Методы thread. Некоторые важные замечания использования synchronized. Используйте локальные переменные

Здравствуйте! В этой статье я вкратце расскажу вам о процессах, потоках, и об основах многопоточного программирования на языке Java.
Наиболее очевидная область применения многопоточности – это программирование интерфейсов. Многопоточность незаменима тогда, когда необходимо, чтобы графический интерфейс продолжал отзываться на действия пользователя во время выполнения некоторой обработки информации. Например, поток, отвечающий за интерфейс, может ждать завершения другого потока, загружающего файл из интернета, и в это время выводить некоторую анимацию или обновлять прогресс-бар. Кроме того он может остановить поток загружающий файл, если была нажата кнопка «отмена».

Еще одна популярная и, пожалуй, одна из самых хардкорных областей применения многопоточности – игры. В играх различные потоки могут отвечать за работу с сетью, анимацию, расчет физики и т.п.

Давайте начнем. Сначала о процессах.

Процессы

Процесс - это совокупность кода и данных, разделяющих общее виртуальное адресное пространство. Чаще всего одна программа состоит из одного процесса, но бывают и исключения (например, браузер Chrome создает отдельный процесс для каждой вкладки, что дает ему некоторые преимущества, вроде независимости вкладок друг от друга). Процессы изолированы друг от друга, поэтому прямой доступ к памяти чужого процесса невозможен (взаимодействие между процессами осуществляется с помощью специальных средств).

Для каждого процесса ОС создает так называемое «виртуальное адресное пространство», к которому процесс имеет прямой доступ. Это пространство принадлежит процессу, содержит только его данные и находится в полном его распоряжении. Операционная система же отвечает за то, как виртуальное пространство процесса проецируется на физическую память.

Схема этого взаимодействия представлена на картинке. Операционная система оперирует так называемыми страницами памяти, которые представляют собой просто область определенного фиксированного размера. Если процессу становится недостаточно памяти, система выделяет ему дополнительные страницы из физической памяти. Страницы виртуальной памяти могут проецироваться на физическую память в произвольном порядке.

При запуске программы операционная система создает процесс, загружая в его адресное пространство код и данные программы, а затем запускает главный поток созданного процесса.

Потоки

Один поток – это одна единица исполнения кода. Каждый поток последовательно выполняет инструкции процесса, которому он принадлежит, параллельно с другими потоками этого процесса.

Следует отдельно обговорить фразу «параллельно с другими потоками». Известно, что на одно ядро процессора, в каждый момент времени, приходится одна единица исполнения. То есть одноядерный процессор может обрабатывать команды только последовательно, по одной за раз (в упрощенном случае). Однако запуск нескольких параллельных потоков возможен и в системах с одноядерными процессорами. В этом случае система будет периодически переключаться между потоками, поочередно давая выполняться то одному, то другому потоку. Такая схема называется псевдо-параллелизмом. Система запоминает состояние (контекст) каждого потока, перед тем как переключиться на другой поток, и восстанавливает его по возвращению к выполнению потока. В контекст потока входят такие параметры, как стек, набор значений регистров процессора, адрес исполняемой команды и прочее…

Проще говоря, при псевдопараллельном выполнении потоков процессор мечется между выполнением нескольких потоков, выполняя по очереди часть каждого из них.

Вот как это выглядит:

Цветные квадраты на рисунке – это инструкции процессора (зеленые – инструкции главного потока, синие – побочного). Выполнение идет слева направо. После запуска побочного потока его инструкции начинают выполняться вперемешку с инструкциями главного потока. Кол-во выполняемых инструкций за каждый подход не определено.

То, что инструкции параллельных потоков выполняются вперемешку, в некоторых случаях может привести к конфликтам доступа к данным. Проблемам взаимодействия потоков будет посвящена следующая статья, а пока о том, как запускаются потоки в Java…

Запуск потоков

Каждый процесс имеет хотя бы один выполняющийся поток. Тот поток, с которого начинается выполнение программы, называется главным. В языке Java, после создания процесса, выполнение главного потока начинается с метода main(). Затем, по мере необходимости, в заданных программистом местах, и при выполнении заданных им же условий, запускаются другие, побочные потоки.

В языке Java поток представляется в виде объекта-потомка класса Thread. Этот класс инкапсулирует стандартные механизмы работы с потоком.

Запустить новый поток можно двумя способами:

Способ 1
Создать объект класса Thread, передав ему в конструкторе нечто, реализующее интерфейс Runnable. Этот интерфейс содержит метод run(), который будет выполняться в новом потоке. Поток закончит выполнение, когда завершится его метод run().

Выглядит это так:

Class SomeThing //Нечто, реализующее интерфейс Runnable implements Runnable //(содержащее метод run()) { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program //Класс с методом main() { static SomeThing mThing; //mThing - объект класса, реализующего интерфейс Runnable public static void main(String args) { mThing = new SomeThing(); Thread myThready = new Thread(mThing); //Создание потока "myThready" myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Для пущего укорочения кода можно передать в конструктор класса Thread объект безымянного внутреннего класса, реализующего интерфейс Runnable:

Public class Program //Класс с методом main(). { public static void main(String args) { //Создание потока Thread myThready = new Thread(new Runnable() { public void run() //Этот метод будет выполняться в побочном потоке { System.out.println("Привет из побочного потока!"); } }); myThready.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

Способ 2
Создать потомка класса Thread и переопределить его метод run():

Class AffableThread extends Thread { @Override public void run() //Этот метод будет выполнен в побочном потоке { System.out.println("Привет из побочного потока!"); } } public class Program { static AffableThread mSecondThread; public static void main(String args) { mSecondThread = new AffableThread(); //Создание потока mSecondThread.start(); //Запуск потока System.out.println("Главный поток завершён..."); } }

В приведённом выше примере в методе main() создается и запускается еще один поток. Важно отметить, что после вызова метода mSecondThread.start() главный поток продолжает своё выполнение, не дожидаясь пока порожденный им поток завершится. И те инструкции, которые идут после вызова метода start(), будут выполнены параллельно с инструкциями потока mSecondThread.

Для демонстрации параллельной работы потоков давайте рассмотрим программу, в которой два потока спорят на предмет философского вопроса «что было раньше, яйцо или курица?». Главный поток уверен, что первой была курица, о чем он и будет сообщать каждую секунду. Второй же поток раз в секунду будет опровергать своего оппонента. Всего спор продлится 5 секунд. Победит тот поток, который последним изречет свой ответ на этот, без сомнения, животрепещущий философский вопрос. В примере используются средства, о которых пока не было сказано (isAlive() sleep() и join()). К ним даны комментарии, а более подробно они будут разобраны дальше.

Class EggVoice extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try{ sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("яйцо!"); } //Слово «яйцо» сказано 5 раз } } public class ChickenVoice //Класс с методом main() { static EggVoice mAnotherOpinion; //Побочный поток public static void main(String args) { mAnotherOpinion = new EggVoice(); //Создание потока System.out.println("Спор начат..."); mAnotherOpinion.start(); //Запуск потока for(int i = 0; i < 5; i++) { try{ Thread.sleep(1000); //Приостанавливает поток на 1 секунду }catch(InterruptedException e){} System.out.println("курица!"); } //Слово «курица» сказано 5 раз if(mAnotherOpinion.isAlive()) //Если оппонент еще не сказал последнее слово { try{ mAnotherOpinion.join(); //Подождать пока оппонент закончит высказываться. }catch(InterruptedException e){} System.out.println("Первым появилось яйцо!"); } else //если оппонент уже закончил высказываться { System.out.println("Первой появилась курица!"); } System.out.println("Спор закончен!"); } } Консоль: Спор начат... курица! яйцо! яйцо! курица! яйцо! курица! яйцо! курица! яйцо! курица! Первой появилась курица! Спор закончен!

В приведенном примере два потока параллельно в течении 5 секунд выводят информацию на консоль. Точно предсказать, какой поток закончит высказываться последним, невозможно. Можно попытаться, и можно даже угадать, но есть большая вероятность того, что та же программа при следующем запуске будет иметь другого «победителя». Это происходит из-за так называемого «асинхронного выполнения кода». Асинхронность означает то, что нельзя утверждать, что какая-либо инструкция одного потока, выполнится раньше или позже инструкции другого. Или, другими словами, параллельные потоки независимы друг от друга, за исключением тех случаев, когда программист сам описывает зависимости между потоками с помощью предусмотренных для этого средств языка.

Теперь немного о завершении процессов…

Завершение процесса и демоны

В Java процесс завершается тогда, когда завершается последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к особому виду потоков – демонам. Если завершился последний обычный поток процесса, и остались только потоки-демоны, то они будут принудительно завершены и выполнение процесса закончится. Чаще всего потоки-демоны используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто - нужно перед запуском потока вызвать его метод setDaemon(true) ;
Проверить, является ли поток демоном, можно вызвав его метод boolean isDaemon() ;

Завершение потоков

В Java существуют (существовали) средства для принудительного завершения потока. В частности метод Thread.stop() завершает поток незамедлительно после своего выполнения. Однако этот метод, а также Thread.suspend(), приостанавливающий поток, и Thread.resume(), продолжающий выполнение потока, были объявлены устаревшими и их использование отныне крайне нежелательно. Дело в том что поток может быть «убит» во время выполнения операции, обрыв которой на полуслове оставит некоторый объект в неправильном состоянии, что приведет к появлению трудноотлавливаемой и случайным образом возникающей ошибке.

Вместо принудительного завершения потока применяется схема, в которой каждый поток сам ответственен за своё завершение. Поток может остановиться либо тогда, когда он закончит выполнение метода run(), (main() - для главного потока) либо по сигналу из другого потока. Причем как реагировать на такой сигнал - дело, опять же, самого потока. Получив его, поток может выполнить некоторые операции и завершить выполнение, а может и вовсе его проигнорировать и продолжить выполняться. Описание реакции на сигнал завершения потока лежит на плечах программиста.

Java имеет встроенный механизм оповещения потока, который называется Interruption (прерывание, вмешательство), и скоро мы его рассмотрим, но сначала посмотрите на следующую программку:

Incremenator - поток, который каждую секунду прибавляет или вычитает единицу из значения статической переменной Program.mValue. Incremenator содержит два закрытых поля – mIsIncrement и mFinish. То, какое действие выполняется, определяется булевой переменной mIsIncrement - если оно равно true, то выполняется прибавление единицы, иначе - вычитание. А завершение потока происходит, когда значение mFinish становится равно true.

Class Incremenator extends Thread { //О ключевом слове volatile - чуть ниже private volatile boolean mIsIncrement = true; private volatile boolean mFinish = false; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } public void finish() //Инициирует завершение потока { mFinish = true; } @Override public void run() { do { if(!mFinish) //Проверка на необходимость завершения { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){} } while(true); } } public class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.finish(); //Инициация завершения побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Взаимодействовать с потоком можно с помощью метода changeAction() (для смены вычитания на сложение и наоборот) и метода finish() (для завершения потока).

В объявлении переменных mIsIncrement и mFinish было использовано ключевое слово volatile (изменчивый, не постоянный). Его необходимо использовать для переменных, которые используются разными потоками. Это связано с тем, что значение переменной, объявленной без volatile, может кэшироваться отдельно для каждого потока, и значение из этого кэша может различаться для каждого из них. Объявление переменной с ключевым словом volatile отключает для неё такое кэширование и все запросы к переменной будут направляться непосредственно в память.

В этом примере показано, каким образом можно организовать взаимодействие между потоками. Однако есть одна проблема при таком подходе к завершению потока - Incremenator проверяет значение поля mFinish раз в секунду, поэтому может пройти до секунды времени между тем, когда будет выполнен метод finish(), и фактическим завершения потока. Было бы замечательно, если бы при получении сигнала извне, метод sleep() возвращал выполнение и поток незамедлительно начинал своё завершение. Для выполнения такого сценария существует встроенное средство оповещения потока, которое называется Interruption (прерывание, вмешательство).

Interruption

Класс Thread содержит в себе скрытое булево поле, подобное полю mFinish в программе Incremenator, которое называется флагом прерывания. Установить этот флаг можно вызвав метод interrupt() потока. Проверить же, установлен ли этот флаг, можно двумя способами. Первый способ - вызвать метод bool isInterrupted() объекта потока, второй - вызвать статический метод bool Thread.interrupted(). Первый метод возвращает состояние флага прерывания и оставляет этот флаг нетронутым. Второй метод возвращает состояние флага и сбрасывает его. Заметьте что Thread.interrupted() - статический метод класса Thread, и его вызов возвращает значение флага прерывания того потока, из которого он был вызван. Поэтому этот метод вызывается только изнутри потока и позволяет потоку проверить своё состояние прерывания.

Итак, вернемся к нашей программе. Механизм прерывания позволит нам решить проблему с засыпанием потока. У методов, приостанавливающих выполнение потока, таких как sleep(), wait() и join() есть одна особенность - если во время их выполнения будет вызван метод interrupt() этого потока, они, не дожидаясь конца времени ожидания, сгенерируют исключение InterruptedException.

Переделаем программу Incremenator – теперь вместо завершения потока с помощью метода finish() будем использовать стандартный метод interrupt(). А вместо проверки флага mFinish будем вызывать метод bool Thread.interrupted();
Так будет выглядеть класс Incremenator после добавления поддержки прерываний:

Class Incremenator extends Thread { private volatile boolean mIsIncrement = true; public void changeAction() //Меняет действие на противоположное { mIsIncrement = !mIsIncrement; } @Override public void run() { do { if(!Thread.interrupted()) //Проверка прерывания { if(mIsIncrement) Program.mValue++; //Инкремент else Program.mValue--; //Декремент //Вывод текущего значения переменной System.out.print(Program.mValue + " "); } else return; //Завершение потока try{ Thread.sleep(1000); //Приостановка потока на 1 сек. }catch(InterruptedException e){ return; //Завершение потока после прерывания } } while(true); } } class Program { //Переменая, которой оперирует инкременатор public static int mValue = 0; static Incremenator mInc; //Объект побочного потока public static void main(String args) { mInc = new Incremenator(); //Создание потока System.out.print("Значение = "); mInc.start(); //Запуск потока //Троекратное изменение действия инкременатора //с интервалом в i*2 секунд for(int i = 1; i <= 3; i++) { try{ Thread.sleep(i*2*1000); //Ожидание в течении i*2 сек. }catch(InterruptedException e){} mInc.changeAction(); //Переключение действия } mInc.interrupt(); //Прерывание побочного потока } } Консоль: Значение = 1 2 1 0 -1 -2 -1 0 1 2 3 4

Как видите, мы избавились от метода finish() и реализовали тот же механизм завершения потока с помощью встроенной системы прерываний. В этой реализации мы получили одно преимущество - метод sleep() вернет управление (сгенерирует исключение) незамедлительно после прерывания потока.

Заметьте что методы sleep() и join() обёрнуты в конструкции try-catch. Это необходимое условие работы этих методов. Вызывающий их код должен перехватывать исключение InterruptedException, которое они бросают при прерывании во время ожидания.

С запуском и завершением потоков разобрались, дальше я расскажу о методах, использующихся при работе с потоками.

Метод Thread.sleep()

Thread.sleep() - статический метод класса Thread, который приостанавливает выполнение потока, в котором он был вызван. Во время выполнения метода sleep() система перестает выделять потоку процессорное время, распределяя его между другими потоками. Метод sleep() может выполняться либо заданное кол-во времени (миллисекунды или наносекунды) либо до тех пор пока он не будет остановлен прерыванием (в этом случае он сгенерирует исключение InterruptedException).

Thread.sleep(1500); //Ждет полторы секунды Thread.sleep(2000, 100); //Ждет 2 секунды и 100 наносекунд

Несмотря на то, что метод sleep() может принимать в качестве времени ожидания наносекунды, не стоит принимать это всерьез. Во многих системах время ожидания все равно округляется до миллисекунд а то и до их десятков.

Метод yield()

Статический метод Thread.yield() заставляет процессор переключиться на обработку других потоков системы. Метод может быть полезным, например, когда поток ожидает наступления какого-либо события и необходимо чтобы проверка его наступления происходила как можно чаще. В этом случае можно поместить проверку события и метод Thread.yield() в цикл:

//Ожидание поступления сообщения while(!msgQueue.hasMessages()) //Пока в очереди нет сообщений { Thread.yield(); //Передать управление другим потокам }

Метод join()

В Java предусмотрен механизм, позволяющий одному потоку ждать завершения выполнения другого. Для этого используется метод join(). Например, чтобы главный поток подождал завершения побочного потока myThready, необходимо выполнить инструкцию myThready.join() в главном потоке. Как только поток myThready завершится, метод join() вернет управление, и главный поток сможет продолжить выполнение.

Метод join() имеет перегруженную версию, которая получает в качестве параметра время ожидания. В этом случае join() возвращает управление либо когда завершится ожидаемый поток, либо когда закончится время ожидания. Подобно методу Thread.sleep() метод join может ждать в течение миллисекунд и наносекунд – аргументы те же.

С помощью задания времени ожидания потока можно, например, выполнять обновление анимированной картинки пока главный (или любой другой) поток ждёт завершения побочного потока, выполняющего ресурсоёмкие операции:

Thinker brain = new Thinker(); //Thinker - потомок класса Thread. brain.start(); //Начать "обдумывание". do { mThinkIndicator.refresh(); //mThinkIndicator - анимированная картинка. try{ brain.join(250); //Подождать окончания мысли четверть секунды. }catch(InterruptedException e){} } while(brain.isAlive()); //Пока brain думает... //brain закончил думать (звучат овации).

В этом примере поток brain (мозг) думает над чем-то, и предполагается, что это занимает у него длительное время. Главный поток ждет его четверть секунды и, в случае, если этого времени на раздумье не хватило, обновляет «индикатор раздумий» (некоторая анимированная картинка). В итоге, во время раздумий, пользователь наблюдает на экране индикатор мыслительного процесса, что дает ему знать, что электронные мозги чем то заняты.

Приоритеты потоков

Каждый поток в системе имеет свой приоритет. Приоритет – это некоторое число в объекте потока, более высокое значение которого означает больший приоритет. Система в первую очередь выполняет потоки с большим приоритетом, а потоки с меньшим приоритетом получают процессорное время только тогда, когда их более привилегированные собратья простаивают.

Работать с приоритетами потока можно с помощью двух функций:

void setPriority(int priority) – устанавливает приоритет потока.
Возможные значения priority - MIN_PRIORITY, NORM_PRIORITY и MAX_PRIORITY.

int getPriority() – получает приоритет потока.

Некоторые полезные методы класса Thread

Это практически всё. Напоследок приведу несколько полезных методов работы с потоками.

boolean isAlive() - возвращает true если myThready() выполняется и false если поток еще не был запущен или был завершен.

setName(String threadName) – Задает имя потока.
String getName() – Получает имя потока.
Имя потока – ассоциированная с ним строка, которая в некоторых случаях помогает понять, какой поток выполняет некоторое действие. Иногда это бывает полезным.

static Thread Thread.currentThread() - статический метод, возвращающий объект потока, в котором он был вызван.

long getId() – возвращает идентификатор потока. Идентификатор – уникальное число, присвоенное потоку.

Заключение

Отмечу, что в статье рассказано далеко не про все нюансы многопоточного программирования. И коду, приведенному в примерах, для полной корректности не хватает некоторых нюансов. В частности, в примерах не используется синхронизация. Синхронизация потоков - тема, не изучив которую, программировать правильные многопоточные приложения не получится. Почитать о ней вы можете, например, в книге «Java Concurrency in Practice» или

В этой статье рассказывается, как реализовать потоки, используя язык программирования Java. Перед тем как рассмотреть детали программирования на Java, давайте приступим к обзору о потоках в общем.

Если сказать просто, то поток(thread) – это путь программного выполнения. Большинство программ, написанных сегодня, запускаются одним потоком, проблемы начинают возникать, когда несколько событий или действий должны произойти в одно время. Допустим, например, программа не способна рисовать картинку пока выполняет чтение нажатия клавиш. Программа должна уделять всё своё внимание клавиатуре, вследствие чего отсутствует возможность обрабатывать более одного события одновременно. Идеальным решением для этой проблемы может служить возможность выполнения двух или более разделов программы в одно время. Потоки позволяют нам это сделать.

Многопоточные приложения предоставляют мощь при запуске многих потоков в рамках одной программы. С логической точки зрения, многопоточность означает, что несколько строк из одной и той же программы могут быть выполнены в одно и то же время, однако, это не то же самое, что запустить программу дважды и сказать, что несколько строк кода выполняются в одно время. В этом случае, операционная система обрабатывает две программы раздельно и как отдельные процессы. В Unix, разветвляющий(forking) процесс создаёт дочерний процесс с разным адресным пространством для кода и данных. Вместе с тем, fork() создаёт много накладок для операционной системы, это влечёт за собой интенсивную нагрузку на процессор. При запуске потока, эффективный путь выполнения создаётся за счёт распределения исходного пространство данных родителя. Идея совместного использования данных очень выгодна, но вызывает некоторые вопросы, которые мы обсудим позже.

Создание потоков

Создатели Java милостиво предоставили две возможности создания потоков: реализовать(implementing) интерфейс и расширить(extending) класс. Расширение класса это путь наследования методов и переменных класса родителя. В этом случае можно наследоваться только от одного родительского класса. Это ограничение внутри Java можно побороть реализацией интерфейса, который является наиболее распространённым способом создания потоков. (Заметим, что способ наследования позволяет только запустить класс как поток. Это позволяет классу только выполнить start() и т.п.).

Интерфейсы дают возможность программистам заложить фундамент одного класса. Они используются для разработки требований к набору классов для реализации. Интерфейс устанавливает правила. Разные наборы классов, которые реализуют интерфейс, должны следовать этим правилам.

Есть некоторые отличия между классом и интерфейсом. Во-первых, интерфейс может только содержать абстрактные методы и/или static final переменные (константы). Классы, с другой стороны, могут реализовывать методы и содержать переменные, которые не выступают в качестве констант. Во-вторых, интерфейс не может реализовывать никаких методов. Класс, который реализовывает интерфейс, должен реализовать все методы, которые описаны в интерфейсе. У интерфейса есть возможность расширяться за счёт других интерфейсов, и (в отличие от классов) могут расширяться от нескольких интерфейсов. К тому же, экземпляр интерфейса не может быть создан, используя, оператор new; например, Runnable a = new Runnable(); не разрешается .

Для первого способа создания потока необходимо просто наследоваться от класса Thread. Делайте так, только если классу нужно только выполниться как отдельному потоку и никогда не понадобиться наследоваться от другого класса. Класс Thread определён в пакете java.lang, который необходимо импортировать, что бы наши классы знали о его описании:


import java.lang.*;
public class Counter extends Thread {
public void run() {
....
}
}

Пример выше создаёт новый класс Counter, который расширяет класс Thread и подменяет метод Thread.run() для своей реализации. В методе run() происходит вся работа класса Counter как потока. Такой же класс можно создать, реализуя интерфейс Runnable:


import java.lang.*;
public class Counter implements Runnable {
Thread T;
public void run() {
....
}
}

Здесь осуществляется абстрактный метод run(), который описан в интерфейсе Runnable. Отметим, что у нас есть экземпляр класса Thread, переменная класса Counter. Единственное отличие этих двух методов заключается в том, что реализация Runnable является более гибкой для создания класса Counter. В примере, который описан выше, есть возможность расширения класса Counter, если в этом есть такая необходимость. Большинство классов, которые должны выполняться как потоки, реализуют Runnable, поскольку они, вероятно, могут расширить свою функциональность за счёт другого класса.

Не подумайте, что интерфейс Runnable выполняет какую-то реальную работу, когда поток запускается. Это всего лишь класс, созданный для того, что бы дать представление о классе Thread. На самом деле, это очень небольшой, содержащий только один абстрактный метод интерфейс. Это описание интерфейса Runnable, взятое из исходных кодов Java:


package java.lang;
public interface Runnable {
public abstract void run();
}

Это и всё, что есть в интерфейсе Runnable. Интерфейс – это всего лишь описание, которое классы должны реализовать. Итак, Runnable, заставляет только запустить метод run(). Вследствие этого, большая часть работы полагается на класс Thread. Более пристальный взгляд на класс Thread даст представление о том, что на самом деле происходит:


public class Thread implements Runnable {
...
public void run() {
if (target != null) {
target.run();
}
}
...
}

Во фрагменте кода, который представлен выше видно, что класс Thread, так же реализует интерфейс Runnable. Thread.run() выполняет проверку, что бы удостовериться в том, что этот класс (класс, который выполняется как поток) не равен null, и только потом выполняет метод run(). Когда это произойдёт, то метод run() запустит поток.

Запуск и остановка

Различные способы создания объектов потока сейчас очевидны, мы продолжим дискуссию о реализации потоков, начиная с путей запуска и остановки их, используя, маленький applet, который содержит поток для иллюстрации этих механизмов:

Апплет выше, начнёт отсчёт с нуля и будет отображать это и на экране, и в консоль. На первый взгляд может сложиться впечатление, что программа начинает отсчёт и показывает каждую цифру, но это не так. При более внимательном рассмотрении этого апплета будет выявлено, как на самом деле работает этот апплет.

В этом случае, класс CounterThread был вынужден реализовать интерфейс Runnnable, что бы дальше была возможность расширить класс Applet. Все апплеты начинают свою работу с метода init(), переменная Cout инициализируется нулём и создаётся новый объект класса Thread. Передавая this в конструктор класса Thread, таким образом, новый поток будет знать какой объект запускается. В этом случает this это ссылка на CounterThread. После того как поток создан его нужно запустить. Вызываем метод start(), который в свою очередь вызывает метод run() объекта CounterThread, то есть CounterThread.run(). Сразу выполниться метод start() и в это же время начнёт свою работу поток. Заметим, что в методе run() бесконечный цикл. Он бесконечен, потому что, как только выполниться метод run(), то поток закончит работу. Метод run() будет инкрементировать переменную Count, ожидать(sleep) 10 секунд и посылать запрос на обновление экрана апплета.

Заметим, что вызова метода sleep именно в потоке является очень важным. Если это не так, то программа займёт всё процессорное время для своего процесса и не даст возможности любым другим методам, например методам, выполниться. Другой способ остановить выполнение потока это вызвать метод stop(). В данном примере, поток останавливается, когда происходит нажатие мыши в пределах апплета. В зависимости от скорости компьютера, на котором запущен апплет, не все числа будут отображены, потому что инкрементирование происходит независимо от прорисовки апплета. Апплет может не обновляться после каждого запроса на прорисовку, так как ОС может поставить запрос в очередь запросов и последующие запросы на обновление будут удовлетворены с одним запросом. Пока запросы на перерисовку собираются в очередь, переменная Count продолжает увеличиваться, но не отображается.

Приостановка и возобновление

Когда поток остановлен с использованием метода stop() он уже не может быть возобновлён с использованием метода start(), сразу после вызова метода stop() происходит уничтожение выполняющегося потока. Вместо этого вы можете приостановить выполнение потока, используя метод sleep() на определённый отрезок времени и потом выполнение потока продолжится, когда выйдет время. Но это не самое лучшее решение, если поток необходимо запустить, когда произойдёт определённое условие. Для этого, используется метод suspend(), который даёт возможность временно прекратить выполнение потока и метод resume(), который позволяет продолжить выполнение потока. Следующий апплет является изменением апплета, который был дан выше, но с использованием методов suspend() и resume():


public class CounterThread2 extends Applet implements Runnable
{
Thread t;
int Count;
boolean suspended;
public boolean mouseDown(Event e,int x, int y)
{
if(suspended)
t.resume();
else
t.suspend();
suspended = !suspended;
return true;
}
...
}

Для того чтобы сохранить текущее состояние апплета используется логическая(boolean) переменная suspended. Характеристики разных состояний апплета является важной частью, потому что некоторые методы могут выкидывать исключения, если они вызываются не из того состояния. Например, если поток запущен и остановлен, вызов метода start() приведёт к исключению IllegalThreadStateException .

Планирование

В Java есть Планировщик Потоков(Thread Scheduler), который контролирует все запущенные потоки во всех программах и решает, какие потоки должны быть запущены, и какая строка кода выполняться. Существует две характеристики потока, по которым планировщик идентифицирует процесс. Первая, более важная, это приоритет потока, другая, является-ли поток демоном(daemon flag). Простейшее правило планировщика, это если запущены только daemon потоки, то Java Virtual Machine (JVM) вызгрузиться. Новые потоки наследуют приоритет и daemon flag от потока, который его создал. Планировщик определяет какой поток должен быть запущен, анализируя приоритет всех потоков. Потоку с наивысшим приоритетом позволяется выполниться раньше, нежели потокам с более низкими приоритетами.

Планировщик может быть двух видов: с преимуществом и без. Планировщик с преимуществом предоставляет определённый отрезок времени для всех потоков, которые запущены в системе. Планировщик решает, какой поток следующий запуститься или возобновить работу через некоторый постоянный период времени. Когда поток запуститься, через этот определённый промежуток времени, то выполняющийся поток будет приостановлен и следующий поток возобновит свою работу. Планировщик без приоритета решает, какой поток должен запуститься и выполняться до того, пока не закончит свою работу. Поток имеет полный контроль над системой настолько долго, сколько ему захочется. Метод yield() можно использовать для того чтобы принудить планировщик выполнить другой поток, который ожидает своей очереди. В зависимости от системы, на которой запущена Java, планировщик может быть либо с преимуществом, либо без него.

Приоритеты

Планировщик определяет, какой поток должен запуститься, основываясь на номер приоритета, назначенный каждому потоку. Приоритет потока может принимать значения от 1 до 10. По умолчанию, значение приоритета для потока является Thread.NORM_PRIORITY, которому соответствует значение 5. Так же доступны две других static переменных: Thread.MIN_PRIORITY, значение 1, и Thread.MAX_PRIORITY – 10. Метод getPriority() может использоваться для получения текущего значения приоритета соответствующего потока.

Daemon потоки

Такие потоки иногда ещё называются “службами”, которые обычно запускаются с наименьшим приоритетом и обеспечивают основные услуги для программы или программ, когда деятельность компьютера понижается. Примером такого потока может служить сборщик мусора. Этот поток, предусмотрен JVM, сканирует программы на наличие переменных, к которым больше никогда не придется обращаться, и освобождает их ресурсы, возвращая их системе. Поток может стать daemon потоком, передав булево значение true в метод setDaemon(). Если принято значение false, то поток становится обычным пользовательским потоком. Тем не менее, это необходимо сделать до того как поток запустится.

Пример планирования

Представленный апплет демонстрирует выполнение двух потоков с разными приоритетами. Один поток запущен с наименьшим приоритетом, а другой с наивысшим. Потоки увеличивают значение счетчика, пока счетчик потока с большим приоритетом не догонит счетчик потока с меньшим приоритетом.

Заключение

Использование потоков в Java позволит программистам более гибко использовать преимущества Java в их программах. Простота создания, настраивания и запуска потоков даст Java программистам возможность разрабатывать переносимые и мощные апплеты/приложения, которые невозможно выполнить в других языках третьего поколения. Потоки позволяют любым программам выполнять несколько задач как одну. В интернет ориентированных(Internet-aware) языках, таких как Java, это очень важный инструмент.

Об авторе

Donald G. Drake программирует на Java начиная с альфа релиза(alpha release). Drake написал апплеты для специальных веб-сайтов. Наиболее популярна его версия TickerTape (http://www.netobjective.com/java/TickerTapeInfo.html), которая может быть широко сконфигурирована для внедрения в любые веб-страницы. Drake имеет степень бакалавра наук в области компьютерных наук в John Carroll University. В настоящее время он получает степень магистра наук в DePaul University.

Последнее обновление: 27.04.2018

Большинство языков программирования поддерживают такую важную функциональность как многопоточность, и Java в этом плане не исключение. При помощи многопоточности мы можем выделить в приложении несколько потоков, которые будут выполнять различные задачи одновременно. Если у нас, допустим, графическое приложение, которое посылает запрос к какому-нибудь серверу или считывает и обрабатывает огромный файл, то без многопоточности у нас бы блокировался графический интерфейс на время выполнения задачи. А благодаря потокам мы можем выделить отправку запроса или любую другую задачу, которая может долго обрабатываться, в отдельный поток. Поэтому большинство реальных приложений, которые многим из нас приходится использовать, практически не мыслимы без многопоточности.

Класс Thread

В Java функциональность отдельного потока заключается в классе Thread . И чтобы создать новый поток, нам надо создать объект этого класса. Но все потоки не создаются сами по себе. Когда запускается программа, начинает работать главный поток этой программы. От этого главного потока порождаются все остальные дочерние потоки.

С помощью статического метода Thread.currentThread() мы можем получить текущий поток выполнения:

Public static void main(String args) { Thread t = Thread.currentThread(); // получаем главный поток System.out.println(t.getName()); // main }

По умолчанию именем главного потока будет main .

Для управления потоком класс Thread предоставляет еще ряд методов. Наиболее используемые из них:

    getName() : возвращает имя потока

    setName(String name) : устанавливает имя потока

    getPriority() : возвращает приоритет потока

    setPriority(int proirity) : устанавливает приоритет потока. Приоритет является одним из ключевых факторов для выбора системой потока из кучи потоков для выполнения. В этот метод в качестве параметра передается числовое значение приоритета - от 1 до 10. По умолчанию главному потоку выставляется средний приоритет - 5.

    isAlive() : возвращает true, если поток активен

    isInterrupted() : возвращает true, если поток был прерван

    join() : ожидает завершение потока

    run() : определяет точку входа в поток

    sleep() : приостанавливает поток на заданное количество миллисекунд

    start() : запускает поток, вызывая его метод run()

Мы можем вывести всю информацию о потоке:

Public static void main(String args) { Thread t = Thread.currentThread(); // получаем главный поток System.out.println(t); // main }

Консольный вывод:

Thread

Первое main будет представлять имя потока (что можно получить через t.getName()), второе значение 5 предоставляет приоритет потока (также можно получить через t.getPriority()), и последнее main представляет имя группы потоков, к которому относится текущий - по умолчанию также main (также можно получить через t.getThreadGroup().getName())

Недостатки при использовании потоков

Далее мы рассмотрим, как создавать и использовать потоки. Это довольно легко. Однако при создании многопоточного приложения нам следует учитывать ряд обстоятельств, которые негативно могут сказаться на работе приложения.

На некоторых платформах запуск новых потоков может замедлить работу приложения. Что может иметь большое значение, если нам критичная производительность приложения.

Для каждого потока создается свой собственный стек в памяти, куда помещаются все локальные переменные и ряд других данных, связанных с выполнением потока. Соответственно, чем больше потоков создается, тем больше памяти используется. При этом надо помнить, в любой системе размеры используемой памяти ограничены. Кроме того, во многих системах может быть ограничение на количество потоков. Но даже если такого ограничения нет, то в любом случае имеется естественное ограничение в виде максимальной скорости процессора.

должны воспользоваться классом java.lang.Thread. В этом классе определены все методы, необходимые для создания потоков, управления их состоянием и синхронизации.

Как пользоваться классом Thread?

Есть две возможности.

  • Во-первых, вы можете создать свой дочерний класс на базе класса Thread. При этом вы должны переопределить метод run. Ваша реализация этого метода будет работать в рамках отдельного потока.
  • Во-вторых, ваш класс может реализовать интерфейс Runnable. При этом в рамках вашего класса необходимо определить метод run, который будет работать как отдельный поток.

Второй способ особенно удобен в тех случаях, когда ваш класс должен быть унаследован от какого-либо другого класса (например, от класса Applet) и при этом вам нужна многопоточность. Так как в языке программирования Java нет множественного наследования, невозможно создать класс, для которого в качестве родительского будут выступать классы Applet и Thread. В этом случае реализация интерфейса Runnable является единственным способом решения задачи.

Методы класса Thread

В классе Thread определены три поля, несколько конструкторов и большое количество методов, предназначенных для работы с потоками. Ниже мы привели краткое описание полей, конструкторов и методов.

С помощью конструкторов вы можете создавать потоки различными способами, указывая при необходимости для них имя и группу. Имя предназначено для идентификации потока и является необязательным атрибутом. Что же касается групп, то они предназначены для организации защиты потоков друг от друга в рамках одного приложения.

Методы класса Thread предоставляют все необходимые возможности для управления потоками, в том числе для их синхронизации.

Поля

Три статических поля предназначены для назначения приоритетов потокам.

  • NORM_PRIORITY

Нормальный

public final static int NORM_PRIORITY;
  • MAX_PRIORITY

Максимальный

public final static int MAX_PRIORITY;
  • MIN_PRIORITY

Минимальный

public final static int MIN_PRIORITY;

Конструкторы

Создание нового объекта Thread

public Thread();

Создвание нового объекта Thread с указанием объекта, для которого будет вызываться метод run

public Thread(Runnable target); public Thread(Runnable target, String name);

Создание объекта Thread с указанием его имени

public Thread(String name);

Создание нового объекта Thread с указанием группы потока и объекта, для которого вызывается метод run

public Thread(ThreadGroup group, Runnable target);

Аналогично предыдущему, но дополнительно задается имя нового объекта Thread

public Thread(ThreadGroup group, Runnable target, String name);

Создание нового объекта Thread с указанием группы потока и имени объекта

public Thread(ThreadGroup group, String name);

Методы

  • activeCount

Текущее количество активных потоков в группе, к которой принадлежит поток

public static int activeCount();
  • checkAccess

Текущему потоку разрешается изменять объект Thread

public void checkAccesss();
  • countStackFrames

Определение количества фреймов в стеке

public int countStackFrames();
  • currentThread

Определение текущего работающего потока

public static Thread currentThread();
  • destroy

Принудительное завершение работы потока

public void destroy();
  • dumpStack

Вывод текущего содержимого стека для отладки

public static void dumpStack();
  • enumerate

Получение всех объектов Tread данной группы

public static int enumerate(Thread tarray);
  • getName

Определение имени потока

public final String getName();
  • getPriority

Определение текущего приоритета потока

public final int getPriority();
  • getThreadGroup

Определение группы, к которой принадлежит поток

public final ThreadGroup getThreadGroup();
  • interrupt

Прерывание потока

public void interrupt();
  • interrupted
public static boolean interrupted();
  • isAlive

Определение, выполняется поток или нет

public final boolean isAlive();
  • isDaemon

Определение, является ли поток демоном

public final boolean isDaemon();
  • isInterrupted

Определение, является ли поток прерванным

public boolean isInterrupted();
  • join

Ожидание завершения потока

public final void join();

Ожидание завершения потока в течение заданного времени. Время задается в миллисекундах

public final void join(long millis);

Ожидание завершения потока в течение заданного времени. Время задается в миллисекундах и наносекундах

public final void join(long millis, int nanos);
  • resume

Запуск временно приостановленного потока

public final void resume();

Метод вызывается в том случае, если поток был создан как объект с интерфейсом Runnable

public void run();
  • setDaemon

Установка для потока режима демона

public final void setDaemon(boolean on);
  • setName

Устаовка имени потока

public final void setName(String name);
  • setPriority

Установка приоритета потока

public final void setPriority(int newPriority);
  • sleep
public static void sleep(long millis);

Задержка потока на заднное время. Время задается в миллисекундах и наносекундах

public static void sleep(long millis, int nanos);
  • start

Запуск потока на выполнение

public void start();
  • stop

Остановка выполнения потока

public final void stop();

Аварийная остановка выполнения потока с заданным исключением

public final void stop(Throwable obj);
  • suspend

Приостановка потока

public final void suspend();
  • toString

Строка, представляющая объект-поток

public String toString();
  • yield

Приостановка текущего потока для того чтобы управление было передано другому потоку

public static void yield();

Создание дочернего класса на базе класса Thread

Рассмотрим первый способ реализации многопоточности, основанный на наследовании от класса Thread. При использовании этого способа вы определяете для потока отдельный класс, например, так:

class DrawRectangles extends Thread { . . . public void run() { . . . } }

Здесь определен класс DrawRectangles, который является дочерним по отношению к классу Thread.

Обратите внимание на метод run. Создавая свой класс на базе класса Thread, вы должны всегда определять этот метод, который и будет выполняться в рамках отдельного потока.

Заметим, что метод run не вызывается напрямую никакими другими методами. Он получает управление при запуске потока методом start.

Как это происходит?

Рассмотрим процедуру запуска потока на примере некоторого класса DrawRectangles.

Вначале ваше приложение должно создать объект класса Thread:

public class MultiTask2 extends Applet { Thread m_DrawRectThread = null; . . . public void start() { if (m_DrawRectThread == null) { m_DrawRectThread = new DrawRectangles(this); m_DrawRectThread.start(); } } }

Создание объекта выполняется оператором new в методе start, который получает управление, когда пользователь открывает документ HTML с аплетом. Сразу после создания поток запускается на выполнение, для чего вызывается метод start.

Что касается метода run, то если поток используется для выполнения какой либо периодической работы, то этот метод содержит внутри себя бесконечный цикл. Когда цикл завершается и метод run возвращает управление, поток прекращает свою работу нормальным, не аварийным образом. Для аварийного завершения потока можно использовать метод interrupt.

Остановка работающего потока выполняется методом stop. Обычно остановка всех работающих потоков, созданных аплетом, выполняется методом stop класса аплета:

public void stop() { if (m_DrawRectThread != null) { m_DrawRectThread.stop(); m_DrawRectThread = null; } }

Напомним, что этот метод вызывается, когда пользователь покидает страницу сервера Web, содержащую аплет.

Реализация интерфейса Runnable

Описанный выше способ создания потоков как объектов класса Thread или унаследованных от него классов кажется достаточнао естественным. Однако этот способ не единственный. Если вам нужно создать только один поток, работающую одновременно с кодом аплета, проще выбрать второй способ с использованием интерфейса Runnable.

Идея заключается в том, что основной класс аплета, который является дочерним по отношению к классу Applet, дополнительно реализует интерфейс Runnable, как это показано ниже:

public class MultiTask extends Applet implements Runnable { Thread m_MultiTask = null; . . . public void run() { . . . } public void start() { if (m_MultiTask == null) { m_MultiTask = new Thread(this); m_MultiTask.start(); } } public void stop() { if (m_MultiTask != null) { m_MultiTask.stop(); m_MultiTask = null; } } }

Внутри класса необходимо определить метод run, который будет выполняться в рамках отдельного потока. При этом можно считать, что код аплета и код метода run работают одновременно как разные потоки.

Для создания потока используется оператор new. Поток создается как объект класса Thread, причем конструктору передается ссылка на класс аплета:

m_MultiTask = new Thread(this);

При этом, когда поток запустится, управление получит метод run, определенный в классе аплета.

Как запустить поток?

Запуск выполняется, как и раньше, методом start. Обычно поток запускается из метода start аплета, когда пользователь отображает страницу сервера Web, содержащую аплет. Остановка потока выполняется методом stop.

Многопоточное программирование позволяет разделить представление и обработку информации на несколько «легковесных» процессов (light-weight processes), имеющих общий доступ как к методам различных объектов приложения, так и к их полям. Многопоточность незаменима в тех случаях, когда графический интерфейс должен реагировать на действия пользователя при выполнении определенной обработки информации. Потоки могут взаимодействовать друг с другом через основной «родительский» поток, из которого они стартованы.

В качестве примера можно привести некоторый поток, отвечающий за представление информации в интерфейсе, который ожидает завершения работы другого потока, загружающего файл, и одновременно отображает некоторую анимацию или обновляет прогресс-бар. Кроме того этот поток может остановить загружающий файл поток при нажатии кнопки «Отмена».

Создатели Java предоставили две возможности создания потоков: реализация (implementing) интерфейса Runnable и расширение(extending) класса Thread . Расширение класса - это путь наследования методов и переменных класса родителя. В этом случае можно наследоваться только от одного родительского класса Thread . Данное ограничение внутри Java можно преодолеть реализацией интерфейса Runnable , который является наиболее распространённым способом создания потоков.

Преимущества потоков перед процессами

  • потоки намного легче процессов поскольку требуют меньше времени и ресурсов;
  • переключение контекста между потоками намного быстрее, чем между процессами;
  • намного проще добиться взаимодействия между потоками, чем между процессами.

Главный поток

Каждое java приложение имеет хотя бы один выполняющийся поток. Поток, с которого начинается выполнение программы, называется главным. После создания процесса, как правило, JVM начинает выполнение главного потока с метода main(). Затем, по мере необходимости, могут быть запущены дополнительные потоки. Многопоточность - это два и более потоков, выполняющихся одновременно в одной программе. Компьютер с одноядерным процессором может выполнять только один поток, разделяя процессорное время между различными процессами и потоками.

Класс Thread

В классе Thread определены семь перегруженных конструкторов, большое количество методов, предназначенных для работы с потоками, и три константы (приоритеты выполнения потока).

Конструкторы класса Thread

Thread(); Thread(Runnable target); Thread(Runnable target, String name); Thread(String name); Thread(ThreadGroup group, Runnable target); Thread(ThreadGroup group, Runnable target, String name); Thread(ThreadGroup group, String name);

  • target – экземпляр класса реализующего интерфейс Runnable;
  • name – имя создаваемого потока;
  • group – группа к которой относится поток.

Пример создания потока, который входит в группу, реализует интерфейс Runnable и имеет свое уникальное название:

Runnable r = new MyClassRunnable(); ThreadGroup tg = new ThreadGroup(); Thread t = new Thread(tg, r, "myThread");

Группы потоков удобно использовать, когда необходимо одинаково управлять несколькими потоками. Например, несколько потоков выводят данные на печать и необходимо прервать печать всех документов поставленных в очередь. В этом случае удобно применить команду ко всем потокам одновременно, а не к каждому потоку отдельно. Но это можно сделать, если потоки отнесены к одной группе.

Несмотря на то, что главный поток создаётся автоматически, им можно управлять. Для этого необходимо создать объект класса Thread вызовом метода currentThread() .

Методы класса Thread

Наиболее часто используемые методы класса Thread для управления потоками:

  • long getId() - получение идентификатора потока;
  • String getName() - получение имени потока;
  • int getPriority() - получение приоритета потока;
  • State getState() - определение состояния потока;
  • void interrupt() - прерывание выполнения потока;
  • boolean isAlive() - проверка, выполняется ли поток;
  • boolean isDaemon() - проверка, является ли поток «daemon»;
  • void join() - ожидание завершения потока;
  • void join(millis) - ожидание millis милисекунд завершения потока;
  • void notify() - «пробуждение» отдельного потока, ожидающего «сигнала»;
  • void notifyAll() - «пробуждение» всех потоков, ожидающих «сигнала»;
  • void run() - запуск потока, если поток был создан с использованием интерфейса Runnable;
  • void setDaemon(bool) - определение «daemon» потока;
  • void setPriority(int) - определение приоритета потока;
  • void sleep(int) - приостановка потока на заданное время;
  • void start() - запуск потока.
  • void wait() - приостановка потока, пока другой поток не вызовет метод notify();
  • void wait(millis) - приостановка потока на millis милисекунд или пока другой поток не вызовет метод notify();

Жизненный цикл потока

При выполнении программы объект Thread может находиться в одном из четырех основных состояний: «новый», «работоспособный», «неработоспособный» и «пассивный». При создании потока он получает состояние «новый» (NEW) и не выполняется. Для перевода потока из состояния «новый» в «работоспособный» (RUNNABLE) следует выполнить метод start(), вызывающий метод run().

Поток может находиться в одном из состояний, соответствующих элементам статически вложенного перечисления Thread.State:

NEW - поток создан, но еще не запущен;
RUNNABLE - поток выполняется;
BLOCKED - поток блокирован;
WAITING - поток ждет окончания работы другого потока;
TIMED_WAITING - поток некоторое время ждет окончания другого потока;
TERMINATED - поток завершен.

Пример использования Thread

В примере ChickenEgg рассматривается параллельная работа двух потоков (главный поток и поток Egg), в которых идет спор, «что было раньше, яйцо или курица?». Каждый поток высказывает свое мнение после небольшой задержки, формируемой методом ChickenEgg.getTimeSleep(). Побеждает тот поток, который последним говорит свое слово.

Package example; import java.util.Random; class Egg extends Thread { @Override public void run() { for(int i = 0; i < 5; i++) { try { // Приостанавливаем поток sleep(ChickenEgg.getTimeSleep()); System.out.println("Яйцо"); }catch(InterruptedException e){} } } } public class ChickenEgg { public static int getTimeSleep() { final Random random = new Random(); int tm = random.nextInt(1000); if (tm < 10) tm *= 100; else if (tm < 100) tm *= 10; return tm; } public static void main(String args) { Egg egg = new Egg (); // Создание потока System.out.println("Начинаем спор: кто появился первым?"); egg.start(); // Запуск потока for(int i = 0; i < 5; i++) { try { // Приостанавливаем поток Thread.sleep(ChickenEgg.getTimeSleep()); System.out.println("Курица"); }catch(InterruptedException e){} } if(egg.isAlive()) { // Cказало ли яйцо последнее слово? try { // Ждем, пока яйцо закончит высказываться egg.join(); } catch (InterruptedException e){} System.out.println("Первым появилось яйцо!!!"); } else { //если оппонент уже закончил высказываться System.out.println("Первой появилась курица!!!"); } System.out.println("Спор закончен"); } }

Начинаем спор: кто появился первым? Курица Курица Яйцо Курица Яйцо Яйцо Курица Курица Яйцо Яйцо Первым появилось яйцо!!! Спор закончен

Невозможно точно предсказать, какой поток закончит высказываться последним. При следующем запуске «победитель» может измениться. Это происходит вследствии так называемого «асинхронного выполнения кода». Асинхронность обеспечивает независимость выполнения потоков. Или, другими словами, параллельные потоки независимы друг от друга, за исключением случаев, когда бизнес-логика зависимости выполнения потоков определяется предусмотренными для этого средств языка.

Интерфейс Runnable

Интерфейс Runnable содержит только один метод run() :

Interface Runnable { void run(); }

Метод run() выполняется при запуске потока. После определения объекта Runnable он передается в один из конструкторов класса Thread .

Пример класса RunnableExample, реализующего интерфейс Runnable

Package example; class MyThread implements Runnable { Thread thread; MyThread() { thread = new Thread(this, "Дополнительный поток"); System.out.println("Создан дополнительный поток " + thread); thread.start(); } @Override public void run() { try { for (int i = 5; i > 0; i--) { System.out.println("\tдополнительный поток: " + i); Thread.sleep(500); } } catch (InterruptedException e) { System.out.println("\tдополнительный поток прерван"); } System.out.println("\tдополнительный поток завершён"); } } public class RunnableExample { public static void main(String args) { new MyThread(); try { for (int i = 5; i > 0; i--) { System.out.println("Главный поток: " + i); Thread.sleep(1000); } } catch (InterruptedException e) { System.out.println("Главный поток прерван"); } System.out.println("Главный поток завершён"); } }

При выполнении программы в консоль было выведено следующее сообщение.

Создан дополнительный поток Thread[Дополнительный поток,5,main] Главный поток: 5 дополнительный поток: 5 дополнительный поток: 4 Главный поток: 4 дополнительный поток: 3 дополнительный поток: 2 Главный поток: 3 дополнительный поток: 1 дополнительный поток завершён Главный поток: 2 Главный поток: 1 Главный поток завершён

Синхронизация потоков, synchronized

В процессе функционирования потоки часто используют общие ресурсы приложения, определенные вне потока. Если несколько потоков начнут одновременно вносить изменения в общий ресурс, то результаты выполнения программы могут быть непредсказуемыми. Рассмотрим следующий пример:

Package example; class CommonObject { int counter = 0; } class CounterThread implements Runnable { CommonObject res; CounterThread(CommonObject res) { this.res = res; } @Override public void run() { // synchronized(res) { res.counter = 1; for (int i = 1; i < 5; i++){ System.out.printf(""%s" - %d\n", Thread.currentThread().getName(), res.counter); res.counter++; try { Thread.sleep(100); } catch(InterruptedException e){} } // } } } public class SynchronizedThread { public static void main(String args) { CommonObject commonObject= new CommonObject(); for (int i = 1; i < 6; i++) { Thread t; t = new Thread(new CounterThread(commonObject)); t.setName("Поток " + i); t.start(); } } }

В примере определен общий ресурс в виде класса CommonObject, в котором имеется целочисленное поле counter. Данный ресурс используется внутренним классом , создающим поток CounterThread для увеличения в цикле значения counter на единицу. При старте потока полю counter присваивается значение 1. После завершения работы потока значение res.counter должно быть равно 4.

Две строчки кода класса CounterThread закомментированы. О них речь пойдет ниже.

В главном классе программы SynchronizedThread.main запускается пять потоков. То есть, каждый поток должен в цикле увеличить значение res.counter с единицы до четырех; и так пять раз. Но результат работы программы, отображаемый в консоли, будет иным:

"Поток 4" - 1 "Поток 2" - 1 "Поток 1" - 1 "Поток 5" - 1 "Поток 3" - 1 "Поток 2" - 6 "Поток 4" - 7 "Поток 3" - 8 "Поток 5" - 9 "Поток 1" - 10 "Поток 2" - 11 "Поток 4" - 12 "Поток 5" - 13 "Поток 3" - 13 "Поток 1" - 15 "Поток 4" - 16 "Поток 2" - 16 "Поток 3" - 18 "Поток 5" - 18 "Поток 1" - 20

То есть, с общим ресурсов res.counter работают все потоки одновременно, поочередно изменяя значение.

Чтобы избежать подобной ситуации, потоки необходимо синхронизировать. Одним из способов синхронизации потоков связан с использованием ключевого слова synchronized . Оператор synchronized позволяет определить блок кода или метод, который должен быть доступен только одному потоку. Можно использовать synchronized в своих классах определяя синхронизированные методы или блоки. Но нельзя использовать synchronized в переменных или атрибутах в определении класса.

Блокировка на уровне объекта

Блокировать общий ресурс можно на уровне объекта, но нельзя использовать для этих целей примитивные типы. В примере следует удалить строчные комментарии в классе CounterThread, после чего общий ресурс будет блокироваться как только его захватит один из потоков; остальные потоки будут ждать в очереди освобождения ресурса. Результат работы программы при синхронизации доступа к общему ресурсу резко изменится:

"Поток 1" - 1 "Поток 1" - 2 "Поток 1" - 3 "Поток 1" - 4 "Поток 5" - 1 "Поток 5" - 2 "Поток 5" - 3 "Поток 5" - 4 "Поток 4" - 1 "Поток 4" - 2 "Поток 4" - 3 "Поток 4" - 4 "Поток 3" - 1 "Поток 3" - 2 "Поток 3" - 3 "Поток 3" - 4 "Поток 2" - 1 "Поток 2" - 2 "Поток 2" - 3 "Поток 2" - 4

Следующий код демонстрирует порядок использования оператора synchronized для блокирования доступа к объекту.

Synchronized (оbject) { // other thread safe code }

Блокировка на уровне метода и класса

Блокировать доступ к ресурсам можно на уровне метода и класса. Следующий код показывает, что если во время выполнения программы имеется несколько экземпляров класса DemoClass, то только один поток может выполнить метод demoMethod(), для других потоков доступ к методу будет заблокирован. Это необходимо когда требуется сделать определенные ресурсы потокобезопасными.

Public class DemoClass { public synchronized static void demoMethod(){ // ... } } // или public class DemoClass { public void demoMethod(){ synchronized (DemoClass.class) { // ... } } }

Каждый объект в Java имеет ассоциированный с ним монитор, который представляет своего рода инструмент для управления доступа к объекту. Когда выполнение кода доходит до оператора synchronized , монитор объекта блокируется, предоставляя монопольный доступ к блоку кода только одному потоку, который произвел блокировку. После окончания работы блока кода, монитор объекта освобождается и он становится доступным для других потоков.

Некоторые важные замечания использования synchronized

  1. Синхронизация в Java гарантирует, что два потока не могут выполнить синхронизированный метод одновременно.
  2. Оператор synchronized можно использовать только с методами и блоками кода, которые могут быть как статическими, так и не статическими.
  3. Если один из потоков начинает выполнять синхронизированный метод или блок, то этот метод/блок блокируются. Когда поток выходит из синхронизированного метода или блока JVM снимает блокировку. Блокировка снимается, даже если поток покидает синхронизированный метод после завершения из-за каких-либо ошибок или исключений.
  4. Синхронизация в Java вызывает исключение NullPointerException, если объект, используемый в синхронизированном блоке, не определен, т.е. равен null.
  5. Синхронизированные методы в Java вносят дополнительные затраты на производительность приложения. Поэтому следует использовать синхронизацию, когда она абсолютно необходима.
  6. В соответствии со спецификацией языка нельзя использовать synchronized в конструкторе, т.к. приведет к ошибке компиляции.

Примечание: для синхронизации потоков можно использовать объекты синхронизации Synchroniser"s пакета java.util.concurrent .

Взаимная блокировка

С использованием блокировок необходимо быть очень внимательным, чтобы не создать «взаимоблокировку», которая хорошо известна разработчикам. Этот термин означает, что один из потоков ждет от другого освобождения заблокированного им ресурса, в то время как сам также заблокировал один из ресурсов, доступа к которому ждёт второй поток. В данном процессе могут участвовать два и более потоков.

Основные условия возникновения взаимоблокировок в многопотоковом приложении:

  • наличие ресурсов, которые должны быть доступны только одному потоку в произвольный момент времени;
  • при захвате ресурса поток пытается захватить еще один уникальный ресурс;
  • отсутствует механизм освобождения ресурса при продолжительном его удержании;
  • во время исполнения несколько потоков могут захватить разные уникальные ресурсы и ждать друг от друга их освобождения.

Взаимодействие между потоками в Java, wait и notify

При взаимодействии потоков часто возникает необходимость приостановки одних потоков и их последующего извещения о завершении определенных действий в других потоков. Так например, действия первого потока зависят от результата действий второго потока, и надо каким-то образом известить первый поток, что второй поток произвел/завершил определенную работу. Для подобных ситуаций используются методы:

  • wait() - освобождает монитор и переводит вызывающий поток в состояние ожидания до тех пор, пока другой поток не вызовет метод notify();
  • notify() - продолжает работу потока, у которого ранее был вызван метод wait();
  • notifyAll() - возобновляет работу всех потоков, у которых ранее был вызван метод wait().

Все эти методы вызываются только из синхронизированного контекста (синхронизированного блока или метода).

Рассмотрим пример «Производитель-Склад-Потребитель» (Producer-Store-Consumer). Пока производитель не поставит на склад продукт, потребитель не может его забрать. Допустим производитель должен поставить 5 единиц определенного товара. Соответственно потребитель должен весь товар получить. Но, при этом, одновременно на складе может находиться не более 3 единиц товара. При реализации данного примера используем методы wait() и notify() .

Листинг класса Store

Package example; public class Store { private int counter = 0; public synchronized void get() { while (counter < 1) { try { wait(); } catch (InterruptedException e) {} } counter--; System.out.println("-1: товар забрали"); System.out.println("\tколичество товара на складе: " + counter); notify(); } public synchronized void put() { while (counter >= 3) { try { wait(); }catch (InterruptedException e) {} } counter++; System.out.println("+1: товар добавили"); System.out.println("\tколичество товара на складе: " + counter); notify(); } }

Класс Store содержит два синхронизированных метода для получения товара get() и для добавления товара put() . При получении товара выполняется проверка счетчика counter. Если на складе товара нет, то есть counter < 1, то вызывается метод wait() , который освобождает монитор объекта Store и блокирует выполнение метода get() , пока для этого монитора не будет вызван метод notify() .

При добавлении товара также выполняется проверка количества товара на складе. Если на складе больше 3 единиц товара, то поставка товара приостанавливается и вызывается метод notify() , который передает управление методу get() для завершения цикла while().

Листинги классов Producer и Consumer

Классы Producer и Consumer реализуют интерфейс Runnable , методы run() у них переопределены. Конструкторы этих классов в качестве параметра получают объект склад Store. При старте данных объектов в виде отдельных потоков в цикле вызываются методы put() и get() класса Store для «добавления» и «получения» товара.

Package example; public class Producer implements Runnable { Store store; Producer(Store store) { this.store=store; } @Override public void run() { for (int i = 1; i < 6; i++) { store.put(); } } } public class Consumer implements Runnable { Store store; Consumer(Store store) { this.store=store; } @Override public void run(){ for (int i = 1; i < 6; i++) { store.get(); } } }

Листинг класса Trade

В главном потоке класса Trade (в методе main ) создаются объекты Producer-Store-Consumer и стартуются потоки производителя и потребителя.

Package example; public class Trade { public static void main(String args) { Store store = new Store(); Producer producer = new Producer(store); Consumer consumer = new Consumer(store); new Thread(producer).start(); new Thread(consumer).start(); } }

При выполнении программы в консоль будут выведены следующие сообщения:

1: товар добавили количество товара на складе: 1 +1: товар добавили количество товара на складе: 2 +1: товар добавили количество товара на складе: 3 -1: товар забрали количество товара на складе: 2 -1: товар забрали количество товара на складе: 1 -1: товар забрали количество товара на складе: 0 +1: товар добавили количество товара на складе: 1 +1: товар добавили количество товара на складе: 2 -1: товар забрали количество товара на складе: 1 -1: товар забрали количество товара на складе: 0

Поток-демон, daemon

Java приложение завершает работу тогда, когда завершает работу последний его поток. Даже если метод main() уже завершился, но еще выполняются порожденные им потоки, система будет ждать их завершения.

Однако это правило не относится к потоков-демонам (daemon ). Если завершился последний обычный поток процесса, и остались только daemon потоки, то они будут принудительно завершены и выполнение приложения закончится. Чаще всего daemon потоки используются для выполнения фоновых задач, обслуживающих процесс в течение его жизни.

Объявить поток демоном достаточно просто. Для этого нужно перед запуском потока вызвать его метод setDaemon(true). Проверить, является ли поток daemon "ом можно вызовом метода isDaemon(). В качестве примера использования daemon-потока можно рассмотреть класс Trade, который принял бы следующий вид:

Package example; public class Trade { public static void main(String args) { Producer producer = new Producer(store); Consumer consumer = new Consumer(store); // new Thread(producer).start(); // new Thread(consumer).start(); Thread tp = new Thread(producer); Thread tc = new Thread(consumer); tp.setDaemon(true); tc.setDaemon(true); tp.start(); tc.start(); try { Thread.sleep(100); } catch (InterruptedException e) {} System.out.println("\nГлавный поток завершен\n"); System.exit(0); } }

Здесь можно самостоятельно поэкспериментировать с определением daemon-потока для одного из классов (producer, consumer) или обоих классов, и посмотреть, как система (JVM) будет вести себя.

Thread и Runnable, что выбрать?

Зачем нужно два вида реализации многопоточности; какую из них и когда использовать? Ответ несложен. Реализация интерфейса Runnable используется в случаях, когда класс уже наследует какой-либо родительский класс и не позволяет расширить класс Thread . К тому же хорошим тоном программирования в java считается реализация интерфейсов. Это связано с тем, что в java может наследоваться только один родительский класс. Таким образом, унаследовав класс Thread , невозможно наследовать какой-либо другой класс.

Расширение класса Thread целесообразно использовать в случае необходимости переопределения других методов класса помимо метода run().

Приоритеты выполнения и голодание

Иногда разработчики используют приоритеты выполнения потока. В Java есть планировщик потоков (Thread Scheduler ), который контролирует все запущенные потоки и решает, какие потоки должны быть запущены и какая строка кода должна выполняться. Решение основывается на приоритете потока. Поэтому потоки с меньшим приоритетом получают меньше процессорного времени по сравнению с потоками с бо́льшим приоритет. Данное разумное решением может стать причиной проблем при злоупотреблении. То есть, если бо́льшую часть времени исполняются потоки с высоким приоритетом, то низкоприоритетные потоки начинают «голодать», поскольку не получают достаточно времени для того, чтобы выполнить свою работу должным образом. Поэтому рекомендуется задавать приоритет потока только тогда, когда для этого имеются веские основания.

Неочевидный пример «голодания» потока даёт метод finalize() , предоставляющий возможность выполнить код перед тем, как объект будет удалён сборщиком мусора. Однако приоритет финализирующего потока невысокий. Следовательно, возникают предпосылки для потокового голодания, когда методы finalize() объекта тратят слишком много времени (большие задержки) по сравнению с остальным кодом.

Другая проблема со временем исполнения может возникнуть от того, что не был определен порядок прохождения потоком блока synchronized . Когда несколько параллельных потоков должны выполнить некоторый код, оформленный блоком synchronized , может получиться так, что одним потокам придётся ждать дольше других, прежде чем войти в блок. Теоретически они могут вообще туда не попасть.

Скачать примеры

Рассмотренные на странице примеры многопоточности и синхронизации потоков в виде проекта Eclipse можно скачать (14Кб).