Метод Гаусса-Жордана. Примеры решения систем линейных алгебраических уравнений методом Гаусса-Жордана. Симплексный метод решения злп

При графическом методе решения задач ЛП мы фактически из множества вершин, принадлежащих границе множества решений системы неравенств, выбрали такую вершину, в которой значение целевой функции достигало максимума (минимума). В случае двух переменных этот метод совершенно нагляден и позволяет быстро находить решение задачи.

Если в задаче три и более переменных, а в реальных экономических задачах как раз такая ситуация, трудно представить наглядно область решений системы ограничений. Такие задачи решаются с помощью симплекс-метода или методом последовательных улучшений. Идея метода проста и заключается в следующем.

По определенному правилу находится первоначальный опорный план (некоторая вершина области ограничений). Проверяется, является ли план оптимальным. Если да, то задача решена. Если нет, то переходим к другому улучшенному плану - к другой вершине. значение целевой функции на этом плане (в этой вершине) заведомо лучше, чем в предыдущей. Алгоритм перехода осуществляется с помощью некоторого вычислительного шага, который удобно записывать в виде таблиц, называемых симплекс-таблицами . Так как вершин конечное число, то за конечное число шагов мы приходим к оптимальному решению.

Рассмотрим симплексный метод на конкретном примере задачи о составлении плана.

Еще раз заметим, что симплекс-метод применим для решения канонических задач ЛП, приведенных к специальному виду, т. е. имеющих базис, положительные правые части и целевую функцию, выраженную через небазисные переменные. Если задача не приведена к специальному виду, то нужны дополнительные шаги, о которых мы поговорим позже.

Рассмотрим задачу о плане производства, предварительно построив модель и приведя ее к специальному виду.

Задача.

Для изготовления изделий А и В склад может отпустить сырья не более 80 единиц. Причем на изготовление изделия А расходуется две единицы, а изделия В - одна единица сырья. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если изделий А требуется изготовить не более 50 шт., а изделий В - не более 40 шт. Причем, прибыль от реализации одного изделия А - 5 руб., а от В - 3 руб.

Построим математическую модель, обозначив за х 1 количество изделий А в плане, за х 2 - количество изделий В . тогда система ограничений будет выглядеть следующим образом:

Приведем задачу к каноническому виду, введя дополнительные переменные:

(3.10)

F = -5x 1 - 3x 2 → min.

Эта задача имеет специальный вид (с базисом, правые части неотрицательны). Ее можно решить симплекс-методом.

I этап. Запись задачи в симплекс-таблицу. Между системой ограничений задачи (3.10) и симплекс-таблицей взаимно-однозначное соответствие. Строчек в таблице столько, сколько равенств в системе ограничений, а столбцов - столько, сколько свободных переменных. Базисные переменные заполняют первый столбец, свободные - верхнюю строку таблицы. Нижняя строка называется индексной, в ней записываются коэффициенты при переменных в целевой функции. В правом нижнем углу первоначально записывается 0, если в функции нет свободного члена; если есть, то записываем его с противоположным знаком. На этом месте (в правом нижнем углу) будет значение целевой функции, которое при переходе от одной таблицы к другой должно увеличиваться по модулю. Итак, нашей системе ограничений соответствует таблица 3.4, и можно переходить ко II этапу решения.

Таблица 3.4

базисные

свободные

II этап . Проверка опорного плана на оптимальность.

Данной таблице 3.4 соответствует следующий опорный план:

(х 1 , х 2 , х 3 , х 4 , х 5) = (0, 0, 50, 40, 80).

Свободные переменные х 1 , х 2 равны 0; х 1 = 0, х 2 = 0. А базисные переменные х 3 , х 4 , х 5 принимают значения х 3 = 50, х 4 = 40, х 5 = 80 - из столбца свободных членов. Значение целевой функции:

-F = - 5х 1 - 3х 2 = -5 · 0 - 3 · 0 = 0.

Наша задача - проверить, является ли данный опорный план оптимальным. для этого необходимо просмотреть индексную строку - строку целевой функции F .

Возможны различные ситуации.

1. В индексной F -строке нет отрицательных элементов. Значит, план оптимален, можно выписать решение задачи. Целевая функция достигла своего оптимального значения, равного числу, стоящему в правом нижнем углу, взятому с противоположным знаком. Переходим к IV этапу.

2. В индексной строке есть хотя бы один отрицательный элемент, в столбце которого нет положительных. Тогда делаем вывод о том, что целевая функция F →∞ неограниченно убывает.

3. В индексной строке есть отрицательный элемент, в столбце которого есть хотя бы один положительный. Тогда переходим к следующему III этапу. пересчитываем таблицу, улучшая опорный план.

III этап . Улучшение опорного плана.

Из отрицательных элементов индексной F -строки выберем наибольший по модулю, назовем соответствующий ему столбец разрешающим и пометим "".

Чтобы выбрать разрешающую строку, необходимо вычислить отношения элементов столбца свободных членов только к положительным элементам разрешающего столбца. Выбрать из полученных отношений минимальное. Соответствующий элемент, на котором достигается минимум, называется разрешающим. Будем выделять его квадратом.

В нашем примере, , элемент 2 - разрешающий. Строка, соответствующая этому элементу, тоже называется разрешающей (табл. 3.5).

Таблица 3.5

Выбрав разрешающий элемент, делаем перечет таблицы по правилам:

1. В новой таблице таких же размеров, что и ранее, переменные разрешающей строки и столбца меняются местами, что соответствует переходу к новому базису. В нашем примере: х 1 входит в базис, вместо х 5 , которая выходит из базиса и теперь свободная (табл. 3.6).

Таблица 3.6

базисные

свободные

2. На месте разрешающего элемента 2 записываем обратное ему число .

3. Элементы разрешающей строки делим на разрешающий элемент.

4. Элементы разрешающего столбца делим на разрешающий элемент и записываем с противоположным знаком.

5. Чтобы заполнить оставшиеся элементы таблицы 3.6, осуществляем пересчет по правилу прямоугольника. Пусть мы хотим посчитать элемент, стоящий на месте 50.

Соединяем этот элемент мысленно с разрешающим, находим произведение, вычитаем произведение элементов, находящихся на другой диагонали получившегося прямоугольника. Разность делим на разрешающий элемент.

Итак, . Записываем 10 на место, где было 50. Аналогично:

, , , .

Таблица 3.7

Имеем новую таблицу 3.7, базисными переменными теперь являются переменные {x 3 ,x 4 ,x 1 }. Значение целевой функции стало равно -200, т. е. уменьшилось. Чтобы проверить данное базисное решение на оптимальность надо перейти опять ко II этапу. Процесс, очевидно, конечен, критерием остановки являются пункт 1 и 2 II этапа.

Доведем решение задачи до конца. Для этого проверим индексную строку и, увидев в ней отрицательный элемент , назовем соответствующий ему столбец разрешающим и, согласно III этапу, пересчитаем таблицу. Составив отношения и выбрав среди них минимальное = 40, определили разрешающий элемент 1. теперь пересчет осуществляем согласно правилам 2-5.

Таблица 3.8

базисные

свободные

х 3 = 30, х 2 = 40, х 1 = 20. Свободные переменные равны 0, х 5 = 0, х 4 = 0. Целевая функция принимает значение последнего элемента столбца свободных членов с противоположным знаком: -F = -220 F = 220, в нашем примере функция исследовалась на min, и первоначально F max, поэтому фактически знак поменялся дважды. Итак, х * = (20, 40, 30, 0, 0), F * = 220. Ответ к задаче:

Необходимо в план выпуска включить 20 изделий типа А , 40 изделий типа В, при этом прибыль будет максимальной и будет равна 220 руб.

В конце этого параграфа приведем блок-схему алгоритма симплекс-метода, которая в точности повторяет этапы, но, возможно, для некоторых читателей будет более удобна в пользовании, т. к. стрелочки указывают четкую направленность действий.

Ссылки над прямоугольниками в блок-схеме показывают, к какому этапу или подпункту относится соответствующая группа преобразований. правило нахождения первоначального опорного плана будет сформулировано в пункте 3.7.

Вопросы для самоконтроля

1. Как строится симплекс-таблица?

2. Как отражается смена базиса в таблице?

3. Сформулируйте критерий остановки симплекс-метода.

4. Как организовать пересчет таблицы?

5. С какой строки удобно начинать пересчет таблицы?

В общем случае линейное уравнение имеет вид:

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Пример 20.1

Дать характеристику системе уравнений .

Решение :

1. Входит ли в состав противоречивое уравнение? (Если коэффициенты, в этом случае уравнение имеет вид: и называется противоречивым .)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные . (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной , если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными (), а не входящие в набор — свободными ().

В общем случае разрешенная система уравнений имеет вид:

На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным , если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным , если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Пример 1. Найти общее, базисное и какое-либо частное решение системы уравнений:

Решение :

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения .

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор .

4. Находим частное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

Ответ: частное решение (один из вариантов)

5. Находим базисное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число , а остальные уравнения оставить без изменения, то . (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое , а все остальные уравнения оставить без изменения, то получится система, равносильная данной . (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число , а все остальные уравнения оставить без изменения, то получится система, равносильная данной .

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1
Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти : два общих и два соответствующих базисных решения

Решение :

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Рассмотрим решение ЗЛП симплекс-методом и изложим ее применительно к задаче максимизации.

1. По условию задачи составляется ее математическая модель.

2. Составленная модель преобразовывается к канонической форме. При этом может выделиться базис с начальным опорным планом.

3. Каноническая модель задачи записывается в форме симплекс-таблицы так, чтобы все свободные члены были неотрицательными. Если начальный опорный план выделен, то переходят к пункту 5.

Симплекс таблица: вписывается система ограничительных уравнений и целевая функция в виде выражений, разрешенных относительно начального базиса. Строку, в которую вписаны коэффициенты целевой функции F, называют F-строкой или строкой целевой функции.

4. Находят начальный опорный план, производя симплексные преобразования с положительными разрешающими элементами, отвечающими минимальным симплексным отношениям, и не принимая во внимание знаки элементов F-строки. Если в ходе преоб­разований встретится 0-строка, все элементы которой, кроме свободного члена, нули, то система ограничительных уравнений задачи несовместна. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то система ограничительных уравнений не имеет неотрицательных решений.

Приведение системы (2.55), (2.56) к новому базису будем называть симплексным преобразованием. Если симплексное преобра­зование рассматривать как формальную алгебраическую операцию, то можно заметить, что в результате этой операции происходит перераспределение ролей между двумя переменными, входящими в некоторую систему линейных функций: одна переменная из зависимых переходит в независимые, а другая наоборот - из независимых в зависимые. Такая операция известна в алгебре под названием шага жорданова исключения.

5. Найденный начальный опорный план исследуется на оптимальность:

а) если в F-строке нет отрицательных элементов (не считая свободного члена), то план оптимален. Если при этом нет и нулевых, то оптимальный план единственный; если же есть хотя бы один нулевой, то оптимальных планов бесконечное множество;

б) если в F-строке есть хотя бы один отрицательный элемент, которому соответствует столбец неположительных элементов, то <

в) если в F-строке есть хотя бы один отрицательный элемент, а в его столбце есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого указанный столбец надо назначить разрешающим, по минимальному симплексному отношению найти разрешающую строку и выполнить симплексное преобразование. Полученный опорный план вновь исследовать на оптимальность. Описанный процесс повторяется до получения оптимального плана либо до установления неразрешимости задачи.

Столбец коэффициентов при переменной, включаемой в базис, называют разрешающим. Таким образом, выбирая переменную, вводимую в базис (или выбирая разрешающий столбец) по отрицательному элементу F-строки, мы обеспечиваем возрастание функции F.

Немного сложней определяется переменная, подлежащая исключению из базиса. Для этого составляют отношения свободных членов к положительным элементам разрешающего столбца (такие отношения называют симплексными) и находят среди них наименьшее, которое и определяет строку (разрешающую), содержащую исключаемую переменную. Выбор переменной, исключаемой из базиса (или выбор разрешающей строки), по минимальному симплексному отношению гарантирует, как уже установлено, положительность базисных компонент в новом опорном плане.

В пункте 3 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование не обязательно, но если оно выполнено, то все последующие симплексные преобразования производятся только с положительными разрешающими элементами, что удобно при расчетах. Если в столбце свободных членов есть отрицательные числа, то разрешающий элемент выбирают следующим образом:

1) просматривают строку, отвечающую какому-либо отрицательному свободному члену, например t-строку, и выбирают в ней какой-либо отрицательный элемент, а соответствующий ему столбец принимают за разрешающий (предполагаем, что ограничения задачи совместны);

2) составляют отношения элементов столбца свободных членов к соответствующим элементам разрешающего столбца, имеющим одинаковые знаки (симплексные отношения);

3) из симплексных отношений выбирают наименьшее. Оно и определит разрешающую строку. Пусть ею будет, например, р -строка;

4) на пересечении разрешающих столбца и строки находят разрешающий элемент. Если разрешающим оказался элемент y-строки, то после симплексного преобразования свободный член этой строки станет положительным. В противном случае на следующем шаге вновь обращаются к t-строке. Если задача разрешима, то через некоторое число шагов в столбце свободных членов не останется отрицательных элементов.

Нахождение исходного опорного плана, канонический вид ЗЛП

Идея последовательного улучшения решения легла в основу универсального метода решения задач линейного программирования - симплексного метода или метода последовательного улучшения плана.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная функция принимает лучшее (по крайней мере, не худшее) значение по отношению к цели задачи; до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Впервые симплексный метод был предложен американским ученым Дж. Данцигом в 1949 г., однако еще в 1939 г. идеи метода были разработаны российским ученым Л.В. Канторовичем.

Симплексный метод, позволяющий решить любую задачу линейного программирования, универсален. В настоящее время он используется для компьютерных расчетов, однако несложные примеры с применением симплексного метода можно решать и вручную.

Для реализации симплексного метода - последовательного улучшения решения - необходимо освоить три основных элемента:

Способ определения какого-либо первоначального допустимого базисного решения задачи;

Правило перехода к лучшему (точнее, не худшему) решению;

Критерий проверки оптимальности найденного решения.

Для использования симплексного метода задача линейного программирования должна быть приведена к каноническому виду, т.е. система ограничений должна быть представлена в виде уравнений.

В литературе достаточно подробно описываются: нахождение начального опорного плана (первоначального допустимого базисного решения), тоже - методом искусственного базиса, нахождение оптимального опорного плана, решение задач с помощью симплексных таблиц.

58. Основная теорема симплекс метода.

???????????????????????????????????????????????????????????????????????

59. Альтернативный оптимум в ЗЛП, вырожденность в ЗЛП.

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно m положительных компонент, где m - число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда n - m = 2 (число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида xi = 0. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку. Аналогично при n - m = 3 в вырожденной задаче в одной вершине пересекается более 3-х плоскостей xi = 0. В предположении о невырожденности задачи

находилось только одно значение, по которому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В

вырожденной задаче может достигаться на нескольких индексах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми. Если задача линейного программирования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Это - так называемое явление зацикливания. Хотя в практических задачах линейного программирования зацикливание явлеется довольно редким, возможность его не исключена. Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем "незначительного" изменения вектора правых частей системы ограничений на величины таким образом, чтобы задача стала невырожденной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи. Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления. Пусть переменную xj необходимо сделать базисной. Рассмотрим

множество индексов E0, состоящее из тех i, для которых достигается. Множество индексов i, для которых выполняется данное условие обозначим через E0,. Если E0, состоит из одного элемента, то из базиса исключается вектор условий Ai (переменная xi делается небазисной). Если E0 состоит более чем из одного элемента, то составляется множество E1, которое состоит из , на которых достигается . Если E1 состоит из одного индекса k, то из базиса выводится переменная xk. В противном случае составляется множество E2 и т.д. Практически правилом надо пользоваться, если зацикливание уже обнаружено.

Альтернативный оптимум в ЗЛП???????????????????????????

60. Метод искусственного базиса. М-задача. Теорема о связи между решениями исходной задачи и М-задачи.

Метод искусственного базиса.

Метод искусственного базиса используется для нахождения допустимого базисного решения задачи линейного программирования, когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑cixi|∑ajixi=bj, j=1,m; xi≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» Rj следующим образом:

∑ajix+Rj=bj, j=1,m;F(x)=∑cixi-M∑Rj

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑cixi, а другая – для составляющей M ∑Rj Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x1 + 2x2 - x3 при ограничениях:

x1≥0, x2≥0, x3≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x1 + 3x2 + x3 + R1 = 3;

x1 + 3x3 + R2 = 2 ;

Функция цели F(x)-M ∑Rj= -x1 + 2x2 - x3 - M(R1+R2).

Выразим сумму R1 + R2 из системы ограничений: R1 + R2 = 5 - 3x1 - 3x2 - 4x3, тогда F(x) = -x1 + 2x2 - x3 - M(5 - 3x1 - 3x2 - 4x3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x1, x2 , x3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x3, которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x1=0; x2=7/9; Fmax=8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Условие задачи

Найти оптимальные величины производства продукции видов А, Б и В. Затраты сырья на единицу продукции: А – 5, Б – 2, В – 4. Объем сырья – 2000 единиц. Затраты оборудования на единицу продукции: А – 4, Б – 5, В – 4. Объем оборудования – 1000 единиц. Прибыль от реализации единицы продукции: А – 10, Б – 8, В – 12. Критерий – максимум прибыли предприятия. Производство продукции А должно быть не менее 100 ед. Производство продукции Б должно быть не менее 50 ед.

Решение задачи симплекс М методом

1) Определение оптимального плана производства

Пусть x1, x2, x3 - количество произведенной продукции вида А, Б, В, соответственно. Тогда математическая модель задачи имеет вид:

F = 10·x1 + 8·x2 + 12·x3 –>max

Вводим дополнительные переменные x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, чтобы неравенства преобразовать в равенства.

Чтобы выбрать начальный базис, вводим искусственные переменные x8 ≥ 0, x9 ≥ 0 и очень большое число M (M –> ∞). Решаем М методом.

F = 10·x1 + 8·x2 + 12·x3 + 0·x4 + 0·x5 + 0·x6 + 0·x7– M·x8– M·x9 –>max

В качестве базиса возьмем x4 = 2000; x5 = 1000; x8 = 100; x9 = 50.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 2000 + 0 · 1000 + (– M) · 100 + (– M) · 50 = – 150M

Вычисляем оценки по формуле:

Δ1 = 0 · 5 + 0 · 4 + (– M) · 1 + (– M) · 0 – 10 = – M – 10

Δ2 = 0 · 2 + 0 · 5 + (– M) · 0 + (– M) · 1 – 8 = – M – 8

Δ3 = 0 · 4 + 0 · 4 + (– M) · 0 + (– M) · 0 – 12 = – 12

Δ4 = 0 · 1 + 0 · 0 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ5 = 0 · 0 + 0 · 1 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ6 = 0 · 0 + 0 · 0 + (– M) · (–1) + (– M) · 0 – 0 = M

Δ7 = 0 · 0 + 0 · 0 + (– M) · 0 + (– M) · (–1) – 0 = M

Δ2 = 0 · 0 + 12 · 0 + 10 · 0 + 8 · 1 – 8 = 0

Δ3 = 0 · 0 + 12 · 1 + 10 · 0 + 8 · 0 – 12 = 0

Δ4 = 0 · 1 + 12 · 0 + 10 · 0 + 8 · 0 – 0 = 0

Δ5 = 0 · (–1) + 12 · 1/4 + 10 · 0 + 8 · 0 – 0 = 3

Δ6 = 0 · 1 + 12 · 1 + 10 · (–1) + 8 · 0 – 0 = 2

Δ7 = 0 · (–3) + 12 · 5/4 + 10 · 0 + 8 · (–1) – 0 = 7

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450

Ответ: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450То есть необходимо произвести x1 = 100 единиц продукции вида А, x2 = 50 единиц продукции вида Б и x3 = 87,5 единиц продукции вида В. Максимальная прибыль при этом составит Fmax = 2450 единиц.

Теорема о связи между решениями исходной задачи и М-задачи.

???????????????????????

Читайте также:
  1. V2: ДЕ 57 - Фундаментальная система решений линейного однородного дифференциального уравнения
  2. Б1 2. Линейный оператор в конечномероном пространстве, его матрица. Характеристический многочлен линейного оператора. Собственные числа и собств векторы.
  3. Базовые управляющие структуры структурного программирования
  4. Билет 13 Угол между 2 мя прямыми, условия параллельности и перпендикулярности. Преобразование линейного оператора при переходе к новому базису
  5. Билет 13. Линейные операторы. Матрица линейного оператора.
  6. Билет 26. Корневые подпространства. Расщепление линейного пространства в прямую сумму корневых подпространств.
  7. Билет 27. Жорданов базис и жорданова матрица линейного оператора в комплексном пространстве.
  8. Билет 35. Эрмитовы операторы и эрмитовы матрицы. Эрмитого разложение линейного оператора.
  9. Билет 7 Скалярное произведение векторов, проекция одного вектора на другой. Понятие линейного пространства и подпространства, критерии подпространства

Теорема (о выборе разрешающего элемента)

Если в нескольких столбцах z-ой строке есть отрицательные элементы, то разрешающим столбцом нужно выбрать тот столбец у которого максимально произведение абсолютного значения коэффициента в z-ой строке и минимально симплексное отношение данном столбце.

Доказательство:

Пусть разрешающим будет элемент . В результате шага модифицированных жордановых исключений свободным членом в z-строке будет число , равное .Поскольку и ,скобка в этом выражении всегда будет положительной. А так как значение функционала всегда равно свободному члену, эта скобка представляет собой тот добавок к функционалу, который получается в результате сделанного шага.

Чем большее приращение будет получать функционал на каждом шаге, тем меньше потребуется шагов (т.е. вычислений) для достижения оптиума. Величина этого приращения зависит от абсолютной величины коэффициента и от величины наименьшего симплексного отношения . То есть разрешающим столбцом будет столбец, у которого максимально это произведение.

Пример: линейное программирование:

Найдем максимум функции

при ограничениях

Решение: составим жорданову таблицу.

Поскольку в ней свободные члены положительны, план является опорным. Однако он не оптимален, так как коэффициенты z-строки отрицательны. Выбираем из них тот, у которого наибольшее произведение абсолютной величины и наименьшее симплексное отношение. Третий столбец считаем разрешающим, так как он имеет наибольшую абсолютную величину 8 и симплексные отношения: соответственно ( , поэтому элемент 1 в третьим столбце будет разрешающим). Делаем шаг модифицированных жордановых исключений и приходим к следующей таблице.

Судя по коэффициентам z-строки, в полученной таблице оптимальное решение не достигнуто. Берём второй столбец с отрицательным коэффициентом в z-строке за разрешающий (разрешающей строкой может быть только первая). С найденным элементом 5 делаем следующий шаг.

В z-строке все коэффициенты положительны, план, получаемый приравниванием верхних переменных нулю, а боковых – свободным членам, оптимален. Выписываем из таблицы значения основных неизвестных: Максимальное значение функционала считаем в последней клетке таблицы:

В окончательной таблице все определители неотрицательны. Это говорит о том, что при значениях неизвестных функционал достигает максимума


Обычно предполагается, что на множестве планов задачи нет точек, в которых знаменатель целевой функции равен нулю. Без ограничения общности, можно считать, что .

В задаче дробно-линейного программирования экстремум целевой функции достигается в вершине многогранника решений. Это сходство с линейным программированием позволяет решать дробно-линейные задачи методом Штифеля.

Вычисления оформляются в виде жордановых таблиц. При этом для функционала отводятся две нижние строки: в первую из них записываем коэффициенты числителя, а во вторую – знаменателя. Исходной задаче соответствует таблица 1:

x 1 x 2 x j x n
y 1 a 11 a 12 a 1 j a 1 n a 1
………………………………………
y i a i 1 a i 2 a ij a in a i
………………………………………
y m a m 1 a m 2 a mj a mn a m
z 1 p 1 p 2 p j p n
z 2 q 1 q 2 q j q n

Через y i обозначаются разности между правыми и левыми частями системы ограничений:

y i = a i a i 1 x 1 – a i 2 x 2 – a i 3 x 3 – … – a in x n ³ 0.

Свободными переменными мы будем называть переменные, расположенные в верхней заглавной строке жордановой таблицы. Придавая свободным переменным нулевые значения, мы получим исходное базисное решение: . Данный вектор не может являться опорным планом, т.к. знаменатель целевого функционала на нем равен нулю (z 2 = 0). Поэтому среди свободных членов системы ограничений a 1 ,…, a m обязательно есть отрицательные числа (иначе базисное решение было бы опорным планом).

Шагами модифицированных жордановых исключений, точно так же, как при решении задачи линейного программирования (см. ), отыскиваем первоначальный план задачи. В результате k шагов мы приходим к таблице 2:

y 1 x j x n
x 1 b 11 b 1 j b 1 n b 1
.… ………………………………………
y i b i 1 b ij b in b i
…. …………………………………….
y m b m 1 b mj b mn b m
z 1 f 1 f j f n F
z 2 g 1 g j g n G

В таблице 2 все свободные члены b i неотрицательны, что обеспечивает неотрицательность базисных переменных x 1 ,…, y m . Кроме того (в силу положительности знаменателя целевой функции z 2 на множестве опорных планов). Первоначальным опорным планом является вектор с координатами . Значение целевой функции на первоначальном опорном плане равно .

Заметим, что если на одном из шагов жордановых исключений какой-либо из свободных членов b i окажется отрицательным, а все остальные элементы i -й строки будут неотрицательными, то задача не будет иметь решения из-за отсутствия планов.

Проследим за тем, как меняется целевая функция при переходе от одного опорного плана задачи к другому. Оказывается, знак разности между новым и старым значениями функции совпадает со знаком определителя . Если. Т.к. многогранник решений содержит лишь конечное число опорных планов, то за конечное число шагов мы придем к оптимальному опорному плану.

Этому процессу может помешать только неограниченность многогранника решений. В этом случае целевая функция может иметь так называемый асимптотический экстремум (в данном случае – максимум). Асимптотическим максимумом задачи дробно-линейного программирования называется точная верхняя грань целевой функции на множестве планов, которая не достигается ни на одном из планов. В том случае, когда задача имеет асимптотический максимум, в области планов всегда можно найти такой план (не опорный), на котором целевая функция принимает значение сколь угодно близкое к асимптотическому максимуму.

Метод Штифеля позволяет находить не только максимум, но и асимптотический максимум задачи дробно-линейного программирования. Рассмотрим более подробно переход от плана к плану и выясним. Выбирая разрешающий элемент в j -м столбце, мы должны руководствоваться принципом минимального симплексного отношения. Т.е. разрешающий элемент в j -м столбце должен попасть в ту строку, для которой симплексное отношение положительно и минимально.

Т.к. после нахождения первоначального опорного плана все правые части b i стали неотрицательными, то разрешающим элементом j -го столбца может быть один из его положительных элементов (). Если на каждом шаге этапа поиска оптимального опорного плана в выбранном разрешающем столбце присутствует (хотя бы один) положительный элемент , то такая задача имеет максимум (возможно, что не один).

Однако, если на одном из шагов некоторая оценка меньше нуля, и при этом все элементы j -го столбца . Тогда в данном столбце, руководствуясь принципом минимального симплексного отношения, разрешающий элемент выбирать нельзя. Увеличивая значения свободной переменной x j от 0 и до (см. Табл. 2), мы все время остаемся в области планов. Это связано с тем, что увеличение переменной x j не вызывает изменения знака на минус ни у одной из базисных переменных.

Обозначим через М предел, к которому, монотонно возрастая, стремится целевая функция при : . Это число является асимптотическим максимумом.


| 2 |