Метод Лагранжа (вариации постоянной). Линейные дифференциальные уравнения первого порядка. Условная оптимизация. Метод множителей Лагранжа

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = f(t)

состоит в замене произвольных постоянных ck в общем решении

z(t) = c1z1(t) + c2z2(t) + ...

Cnzn(t)

соответствующего однородного уравнения

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = 0

на вспомогательные функции ck(t), производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z1,z2,...,zn, что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

Метод Лагранжа (метод вариации произвольных постоянных)

Метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

Для линейного однородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = 0,

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x) - известные, непрерывные, справедливо: 1) существуют n линейно независимых решений уравнения y1(x), y2(x), ..., yn(x); 2) при любых значениях констант c1, c2, ..., cn функция y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) является решением уравнения; 3) для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) называется общим решением линейного однородного дифференциального уравнения n-го порядка.

Совокупность n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка y1(x), y2(x), ..., yn(x) называется фундаментальной системой решений уравнения.

Для линейного однородного дифференциального уравнения с постоянными коэффициентами существует простой алгоритм построения фундаментальной системы решений. Будем искать решение уравнения в виде y(x) = exp(lx): exp(lx)(n) + a1exp(lx)(n-1) + ... + an-1exp(lx)" + anexp(lx)= = (ln + a1ln-1 + ... + an-1l + an)exp(lx) = 0, т.е. число l является корнем характеристического уравнения ln + a1ln-1 + ... + an-1l + an = 0. Левая часть характеристического уравнения называется характеристическим многочленом линейного дифференциального уравнения: P(l) = ln + a1ln-1 + ... + an-1l + an. Таким образом, задача о решении линейного однородного уравнения n -го порядка с постоянными коэффициентами сводится к решению алгебраического уравнения.

Если характеристическое уравнение имеет n различных действительных корней l1№ l2 № ... № ln, то фундаментальная система решений состоит из функций y1(x) = exp(l1x), y2(x) = exp(l2x), ..., yn(x) = exp(lnx), и общее решение однородного уравнения имеет вид: y(x)= c1 exp(l1x) + c2 exp(l2x) + ... + cn exp(lnx).

ундаментальная система решений и общее решение для случая простых действительных корней.

Если какой-либо из действительных корней характеристического уравнения повторяется r раз (r-кратный корень), то в фундаментальной системе решений ему отвечают r функций; если lk=lk+1 = ... = lk+r-1, то в фундаментальную систему решений уравнения входят r функций: yk(x) = exp(lkx), yk+1(x) = xexp(lkx), yk+2(x) = x2exp(lkx), ..., yk+r-1(x) =xr-1 exp(lnx).

ПРИМЕР 2. Фундаментальная система решений и общее решение для случая кратных действительных корней.

Если характеристическое уравнение имеет комплексные корни, то каждой паре простых (имеющих кратность 1) комплексных корней lk,k+1=ak ± ibk в фундаментальной системе решений отвечает пара функций yk(x) = exp(akx)cos(bkx), yk+1(x) = exp(akx)sin(bkx).

ПРИМЕР 4. Фундаментальная система решений и общее решение для случая простых комплексных корней. Мнимые корни.

Если же комплексная пара корней имеет кратность r, то такой паре lk=lk+1 = ... = l2k+2r-1=ak ± ibk, в фундаментальной системе решений отвечают функции exp(akx)cos(bkx), exp(akx)sin(bkx), xexp(akx)cos(bkx), xexp(akx)sin(bkx), x2exp(akx)cos(bkx), x2exp(akx)sin(bkx), ................ xr-1exp(akx)cos(bkx), xr-1exp(akx)sin(bkx).

ПРИМЕР 5. Фундаментальная система решений и общее решение для случая кратных комплексных корней.

Таким образом, для отыскания общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами следует: записать характеристическое уравнение; найти все корни характеристического уравнения l1, l2, ... , ln; записать фундаментальную систему решений y1(x), y2(x), ..., yn(x); записать выражение для общего решения y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x). Для решения задачи Коши нужно подставить выражение для общего решения в начальные условия и определить значения постоянных c1,..., cn, которые являются решениями системы линейных алгебраических уравнений c1 y1(x0) + c2 y2(x0) + ... + cn yn(x0) = y0, c1 y"1(x0) + c2 y"2(x0) + ... + cn y"n(x0) =y0,1, ......... , c1 y1(n-1)(x0) + c2 y2(n-1)(x0) + ... + cn yn(n-1)(x0) = y0,n-1

Для линейного неоднородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = f(x),

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x), f(x) - известные, непрерывные, справедливо: 1) если y1(x) и y2(x) - два решения неоднородного уравнения, то функция y(x) = y1(x) - y2(x) - решение соответствующего однородного уравнения; 2) если y1(x) решение неоднородного уравнения, а y2(x) - решение соответствующего однородного уравнения, то функция y(x) = y1(x) + y2(x) - решение неоднородного уравнения; 3) если y1(x), y2(x), ..., yn(x) - n линейно независимых решений однородного уравнения, а yч(x) - произвольное решение неоднородного уравнения, то для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) + yч(x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) + yч(x) называется общим решением линейного неоднородного дифференциального уравнения n-го порядка.

Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) - многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) - многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая - с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0), то резонансный сомножитель отсутствует.

Подставив выражение для частного решения в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны.

Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx) с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.

Классификация задач математического программирования

ПРОГРАММИРОВАНИЯ

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НЕЛИНЕЙНОГО

Контрольные вопросы к разделу 4

Схема решения транспортной задачи

Перечислим основные этапы решения транспортной задачи.

1. Проверяют условие замкнутости. Если задача открытая, транспортную таблицу дополняют или столбцом фиктивного пункта потребления, или строкой фиктивного поставщика.

2. Строят опорный план.

3. Проверяют опорный план на невырожденность. Если для выполнения условия невырожденности не хватает занятой клетки, одну из клеток транспортной таблицы заполняют поставкой, равной нулю. При необходимости допустимо записывать нулевые поставки в несколько клеток.

4. План проверяют на оптимальность.

5. Если условия оптимальности не выполняются, переходят к следующему плану путем перераспределения поставок. Вычислительный процесс повторяется до получения оптимального плана.

1. Каков смысл целевой функции в математической модели транспортной задачи?

2.Каков смысл ограничений в математической модели транспортной задачи?

3. Можно ли применить метод потенциалов для решения открытой (незамкнутой) транспортной задачи?

4.Какие изменения необходимо внести в исходную транспортную таблицу, чтобы задачу можно было решить методом потенциалов?

5.В чем суть метода минимального элемента? Какой этап решения транспортной задачи будет выполнен в результате применения этого метода?

6. Как узнать является ли план перевозок оптимальным?

7. В каком случае и каким образом необходимо выполнить перераспределение поставок в плане перевозок?

8. Допустим построенный план перевозок является вырожденным. Можно ли продолжить решение задачи методом потенциалов и что для этого необходимо предпринять?

Общая задача математического программирования была сформулирована в разделе 1.1. В зависимости от типа функций, входящих в модель (1.1)-(1.3), задачу относят к тому или иному виду математического программирования. Различают линейное программирование (все функции линейны), целочисленное (решение представляют целые числа), квадратичное (целевая функция является квадратичной формой), нелинейное (хотя бы одна из функций задачи нелинейна) и стохастическое программирование (включены параметры, имеющие вероятностный характер).

Класс задач нелинейного программирования шире класса линейных моделей. Например, производственные затраты в большинстве случаев не пропорциональны объему выпуска, а зависят от него нелинейно, доход от реализации продуктов производства оказывается нелинейной функцией цен и т.д. Критериями в задачах оптимального планирования часто служат максимум прибыли, минимум себестоимости, минимум капитальных затрат. В качестве переменных величин выступают объемы выпуска различных видов продукции. В число ограничений входят производственные функции, характеризующие связь между выпуском продукции и затратами трудовых и материальных ресурсов, объем которых лимитирован.



В отличие от линейного программирования, в котором применяется универсальный метод решения (симплекс-метод), для решения нелинейных задач существует целый спектр методов в зависимости от формы входящих в модель функций. Из всего многообразия методов нами будут рассмотрены только два: метод Лагранжа и метод динамического программирования.

С уть метода Лагранжа заключается в сведении задачи на условный экстремум к решению задачи безусловного экстремума. Рассмотрим модель нелинейного программирования:

(5.2)

где – известные функции,

а – заданные коэффициенты.

Отметим, что в данной постановке задачи ограничения заданы равенствами, отсутствует условие неотрицательности переменных. Кроме того, полагаем, что функции непрерывны со своими первыми частными производными.

Преобразуем условия (5.2) таким образом, чтобы в левых или правых частях равенств стоял ноль :

(5.3)

Составим функцию Лагранжа. В нее входит целевая функция (5.1) и правые части ограничений (5.3), взятые соответственно с коэффициентами . Коэффициентов Лагранжа будет столько, сколько ограничений в задаче.

Точки экстремума функции (5.4) являются точками экстремума исходной задачи и наоборот: оптимальный план задачи (5.1)-(5.2) является точкой глобального экстремума функции Лагранжа.

Действительно, пусть найдено решение задачи (5.1)-(5.2), тогда выполняются условия (5.3). Подставим план в функцию (5.4) и убедимся в справедливости равенства (5.5).

Таким образом, чтобы найти оптимальный план исходной задачи, необходимо исследовать на экстремум функцию Лагранжа. Функция имеет экстремальные значения в точках, где ее частные производные равны нулю . Такие точки называются стационарными.

Определим частные производные функции (5.4)

,

.

После приравнивания нулю производных получим систему m+n уравнений с m+n неизвестными

, (5.6)

В общем случае система (5.6)-(5.7) будем иметь несколько решений, куда войдут все максимумы и минимумы функции Лагранжа. Для того чтобы выделить глобальный максимум или минимум, во всех найденных точках вычисляют значения целевой функции. Наибольшее из этих значений будет глобальным максимумом, а наименьшее – глобальным минимумом. В некоторых случаях оказывается возможным использование достаточных условий строгого экстремума непрерывных функций (см. ниже задачу 5.2):

пусть функция непрерывна и дважды дифференцируема в некоторой окрестности своей стационарной точки (т.е. )). Тогда:

а ) если , (5.8)

то – точка строгого максимума функции ;

б) если , (5.9)

то – точка строгого минимума функции ;

г ) если ,

то вопрос о наличии экстремума остается открытым.

Кроме того, некоторые решения системы (5.6)-(5.7) могут быть отрицательными. Что не согласуется с экономическим смыслом переменных. В этом случае следует проанализировать возможность замены отрицательных значений нулевыми.

Экономический смысл множителей Лагранжа. Оптимальное значение множителя показывает на сколько изменится значение критерия Z при увеличении или уменьшении ресурса j на одну единицу, так как

Метод Лагранжа можно применять и в том случае, когда ограничения представляют собой неравенства. Так, нахождение экстремума функции при условиях

,

выполняют в несколько этапов:

1. Определяют стационарные точки целевой функции, для чего решают систему уравнений

.

2. Из стационарных точек отбирают те, координаты которых удовлетворяют условиям

3. Методом Лагранжа решают задачу с ограничениями-равенствами (5.1)-(5.2).

4. Исследуют на глобальный максимум точки, найденные на втором и третьем этапах: сравнивают значения целевой функции в этих точках – наибольшее значение соответствует оптимальному плану.

Задача 5.1 Решим методом Лагранжа задачу 1.3, рассмотренную в первом разделе. Оптимальное распределение водных ресурсов описывается математической моделью

.

Составим функцию Лагранжа

Найдем безусловный максимум этой функции. Для этого вычислим частные производные и приравняем их к нулю

,

Таким образом, получили систему линейных уравнений вида

Решение системы уравнений представляет собой оптимальный план распределения водных ресурсов по орошаемым участкам

Величины измеряются в сотнях тысяч кубических метров. - величина чистого дохода на одну сотню тысяч кубических метров поливной воды. Следовательно, предельная цена 1 м 3 оросительной воды равна ден. ед.

Максимальный дополнительный чистый доход от орошения составит

160·12,26 2 +7600·12,26-130·8,55 2 +5900·8,55-10·16,19 2 +4000·16,19=

172391,02 (ден. ед.)

Задача 5.2 Решить задачу нелинейного программирования

Ограничение представим в виде:

.

Составим функцию Лагранжа и определим ее частные производные

.

Чтобы определить стационарные точки функции Лагранжа, следует приравнять нулю ее частные производные. В результате получим систему уравнений

Метод множителей Лагранжа (в англ. литературе «LaGrange"s method of undetermined multipliers») ˗ это численный метод решения оптимизационных задач, который позволяет определить «условный» экстремум целевой функции (минимальное или максимальное значение)

при наличии заданных ограничений на ее переменные в виде равенств (т.е. определена область допустимых значений)

˗ это значения аргумента функции (управляемые параметры) на вещественной области при котором значение функции стремится к экстремуму. Применение названия «условный» экстремум связано с тем, что на переменные наложено дополнительное условие, которое ограничивает область допустимых значений при поиске экстремума функции.

Метод множителей Лагранжа позволяет задачу поиска условного экстремума целевой функции на множестве допустимых значений преобразовать к задаче безусловной оптимизации функции.

В случае если функции и непрерывны вместе со своими частными производными, то существуют такие переменные λ не равные одновременно нулю, при которых выполняется следующее условие:

Таким образом, в соответствии с методом множителей Лагранжа для поиска экстремума целевой функции на множестве допустимых значений составляю функцию Лагранжа L(х, λ), которую в дальнейшем оптимизируют:

где λ ˗ вектор дополнительных переменных, называемых неопределенными множителями Лагранжа.

Таким образом, задача нахождения условного экстремума функции f(x) свелась к задаче поиска безусловного экстремума функции L(x, λ).

и

Необходимое условие экстремума функции Лагранжа задается системой уравнений (система состоит из «n + m» уравнений):

Решение данной системы уравнений позволяет определить аргументы функции (Х), при которых значение функции L(x, λ), а также значение целевой функции f(x) соответствуют экстремуму.

Величина множителей Лагранжа (λ) имеет практический интерес в случае, если ограничения представлены в форме со свободным членом уравнения (константой). В этом случае можно рассматривать дальнейшее (увеличение/уменьшение) значения целевой функции за счет изменения значения константы в системе уравнения . Таким образом, множитель Лагранжа характеризует скорость изменения максимума целевой функции при изменении ограничивающей константы.

Существует несколько способов определения характера экстремума полученной функции:

Первый способ: Пусть – координаты точки экстремума, а - соответствующее значение целевой функции. Берется точка , близкая к точке , и вычисляется значение целевой функции :

Если , то в точке имеет место максимум.

Если , то в точке имеет место минимум.

Второй способ: Достаточным условием, из которого можно выяснить характер экстремума, является знак второго дифференциала функции Лагранжа. Второй дифференциал функции Лагранжа определяется следующим образом:

Если в заданной точке минимум , если же , то целевая функция f(x) имеет в данной точке условный максимум.

Третий способ: Также характер экстремума функции можно выяснить рассмотрев гессиан функции Лагранжа. Матрица Гессе представляет собой симметричную квадратную матрицу вторых частных производных функции в точке , в которой элементы матрицы симметричны относительно главной диагонали.

Для определения типа экстремума (максимум или минимум функции) можно воспользоваться правилом Сильвестра:

1. Для того, чтобы второй дифференциал функции Лагранжа был знакоположителен необходимо, чтобы угловые миноры функции были положительными . При таких условиях функция в этой точке имеет минимум.

2. Для того, чтобы второй дифференциал функции Лагранжа был знакоотрицателен , необходимо, чтобы угловые миноры функции чередовались, причем первый элемент матрицы должен быть отрицательнsv . При таких условиях функция в этой точке имеет максимум.

Под угловым минором понимаем минор, расположенный в первых k строках и k столбцах исходной матрицы.

Основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных методов решения задачи. Однако задача решения системы уравнений, к которой сводится данный метод, в общем случае не проще исходной задачи поиска экстремума. Такие методы называются непрямыми. Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций.

Методика расчета

1 шаг : Определяем функцию Лагранжа из заданной целевой функции и системы ограничений:

Вперёд

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.