • - Кодирование сигналов.

    Способы образования и передачи сигналов. Сигналы могут передаваться: 1. Батарейным способом (импульсами постоянного тока): - по разговорным проводам - многопроводным способом - по искусственной линии 2. Индуктивным способом 3. Переменным током тональной или...

  • Нижним уровнем в иерархии кодирования является физическое кодирование, которое определяет число дискретных уровней сигнала (амплитуды напряжения, амплитуды тока, амплитуды яркости).

    Физическое кодирование рассматривает кодирование только на самом низшем уровне иерархии кодирования - на физическом уровне и не рассматривает более высокие уровни в иерархии кодирования, к которым относятся логические кодирования различных уровней.

    С точки зрения физического кодирования цифровой сигнал может иметь два, три, четыре, пять и т. д. уровней амплитуды напряжения, амплитуды тока, амплитуды света.

    Ни в одной из версий технологии Ethernet не применяется прямое двоичное кодирование бита 0 напряжением 0 вольт и бита 1 - напряжением +5 вольт, так как такой способ приводит к неоднозначности. Если одна станция посылает битовую строку 00010000, то другая станция может интерпретировать её либо как 10000, либо как 01000, так как она не может отличить «отсутствие сигнала» от бита 0. Поэтому принимающей машине необходим способ однозначного определения начала, конца и середины каждого бита без помощи внешнего таймера. Кодирование сигнала на физическом уровне позволяет приемнику синхронизироваться с передатчиком по смене напряжения в середине периода битов.

    В некоторых случаях физическое кодирование решает проблемы:

    Логическое кодирование

    Вторым уровнем в иерархии кодирования является самый нижний уровень логического кодирования с разными назначениями.

    В совокупности физическое кодирование и логическое кодирование образуют систему кодирования низкого уровня.

    Форматы кодов [ ]

    Каждый бит кодового слова передается или записывается с помощью дискретных сигналов, например, импульсов. Способ представления исходного кода определенными сигналами определяется форматом кода. Известно большое количество форматов, каждый из которых имеет свои достоинства и недостатки и предназначен для использования в определенной аппаратуре.

    Направление перепада при передаче сигнала единицы не имеет значения. Поэтому изменение полярности кодированного сигнала не влияет на результат декодирования. Он может передаваться по симметричным линиям без постоянной составляющей. Это также упрощает его магнитную запись. Этот формат известен также под названием «Манчестер 1». Он используется в адресно-временном коде SMPTE, широко применяющемся для синхронизации носителей звуковой и видеоинформации.

    Системы с двухуровневым кодированием

    NRZ (Non Return to Zero)

    NRZ (Non Return to Zero, с англ.  -  «без возвращения к нулю») - двухуровневый код. Логическому нулю соответствует нижний уровень, логической единице - верхний уровень. Информационные переходы происходят на границе значащих интервалов (значащий момент) .

    Варианты представления кода NRZ

    Различают несколько вариантов представления кода:

    • Униполярный код - логическая единица представлена верхним потенциалом, логический нуль представлен нулевым потенциалом;
    • Биполярный код - логическая единица представлена положительным потенциалом, логический нуль представлен отрицательным потенциалом.

    Достоинства NRZ кода

    • Простая реализация;
    • Высокая скорость передачи данных;
    • Для синхронизации передачи байта используется старт-стоповый бит.

    Недостатки NRZ кода

    NRZI (Non Return to Zero Invertive) - потенциальный код с инверсией при единице, код формируется путем инверсного состояния при поступлении на вход кодирующего устройства логической единицы, при поступлении логического нуля состояние потенциала не меняется. Этот метод является модифицированным методом Non Return to Zero (NRZ) .

    Поскольку код не защищен от долгих последовательностей логических нулей или единиц, то это может привести к проблемам синхронизации. Поэтому перед передачей, заданную последовательность битов рекомендуется предварительно закодировать кодом предусматривающим скремблирование (скремблер предназначен для придания свойств случайности передаваемой последовательности данных с целью облегчения выделения тактовой частоты приемником). Используется в Fast Ethernet 100Base-FX и 100Base-T4.

    Достоинства NRZI кода

    • Простота реализации;
    • Метод обладает хорошей распознаваемостью ошибок (благодаря наличию двух резко отличающихся потенциалов);
    • Спектр сигнала расположен в низкочастотной области относительно частоты следования значащих интервалов.

    Недостатки NRZI кода

    • Метод не обладает свойством самосинхронизации. Даже при наличии высокоточного тактового генератора приёмник может ошибиться с выбором момента съёма данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита;
    • Вторым серьёзным недостатком метода, является наличие низкочастотной составляющей, которая приближается к постоянному сигналу при передаче длинных последовательностей единиц и нулей (можно обойти сжатием передаваемых данных). Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приёмником и источником, этот вид кодирования не поддерживают. Поэтому в сетях код NRZ в основном используется в виде различных его модификаций, в которых устранены как плохая самосинхронизация кода, так и проблемы постоянной составляющей.

    Манчестерское кодирование

    Манчестерское кодирование

    При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала в середине каждого такта. Различают два варианта манчестерского кодирования:

    В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает самосинхронизирующими свойствами. Обязательное наличие перехода в центре бита позволяет легко выделить синхросигнал. Допустимое расхождение частот передачи - до 25 % (это означает, что код Манчестер-2 - самый устойчивый к рассинхронизации, он самосинхронизуется в каждом бите передаваемой информации).

    Плотность кода 1 бит/герц. В спектре сигнала, закодированного Манчестером-2, присутствует 2 частоты - частота передачи и половинная частота передачи (она образуется когда рядом стоят 0 и 1 или 1 и 0. При передаче гипотетической последовательности одних 0 или 1 в спектре будет присутствовать только частота передачи).

    Достоинства манчестерского кодирования

    • Нет постоянной составляющей (смена сигнала происходит на каждом такте передачи данных)
    • Полоса частот в сравнении с NRZ кодированием - основная гармоника в при передаче последовательности единиц или нулей имеет частоту N Гц, а при постоянной последовательности (при передаче чередования единиц и нулей) - N/2 Гц.
    • Является самосинхронизирующимся , то есть не требует специальной кодировки синхроимпульса, который бы занимал полосу данных и поэтому является самым плотным кодом на единицу частоты.
    • Возможность обеспечить гальваническую развязку с помощью трансформатора, так как у него отсутствует постоянная составляющая
    • Вторым важным преимуществом является отсутствие необходимости в синхронизующих битах (как в NRZ-коде) и, вследствие этого, данные могут передаваться подряд сколь угодно долго, из-за чего плотность данных в общем потоке кода приближается к 100 % (например для кода NRZ 1-8-0 она равна 80 %).

    Код Миллера

    Код Миллера (иногда называют трехчастотным) - является двуполярным двухуровневым кодом, в котором каждый информационный бит кодируется комбинацией из двух битов {00, 01,10,11}, а переходы из одного состояния в другое описываются графом . При непрерывном поступлении логических нулей или единиц на кодирующее устройство переключение полярности происходит с интервалом T, а переход от передачи единиц к передаче нулей с интервалом 1,5T. При поступлении на кодирующее устройство последовательности 101 возникает интервал 2Т, по этой причине данный метод кодирования называют трехчастотным .

    Преимущества

    • Нет избыточности в коде (нет специальных комбинаций для синхронизации);
    • Способность к самосинхронизации (в самом коде заложен принцип по которому гарантированно можно синхронизироваться);
    • Полоса пропускания кода Миллера вдвое меньше полосы пропускания в сравнении с манчестерским кодированием.

    Недостатки

    • Присутствие постоянной составляющей, при этом достаточно велик и низкочастотный компонент, что преодолено в модифицированном коде Миллера в квадрате.

    Системы с трёхуровневым кодированием

    RZ (return to zero)

    AMI -код использует следующие представления битов:

    • биты 0 представляются нулевым напряжением (0 В)
    • биты 1 представляются поочерёдно значениями -U или +U (В)

    HDB3 (биполярный код с высокой плотностью третьего порядка)

    Код HDB3 (биполярный код с высокой плотностью третьего порядка ) исправляет любые 4 подряд идущих нуля в исходной последовательности. Правило формирования кода следующее: каждые 4 нуля заменяются 4 символами в которых имеется хотя бы один сигнал V. Для подавления постоянной составляющей полярность сигнала V чередуется при последовательных заменах. Для замены используются два способа:

    1. Если перед заменой исходный код содержал нечётное число единиц то используется последовательность 000V
    2. Если перед заменой исходный код содержал чётное число единиц то используется последовательность 100V

    V-сигнал единицы запрещённого для данного сигнала полярности

    Тоже что и AMI , только кодирование последовательностей из четырех нулей заменяется на код -V/0, 0, 0, -V или +V/0, 0, 0, +V - в зависимости от предыдущей фазы сигнала и количества единиц в сигнале, предшествующем данной последовательности нулей.

    MLT-3

    Кодирование MLT-3

    MLT-3 (Multi Level Transmission - 3) (англ. многоуровневая передача) - метод кодирования, использующий три уровня сигнала. Метод основывается на циклическом переключении уровней -U, 0, +U. Единице соответствует переход с одного уровня сигнала на следующий. Так же как и в методе NRZI при передаче логического нуля сигнал не меняется. Метод разработан Cisco Systems для использования в сетях FDDI на основе медных проводов, известных как CDDI. Также используется в Fast Ethernet 100BASE-TX . Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче нуля сигнал не меняется.

    Преимущества MLT-3 кода

    • В случае наиболее частого переключения уровней (длинная последовательность единиц) для завершения цикла необходимо четыре перехода. Это позволяет вчетверо снизить частоту несущей относительно тактовой частоты, что делает MLT-3 удобным методом при использовании медных проводов в качестве среды передачи.
    • Этот код, так же как и NRZI нуждается в предварительном кодировании. Используется в Fast Ethernet 100Base-TX .

    Гибридный троичный код (англ.) русск.

    Входной бит Предыдущее состояние
    на выходе
    Выходной бит
    0 +
    0
    0
    1 +
    0 +

    4B3T

    4B3T (4 Binary 3 Ternary, когда 4 двоичных символа передаются с помощью 3 троичных символов) - cигнал на выходе кодирующего устройства, согласно коду 4B3T, является трехуровневым, то есть на выходе кодирующего устройства формируется сигнал с тремя потенциальными уровнями. Код формируется, например, согласно таблице кодирования MMS43 . Таблица кодирования:

    MMS 43 coding table
    Input Accumulated DC offset
    1 2 3 4
    0000 + 0 + (+2) 0−0 (−1)
    0001 0 − + (+0)
    0010 + − 0 (+0)
    0011 0 0 + (+1) − − 0 (−2)
    0100 − + 0 (+0)
    0101 0 + + (+2) − 0 0 (−1)
    0110 − + + (+1) − − + (−1)
    0111 − 0 + (+0)
    1000 + 0 0 (+1) 0 − − (−2)
    1001 + − + (+1) − − − (−3)
    1010 + + − (+1) + − − (−1)
    1011 + 0 − (+0)
    1100 + + + (+3) − + − (−1)
    1101 0 + 0 (+1) − 0 − (−2)
    1110 0 + − (+0)
    1111 + + 0 (+2) 0 0 − (−1)

    Таблица декодирования:

    Ternary Binary Ternary Binary Ternary Binary
    0 0 0 н/д − 0 0 0101 + − − 1010
    + 0 + 0000 − + + 0110 + 0 − 1011
    0 − 0 0000 − − + 0110 + + + 1100
    0 − + 0001 − 0 + 0111 − + − 1100
    + − 0 0010 + 0 0 1000 0 + 0 1101
    0 0 + 0011 0 − − 1000 − 0 − 1101
    − − 0 0011 + − + 1001 0 + − 1110
    − + 0 0100 − − − 1001 + + 0 1111
    0 + + 0101 + + − 1010 0 0 − 1111

    Системы с четырёхуровневым кодированием

    2B1Q (Потенциальный код 2B1Q)

    Достоинство метода 2B1Q

    • Сигнальная скорость у этого метода в два раза ниже, чем у кодов NRZ и AMI, а спектр сигнала в два раза уже. Следовательно с помощью 2B1Q-кода можно по одной и той же линии передавать данные в два раза быстрее.

    Недостатки метода 2B1Q

    • Реализация этого метода требует более мощного передатчика и более сложного приемника, который должен различать четыре уровня.

    Преобразование сигналов

    Погрешности и шумы квантования.

    Квантование по уровню, равномерное и неравномерное квантование.

    Преобразование сигналов.

    Канал есть совокупность технических средств между источником сообщений и потребителем. Технические устройства, входящие в состав канала, предназначены для того, чтобы сообщения дошли до потребителя наилучшим образом – для этого сигналы преобразуют. Такими полезными преобразованиями сигнала являются модуляция, рассмотренная ранее и преобразование непрерывных сигналов в дискретные. Соответственно, каналы классифицируют по состояниям – непрерывные и дискретные .

    Сигналы, несущие информацию о состоянии какого-либо объекта или процесса, по своей природе непрерывны, как непрерывны сами процессы. Поэтому такие сигналы называют аналоговыми, т.к. они являются аналогом отображаемого ими процесса или состояний объекта. Число значений, которое может принимать аналоговый сигнал, бесконечно. Соответственно, каналы, по которым передаются эти сигналы, также являются аналоговыми.

    В АТС задача часто сводится к тому, чтобы различить конечное число состояний объекта, например, занята рельсовая цепь или свободна. Для передачи этого числа состояний достаточно сравнить принимаемый сигнал с некоторым опорным сигналом. Если он больше опорного, объект находится в одном состоянии, меньше – в другом. Чем больше число состояний объекта, тем больше должно быть опорных уровней.

    С другой стороны, информацию о состоянии объекта потребителю достаточно получать не непрерывно во времени, а периодически, и, если период опроса увязать со скоростью изменения состояний объекта, то потребитель не будет иметь потерь информации.

    В результате преобразований непрерывного сигнала, называемых квантованием и дискретизацией получают отсчеты сигнала, рассматриваемые как числа в той или иной системе счисления. Эти отсчеты являются дискретными сигналами . Эти числа преобразуют в кодовые комбинации электрических сигналов, которые и передают по линии связи как непрерывные. При использовании в качестве носителя постоянного состояния получают последовательность видеоимпульсов. При необходимости этой последовательностью модулируют гармоническое колебание и получают последовательность радиоимпульсов.

    Под кодированием понимают преобразование дискретных сигналов в последовательность или комбинацию некоторых символов. Символ кода – это элементарный сигнал , отличающийся от другого символа кодовым признаком . Число значений кодовых признаков называется основанием кода – m . Число символов в кодовой комбинации п определяет длину кода. Если длина кода для всех комбинаций постоянна, код называется равномерным. Чаще всего используются равномерные двоичные (m =2) коды. Максимальное число кодовых комбинаций при равномерном кодировании: N = m n .



    Представление непрерывных сигналов отсчетами, а отсчетов – совокупностью символов называется цифровыми видами модуляции . Из них наиболее распространенными являются импульсно-кодовая модуляция (ИКМ) и дельта-модуляция (ДМ).

    Рассмотрим ИКМ. Пусть нам надо передать непрерывный сигнал с диапазоном изменения от нуля до 15 вольт. Считаем, что нам достаточно передать 16 уровней, т.е. N = 16. Отсюда, если m = 2, то n = 4. Кодируем: 0 В – 0000, 1 В – 0001, 2 В – 0010, 3 В – 0011 и т.д. Эти числа в виде импульсов и пауз поступают в линию связи, затем в приемнике декодируются и превращаются, если нужно, снова в непрерывный сигнал. Преобразование непрерывного сигнала в дискретный осуществляется в устройствах, называемых аналого-цифровыми преобразователями (АЦП), обратные преобразования – в устройствах цифро-аналогового преобразования (ЦАП).