Контроллер заряда аккумулятора от солнечной батареи: зачем нужен и как работает. Как создать дешевый и эффективный контроллер заряда аккумулятора от солнечной батареи

Особую популярность в последнее время приобрели системы, функционирующие автономно, без подключения к электросети. Подобные устройства идеально подходят для работы в замкнутом режиме. Конструкции подобных систем довольно сложные и состоят из нескольких элементов, самым главным из которых является контроллер.

Особенности

Контроллеры заряда имеют несколько немаловажных особенностей. Наиболее важными являются функции защиты, которые служат для повышения степени надежности работы данного устройства.

Необходимо отметить наиболее распространенные в подобных конструкциях разновидности защит:

  • устройства оснащены надежной защитой от неправильного подсоединения полярности;
  • очень важно предотвратить вероятность коротких замыканий в нагрузке и на входе, поэтому производители обеспечивают контроллеры надежной защитой от возникновения подобных ситуаций;
  • немаловажной является защита устройства от молнии, а также различных перегревов;
  • конструкции контроллеров оснащаются специальной защитой от перенапряжений и разрядки аккумулятора в ночное время суток.



Дополнительно устройство оснащается разнообразными электронными предохранителями и специальными информационными дисплеями. Монитор позволяет узнать необходимую информацию о состоянии аккумулятора и всей системы.

Помимо этого, на экране отображается множество другой немаловажной информации: напряжение аккумуляторной батареи, степень заряда и многое другое.

В конструкцию многих моделей контроллеров входят специальные таймеры, благодаря которым активируется ночной режим работы прибора.

Кроме того, существуют более сложные модели подобных устройств, способные одновременно управлять работой двух независимых друг от друга батарей. В наименовании подобных приборов присутствует приставка Duo.



Необходимо отметить современные модели приборов, которые способны сбрасывать лишнюю энергию на ТЭНы.

Виды

Существует несколько типов контроллеров для заряда солнечных батарей. Наиболее простым и доступным по стоимости прибором является On/Off.

Основным предназначением и преимуществом данного вида приборов является своевременное отключение подачи заряда на аккумулятор. Это свойство аппарата немаловажно: во время достижения оптимального напряжения оно помогает избежать перегревания прибора. При этом обязательно следует упомянуть о недостатке подобного вида устройств – быстрое отключение. После того как будет достигнут максимальный ток, нужно в течение примерно двух часов поддержать процесс заряда, однако данный прибор отключает его сразу. Степень заряда аккумулятора в этом случае будет порядка 70 процентов, что значительно ниже необходимого значения. Этот показатель оказывает негативное влияние на работу аккумуляторной батареи.



Второй тип контроллеров для заряда солнечной батареи – электронный прибор PWM. Выпуск подобной конструкции был налажен сравнительно давно. В основу работы устройства заложены специальные алгоритмы широтно-импульсной модуляции. Несмотря на это, подобные приборы достаточно эффективны. PWM-устройства являются оптимальным вариантом для использования в бытовых условиях.

Более современное электронное устройство – МРРТ. Прибор оснащен новейшими технологиями, направленными на отслеживание максимальной степени мощности. Это в несколько раз увеличивает эффективности и функциональность данного устройства. Однако, несмотря на это, необходимо отметить, что при выборе устройства для использования в бытовых условиях следует выбирать прибор из серии PWM. Это обусловлено высокой стоимостью приборов из серии МРРТ, а также сложной настройкой. Подобные устройства являются оптимальным вариантом для применения в системах масштабной солнечной энергетики.



Если вы хотите подобрать гибридный вариант, тогда, прежде всего, необходимо понять, как микроконтроллер работает (принцип работы и ШИМ).

Как выбрать

Выбирая подходящий контроллер для заряда солнечной батареи, необходимо обратить особое внимание на несколько очень важных критериев.

На первом месте стоит входящее напряжение. Максимальное значение данного показателя должно соответствовать определенным нормам. В конструкциях подобных устройств иногда используются несколько батарей. Поэтому напряжение на схему прибора идет одновременно от всех батарей, соединенных различными способами. Чтобы прибор правильно функционировал, необходимо определенное напряжение, показатели которого не должны превышать предусмотренные производителем нормы.




Для расчета значения мощности за основу берется показатель напряжения при разряженных аккумуляторах аппарата. При этом необходимо перемножить показатели выходного тока и напряжение, которое вырабатывается солнечной батареей. После этого следует добавить к полученному результату 20 процентов на резерв.

Еще одним важным критерием при выборе контроллера является вид нагрузки. Не следует использовать устройство для подключения различных бытовых приборов. Это приведет к выводу контроллера из строя, что обусловлено использованием в конструкции прибора различных технологий, которые учитывают всю нагрузку, заложенную в свойствах аккумулятора. Чтобы избежать возникновения подобных ситуаций, необходимо использовать устройство строго по назначению.




Схема установки

Вы можете сделать самодельный вариант своими руками и настроить его, если будете учитывать все наши рекомендации.

Следует отметить, что при подключении каждого типа подобных приборов необходимо использовать максимально соответствующий вид солнечных панелей. Например, при использовании устройства, рассчитанного на входное напряжение порядка 100 вольт, следует воспользоваться солнечными панелями, у которых подобный показатель на выходе соответствует данному значению.


Прежде чем приступить к подключению прибора, следует определиться с наиболее подходящим местом для его установки. Оптимальным решением данного вопроса является сухое, хорошо проветриваемое помещение. Категорически не рекомендуется располагать рядом с аппаратом легковоспламеняющиеся материалы. Помимо этого, категорически недопустимо расположение устройства очень близко к различным источникам вибрации, влажности, а также разнообразным обогревателям и печам. Место для размещения аппарата должно быть надежно защищено от различных атмосферных осадков и прямых солнечных лучей.


Последовательность подключения устройств PWM

Чтобы добиться максимального эффекта от использования подобного устройства, необходимо точно следовать инструкции, а также соблюдать определенную последовательность при подключении аппарата. Процесс подсоединения приборов PWM и различных периферийных устройств не вызовет больших затруднений – справиться с данной задачей сможет любой человек.



Каждая конструкция оснащена специальными маркированными клеммами.

Подключение периферийных устройств необходимо осуществлять в точном соответствии с обозначениями на контактных клеммах:

  • необходимо соединить аккумулятор и аккумуляторную батарею при помощи специального провода и клеммы, внимательно соблюдая полярность;
  • к определенному положительному проводу нужно подсоединить предохранитель, предназначенный для защиты прибора;
  • на соответствующих контактах контроллера следует зафиксировать специальные проводники, выходящие от батареи солнечных панелей, при этом также нужно тщательно соблюдать полярность;
  • следует подсоединить к определенным выходам аппарата специальную лампу для контроля соответствующего напряжения.


Не следует нарушать указанную последовательность. Например, категорически не рекомендуется подсоединять к контроллеру при отключенном аккумуляторе солнечные панели – это может привести к поломке аппарата. Инвертор конструкции нужно соединять с аккумуляторной батареей при помощи специальных клемм.

Порядок подключения приборов MPPT

Общие правила подключения этого типа аппаратов практически идентичны монтажу других видов приборов. Однако технология установки немного отличается, так как контроллеры MPPT относятся к более мощным устройствам.

Для конструкций, рассчитанных на высокую мощность, для соединения силовых цепей необходимо использовать электрокабели с большим сечением.

Соединительные электрокабели обязательно должны быть оснащены специальными наконечниками , выполненными из меди, которые необходимо предварительно обжать с помощью определенного инструмента. Отрицательные клеммы солнечной панели и аккумулятора следует оснастить специальными переходниками с предохранителями и выключателями. Благодаря подобному оснащению конструкции прибора можно добиться значительного сокращения потери энергии и гарантированной максимально безопасной эксплуатации конструкции.


Предварительно перед подключением прибора обязательно следует убедиться, что напряжение на клеммах соответствует либо имеет значение меньше допустимой нормы, которая необходима для подачи на вход контроллера.

Подсоединение периферии к аппарату MTTP:

  • предварительно следует отключить прибор и аккумулятор при помощи специальных выключателей;
  • необходимо демонтировать специальные предохранители на солнечной панели и аккумуляторе;
  • нужно подсоединить при помощи электрокабеля и клемм аккумулятор и контроллер;
  • подключить с помощью специального провода и клемм солнечную панель с аппаратом (данные элементы обозначены соответствующими знаками);
  • соединить с помощью электрокабеля определенную клемму заземления с шиной «земли»;
  • установить на конструкции специальный датчик, определяющий температуру.
  • Благодаря тому, что человек научился преобразовывать солнечное излучение в электроэнергию, мы имеем возможность обеспечивать наши дома электричеством с помощью солнца без вреда для окружающей среды. Частный дом с множеством различных приборов и систем, которые потребляют электричество, требует сооружения целой солнечной электростанции. Она комплектуется с помощью таких приборов, как контроллер, и, конечно же, солнечные панели. Знакомимся с подробной информацией о том, для чего в этой системе нужен контроллер, с принципом его действия, а также с видами этого прибора, и узнаем, как выбрать контроллер заряда аккумуляторов для солнечной батареи.

    Предназначение и принцип работы

    Контроллер − это электронный прибор, который, как следует из названия, контролирует уровни заряда и разряда аккумуляторов для солнечных батарей. Для лучшего представления о сущности этого устройства рассмотрим особенности работы тепловых панелей.

    Солнечный свет попадает на поверхность батареи, где начинается процесс его преобразования в электрический ток при помощи фотоэлементов. От ток постоянного значения поступает в аккумулятор. Инвертор меняет постоянный ток на переменный перед распределением последнего между потребителями электричества. Контроллер заряда солнечной батареи предотвращает полный разряд и перезаряд аккумуляторов.

    Следить за уровнем заряда очень важно по нескольким причинам.

    Во-первых, должны соблюдаться максимальные и минимальные значения заряда, которые бывают разными и зависят от типа аккумулятора . Это существенно продлит срок эксплуатации аккумуляторной батареи (АКБ), а в отдельных случаях позволит избежать ее поломки. Перезарядка некоторых видов АКБ может привести к выделению вредных веществ или даже ко взрыву устройства.

    Во-вторых, многочисленные модели аккумуляторов работают с разными показателями напряжения. Контроллер солнечных батарей устанавливает необходимый уровень, с которым может работать конкретный прибор.

    Помимо этого, аккумулятор отключает подачу тока от солнечной батареи к предельно заряженному накопителю, а максимально разряженное устройство отключает от потребителей электричества.

    В общем, это устройство выполняет широкий спектр функций:

    1. Обеспечение многоступенчатого заряда аккумулятора.
    2. Отключение и подключение приборов в автоматическом режиме от источников энергии или от потребителей в зависимости от уровня заряда.

    Таким образом, контроллер заряда отслеживает условия работы аккумуляторов, страхуя их от простоя, перезарядки и излишней нагрузки. Эти функции продлевают время эксплуатации приборов.

    Виды приборов

    Контроллеры для солнечных батарей представлены в нескольких видах:

    • Устройства On/Off.
    • PWM контроллеры.
    • MPPT контроллеры.
    • Устройства гибридного типа.
    • Самодельные контроллеры.

    Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

    Устройства On/Off

    Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

    Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ . Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока. На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%. Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

    Контроллеры типа PWM

    Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

    Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

    MPPT контроллеры

    МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

    Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM .

    На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

    Устройства гибридного типа

    Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен п ринцип работы МРРТ и PWM контроллеров . Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

    Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

    Самодельные приборы

    В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

    Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

    Способы подключения устройств

    Контроллер для солнечных батарей может быть как встроенным в инвертор или блок питания, так и существовать самостоятельным прибором.

    При выборе метода подключения всех компонентов системы следует учитывать соотношение значений. Например, напряжение от солнечных батарей не должно превышать максимальный показатель, с которым может работать контроллер. Перед подключением прибора в схему для него следует выбрать сухое место, придерживаясь при этом правил противопожарной безопасности. Ниже приводится описание способов подключения самых распространенных типов контроллеров: PWM и MPPT.

    PWM

    При подключении PWM контроллеров требуется соблюдать четко определенную последовательность:

    1. Провода аккумуляторной батареи соединить на клеммах контроллера заряда солнечных батарей.
    2. Включить защитный предохранитель возле провода с положительной полярностью.
    3. Подсоединить выходы солнечных батарей к контактам контроллера.
    4. Подключение лампы необходимого напряжения 12 вольт (стандартное обычное значение) к выводам нагрузки контроллера.

    При этих действиях важно подключать приборы со строжайшим соблюдением маркировок клемм и полярности. Нарушение последовательности подключения приборов может привести к их поломке. Инвертор нельзя подключать к клеммам контроллера. Он должен присоединяться к клеммам аккумуляторной батареи.

    MPPT

    МРРТ контроллер, являясь устройством более мощным, технологически подключается немного по-другому. Хотя общие требования, касающиеся физической установки, соблюдаются в соответствии с вышеописанной схемой.

    Кабели, с помощью которых МРРТ контроллер соединяется с другими приборами, оснащены медными обжимными наконечниками. Клеммы отрицательной полярности, соединяемые с контроллером, следует оборудовать переходниками с выключателями и предохранителями. Это позволит вам предотвратить потерю энергии, а также обеспечит безопасное использование системы. Важно проверить соответствие значения напряжения на солнечных батареях и эти же показатели у устройства.

    Перед подключением приборов в систему необходимо перевести выключатели клемм в отключенное состояние и вынуть предохранители. Процесс происходит в несколько этапов:

    1. Соединить клеммы контроллера и аккумуляторной батареи.
    2. Соединить солнечные батареи с контроллером.
    3. Подключить заземление.
    4. Установить на контроллере датчик температуры.

    Все это должно делаться в соответствии с маркировками клемм и соблюдением полярностей. После того как установка завершена, переводим выключатель в состояние «включено» и вставляем предохранители. Если установка выполнена правильно, на экране должны высветиться показатели заряда аккумулятора.

    Критерии выбора контроллера

    Контроллер процесса зарядки аккумуляторов для солнечных панелей является очень важным элементом системы энергоснабжения. Разнообразный ассортимент моделей может немного озадачить при выборе устройства.

    Подобрать подходящую модель проще, если при покупке взять во внимание следующие критерии:

    1. Показатель входного напряжения. Данное значение выбранного прибора должно быть выше примерно на 20% показателей напряжения батарей, которые генерируют преобразователи солнечного света в ток.
    2. Значение общей мощности батарей. Оно не должно быть выше показателя тока на выходе.

    Современные модели имеют ряд дополнительных функций, предназначенных для повышения безопасности при использовании регуляторов процесса зарядки. Устройства управления процессами зарядки-разрядки могут иметь защиту от воздействия погодных условий, излишней нагрузки, коротких замыканий, перегрева, а также от неправильного подключения (это касается несоблюдения полярности). Поэтому выбирать прибор следует не только в зависимости от описанных критериев, но и с учетом функций защиты, которые лучшим образом обеспечат безопасную эксплуатацию устройства.

    Одним из важнейших компонентов домашней солнечной электростанции является контроллер заряда аккумуляторов. Именно это устройство следит за процессом заряда/разряда аккумуляторов, поддерживая оптимальный режим их работы. Существует множество схем контроллеров для солнечных батарей – от самых простых, выполненных порою кустарным способом, до очень сложных, с применением микропроцессоров. Причем контроллеры заряда для солнечных батарей, сделанные своими руками, частенько работают лучше аналогичных промышленных устройств такого же типа.

    Для чего нужны контроллеры заряда аккумуляторов

    Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

    Контроллер в системе солнечного заряда аккумуляторов

    Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

    Три принципа построения контроллеров заряда

    По принципу действия различают три типа солнечных контроллеров.
    Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.


    Вольт-амперная характеристика солнечного модуля

    Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.


    Третий тип – это контроллеры MPPT , то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% - 30% больше энергии, чем другие аппараты.


    Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% - 95%.

    Простейший самодельный контроллер

    При самостоятельном изготовлении любого контроллера необходимо обязательно соблюдать определенные условия. Во-первых, максимальное напряжение на входе должно быть равным напряжению АКБ без нагрузки. Во-вторых, должно быть выдержано соотношение: 1,2P


    Этот аппарат предназначен для работы в составе солнечной электростанции малой мощности. Принцип работы контроллера предельно прост. Когда напряжение на клеммах аккумуляторов достигнет заданного значения, заряд прекращается. В дальнейшем производится только так называемый капельный заряд.


    Контроллер, смонтированный на печатной плате

    При падении напряжения ниже установленного уровня подача энергии на аккумуляторы возобновляется. Если при работе на нагрузку в отсутствии заряда напряжение АКБ будет ниже 11 вольт, контроллер отключит нагрузку. Тем самым исключается разряд аккумуляторов в период отсутствия солнца.

    Аналоговый контроллер для маломощных гелиевых систем

    Аналоговые устройства используются, в основном, в гелиевых системах, имеющих небольшую мощность. В мощных системах целесообразно применять цифровые последовательные аппараты типа MPPT. Эти контроллеры прерывают зарядный ток, когда аккумулятор будет полностью заряжен. В предлагаемой схеме аналогового контролера используется параллельное подключение. При таком подключении солнечный модуль всегда соединен с аккумулятором через специальный диод. Когда напряжение на аккумуляторе достигнет заданного значения, контроллер параллельно солнечному модулю включает цепь нагрузочного сопротивления, которое принимает на себя избыток энергии от модуля.

    Это устройство было разработано и собрано под конкретную систему, состоящую из солнечной панели с 36 ячейками, с выходным напряжением холостого хода 18 вольт и с током короткого замыкания до одного ампера. Емкость аккумулятора до 50 ампер-часов, при номинальном напряжении 12 вольт. Перед тем, как включить собранный аппарат в рабочую конфигурацию системы, необходимо произвести его настройку. Для быстрой настройки нужно взять предварительно заряженный аккумулятор. Солнечную батарею с соблюдением полярности нужно подключить к клеммам PV по схеме, а аккумулятор – к клеммам ВАТ. К клеммам аккумулятора необходимо также подключить цифровой вольтметр.


    Теперь для получения максимальной отдачи от солнечной батареи, нужно сориентировать ее на солнце. После этого медленно поворачивать винт двадцатиоборотного переменного резистора номиналом в 100 кОм. Вращение винта производится до тех пор, пока светодиод не начнет мигать. После того, как начнется мигание, винт следует продолжать медленно поворачивать до тех пор, пока вольтметр не покажет значение напряжения на клеммах аккумулятора, равное желаемому. На этом настройка устройства завершена.

    В процессе эксплуатации системы при достижении напряжением на клеммах аккумулятора предельного значения светодиод начинает выдавать краткие световые импульсы с длительными промежутками. При продолжении заряда аккумулятора длительность световых импульсов увеличивается, а интервал между ними, наоборот, сокращается.

    Разумеется, при наличии определенных знаний и навыков можно собрать и более сложное устройство, например, MPPT, но если речь заходит о покупке дорогостоящего оборудования для домашней электростанции, то, вероятно, есть смысл все-таки купить промышленный аппарат, на который распространяется к тому же и гарантия изготовителя. И не подвергать аккумуляторные батареи риску повреждения.

    Основной сложностью использования солнечной энергии в быту является ее накопление. вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

    Виды контроллеров

    Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

    Какой выбирать

    Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.

    Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.

    Стоимость

    Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

    • Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ - простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
    • MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

    Видео, контроллер своими руками

    Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ - такая перспектива уже не кажется раумной. Собрать качественный MPPT - контроллер в домашних условиях - вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

    Дополнения к видео: схема контроллера, расположение деталей на печатной плате:

    Схема контроллера солнечной батареи LAY печатной платы Расположение деталей на плате

    Комментарии:

    Похожие записи

    Ветряк для частного дома - игрушка или реальная альтернатива Бестопливный генератор - способ заработать на безграмотности

    Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

    При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

    Необходимость этого устройства можно свести к следующим пунктам:

    1. Зарядка аккумулятора многостадийная;
    2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
    3. Подключение аккумулятора при максимальном заряде;
    4. Подключение зарядки от фотоэлементов в автоматическом режиме.

    Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

    Как работает контроллер зарядки аккумулятора

    В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

    Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

    Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

    Типы

    Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

    Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

    В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

    PWM

    Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

    Из-за этого появилась возможность практически стопроцентной зарядки устройства.

    Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

    Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

    Параметры выбора

    Критериев выбора всего два:

    1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
    2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

    Как сделать своими руками

    Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

    Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

    Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

    Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

    Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

    Видео

    Как правильно подключить контроллер, вы узнаете из нашего видео.