На что обратить внимание при выборе видеопроектора для дома. Курсовая работа: Мультимедийный проектор Технологии выдачи изображения на проекционный экран

В октябрьском номере S&V за 2001 г. был опубликован первый обзор по технологиям работы систем отображения информации на больших экранах. Что изменилось с тех пор? Наш специальный корреспондент Елена Новикова, посетившая выставку InfoComm"2007 (17-18 июня, Анахейм, штат Калифорния, США), а также постоянный автор Stereo&Video Валерий Самохин рассказывают о новинках проекционных технологий.

Почти все современные видеопроекторы сегодня реализуются по жидкокристаллической (ЖК) или микрозеркальной (DLP) технологии. Почти одновременно, около двух пет назад, были разработаны жидкокристаллические матрицы и микрозеркальный чип DMD (Digital Micromirror Device) DC3 с разрешением FullHD (1920x1080) соответственно компаниями Epson и Texas Instruments. Сегодня ЖК- и DLP-проекторы с таким разрешением выпускаются примерно в одинаковых пропорциях. В секторе проекторов с разрешением выше Full HD большое численное преимущество имеют DLP-аппараты. Однако нельзя утверждать, что микрозеркальная технология одержит когда-либо окончательную победу. Существенный прогресс достигнут и в ЖК-технологии благодаря созданию новых панелей с модуляцией пропускаемого (LCD) и отражаемого (D-ILA, LCOS, SXRD) светового потока, в том числе с разрешением 4К (4096x2160). Таких DMD-чипов пока нет.

Видеопроекторы с модуляцией пропускаемого светового потока
Оптическая схема LCD-проектора показана на рис. 1. Он содержит источник света 1 с охлаждаемым отражателем и дуговой лампой, металлогалогенной (МГЛ) или ксеноновой, оптические фильтры 2, не пропускающие инфракрасное (ИК) и ультрафиолетовое (УФ) излучение, конвертер поляризации 3, дихроичные зеркала 4 и 5, разделяющие световой поток на составляющие первичных цветов В, G, R, и зеркала 6 с внешними покрытиями, отражающими почти 100% попадающего на них света. Корректирующие светофильтры 7 (Trim Filters) обеспечивают точность разделения цветов. Пройдя фильтры 7, составляющие R, G и В попадают на соответствующие ЖК-панели 8, которые модулируют их по интенсивности в соответствии с отображаемыми видеосигналами и пропускают на смесительную призму 9. Здесь они собираются вместе и далее проецируются объективом 10.

Рис. 1. Оптическая система LCD-проектора
Основным недостатком ЖК-проекторов с модуляцией пропускаемого светового потока считается невозможность получения глубины черного, т.е. высокой контрастности изображения. Действительно, при использовании модуляторов классической технологии TN (Twisted Nematic) этот недостаток есть. Обусловлен он тем обстоятельством, что такие модуляторы нормально открыты (пропускают свет в обесточенном состоянии). Получается это благодаря уникальной способности прозрачных, нитевидных молекул TN ориентироваться в тонком слое вдоль профилирующих канавок контактирующих с ними поверхностей и относительно друг друга в закрученном состоянии, а также вдоль воздействующего на них электрического поля. Как показано на рис. 2, молекулы TN находятся между скрещенными поляризаторами, а их исходная ориентация задана плоскостями поляризации скрещенных поляризаторов. При воздействии возрастающего электрического поля Е, направление напряженности которого перпендикулярно поверхности модулятора, молекулы TN начинают ориентироваться вдоль него, все менее закручиваясь. При напряженности Е выше определенной величины они перестают влиять на поляризацию света, и его прохождение через пиксели прекращается. Проблемы здесь заключаются в нелинейности и неодинаковости характеристик управления прозрачностью пикселей, особенно по достижению их полного запирания. Из-за невозможности полностью перекрыть пропускание света всеми пикселями при подаче одинаковых, но небольших управляющих напряжений, черное поле, проецируемое ЖК-проекторами с такими модуляторами, в затемненном помещении часто воспринимается серым.
На первом этапе совершенствования ЖК-проекторов с указанным недостатком мирились, и основное внимание уделялось увеличению светового потока, что решалось созданием более эффективных источников света и светооптических систем проецирования в целом. Например, большие потери были из-за того, что обесточенные TN-модуляторы пропускают только 50% света (одну составляющую проходящего светового потока со случайной поляризацией), поглощая (превращая в тепло) ортогональную составляющую. Поэтому в ЖК-проекторы стали вводить конвертеры поляризации, преобразующие теряемую составляющую в полезную. Были разработаны также микролинзовые растры (MicroLens Array, MLA), устанавливаемые непосредственно перед TN-модуляторами. Каждая ячейка такого растра фокусирует свет, проходящий через соответствующий пиксель, так, чтобы он не заслонялся непрозрачной поверхностью подложки, занимаемой в пикселе управляющим полевым транзистором.
Особое внимание уделено защите ЖК-модуляторов от ИК- и УФ-излучения дуговых ламп, способного повредить пленки и другие, используемые в них компоненты. В схеме на рис. 1 используется два таких фильтра (2). Один из них отражает ИК-излучение, а другой - блокирует прохождение ультрафиолета в канал синего. Защитные фильтры 2 типа Oerlikon UV-Guard™ характеризуются высокой стабильностью и не затрагивают цвета видимой части спектра.
В борьбе за повышение контрастности было разработано несколько ЖК-модуляторов других технологий. Например, фирмами Hitachi и NEC была разработана технология In-Plane-Switch (IPS), сущность которой поясняется на рис. 3. Здесь ориентация молекул TN всегда находится в плоскости, параллельной поляризаторам, и при отсутствии управляющего напряжения IPS-пиксель не пропускает свет, т.е. является нормально закрытым (черным). Для этого профилирующие канавки, контактирующие с молекулами TN, и сборка ЖК-модулятора IPS производятся так, чтобы его поляризаторы оказались скрещенными с учетом дополнительного сдвига плоскости поляризации, создаваемого из-за естественного закручивания молекул TN. Под действием управляющего напряжения молекулы начинают ориентироваться вдоль электрического поля, поворачиваясь в той же плоскости, и при их повороте на 90° светопропускание достигает максимума (белый). Технологии IPS и ее модификация S-IPS, разработанная совместным предприятием LG-Philips, широко применяются в ЖК-дисплеях и телевизорах.
ЖК-проекторы с модуляцией пропускаемого светового потока постоянно попадают на тестирование в нашу лабораторию, завоевывая призы по результатам тестирования. К ним относится модель Mitsubishi LVP-HC5000 с разрешением 1920x1080 (см. №5"07).

Видеопроекторы с модуляцией отражаемого светового потока

Видеопроекторы технологии D-ILA (Digital-Image Light Amplifier). Оптическая схема одного канала D-ILA показана на рис. 4. Одним из его компонентов является специальное зеркало, расположенное по диагонали узла поляризатора-анализатора. Это зеркало является поляризационным фильтром PBS (Polarized Beam Splitter), выполняющим функции входного и выходного поляризаторов просветных ЖК-панелей. При падении света под углом 45° его составляющая с поляризацией вдоль поверхности зеркала пропускается, а составляющая с ортогональной поляризацией отражается и направляется на ЖК-панель (модулятор) перпендикулярно ее поверхности. Модулятор возвращает свет с внесением сдвигов поляризации в соответствии с управляющими напряжениями на пикселях. Теперь зеркало PBS выполняет функцию анализатора и пропускает модулированную составляющую светового потока в объектив, а исходную в источник света.
Так как при отсутствии управляющих напряжений световой поток на выход указанного оптического канала не поступает, он является нормально закрытым. Это определило особую структуру (Vertical Alignment) расположения пикселей у таких модуляторов, условно показанную на рис. 5 вместе с управляющей характеристикой. На рис. 5 видно, что в обесточенном состоянии молекулы ЖК ориентированы перпендикулярно плоскости модулятора и не влияют на поляризацию отражаемого им светового потока. При увеличении управляющего напряжения (Driving Voltage) выше порогового значения молекулы ЖК начинают поворачивать плоскость поляризации падающего на модулятор светового потока, и в отраженном световом потоке (Light Output) появляется модулированная ортогональная составляющая Р, пропускаемая зеркалом-поляризатором проектора на экран. При дальнейшем увеличении управляющего напряжения эта составляющая светового потока достигает максимума.
У отражающих ЖК-модуляторов, кроме меньших тепловых потерь, есть и другие преимущества. Здесь матрица управляющих полевых транзисторов не занимает пространства в жидкокристаллическом слое, а расположена за ним на подложке с электроникой. За счет этого достигается увеличение разрешения и поверхности зеркальных электродов. В результате удается одновременно увеличить и яркость изображения. Вместе с тем, их управляющая характеристика нелинейная, что должно компенсироваться коррекцией амплитудной характеристики канала изображения проектора.
Пока высшим достижением технологии D-ILA является проектор JVC DLA-QX1 с разрешением 2048x1536. Будем надеяться, что скоро появится новинка JVC QHDTV с разрешением 4К, параметры которой были анонсированы на выставке lnfoComm"2006 и повторены на lnfoComm"2007.

Видеопроекторы технологии LCOS (Liquid Crystal on Silicon). Оптическая схема этих проекторов аналогична D-ILA и приведена на рис. 6. Здесь световой поток источника света 1, пройдя защитный ИК-фильтр 2 и конвертер поляризации 3, сначала разделяется цветоделительным узлом 4 на R+G (желтую) и В (синюю) составляющие.

Рис. 6. Оптическая схема проектора LCOS
Далее эти составляющие, отражаясь от соответствующих зеркал 5 и пройдя корректирующие светофильтры 7, попадают на PBS-блоки 8. При этом составляющая R+G предварительно разделяется дихроичным зеркалом 6 на красную (R) и зеленую (G) компоненты. Фильтрованные компоненты R, G и В поступают на соответствующие модуляторы 9 и, отражаясь от них, снова в блоки 8 и затем в смесительную призму 10. Здесь они суммируются и, отражаясь от зеркала 5, попадают в объектив 10.
К высшим достижениям жидкокристаллической технологии относятся проекторы Sony SRXR105 и SRXR110 технологии SXRD (Silicon X-tal Reflective Display) с разрешением 4К (4096x2160), временем отклика менее 5 мс и световыми потоками 5000 и 10000 лм соответственно. Они оснащены ксеноновыми лампами и отражающими модуляторами формата 1,85:1 с размерами пикселей и расстояний между ними 8,5 мкм и 0,35 мкм соответственно.
Кстати о времени отклика (Time Response). Часто, сравнивая LCD с кинескопными (CRT) телевизорами, говорят о низком быстродействии LCD как об основном их недостатке. При этом забывают о том, что быстродействие CRT-телевизоров не лучше, а хуже чем у современных LCD. Хорошо известно, что яркость изображения и отсутствие заметного мерцания на экране CRT-телевизоров обеспечивается благодаря послесвечению люминофоров его покрытия, которое принципиально должно быть около 20 мс.
ЖК-проекторы с модуляцией отражаемого светового потока также тестировались в лаборатории S&V. В частности, модели Sony VPL-VW100 (награда EISA 2006-2007 "Лучший видеопроектор класса High End", см. № 9"06) и JVC DLA-HD1 продемонстрировали явное преимущество в контрастности изображения по сравнению с видеопроекторами других технологий. Причем DLA-HD1 выиграл соревнование у проектора Sony VPL-VW50 технологии SXRD (см. №6"07).

Микрозеркальные проекторы (Digital Light Processing, DLP)
Технология DLP разработана фирмой Texas Instruments (TI), и серийные модели этих проекторов появились 10 лет назад. Самые яркие из них содержат три DMD-чипа и выполнялись по оптической схеме, показанной на рис. 7.
Здесь световой поток, создаваемый источником света, пройдя систему с конденсором, тепловым фильтром, зеркалами и призмой полного внутреннего отражения, поступает на комбинированную цветоделительную призму, выделяющую из него составляющие первичных цветов и направляющую их на поверхности DMD соответствующих каналов. Эти составляющие модулируются чипами, отражаются и объединяются комбинированной призмой в общий световой поток, поступающий в проекционный объектив.
Чип DMD представляет собой световой модулятор, состоящий из матрицы поворотных алюминиевых зеркал размером 16x16 мкм, количество которых соответствует оптическому разрешению проектора. Зеркала крепятся на подложке с помощью механических подпружиненных подвесов, позволяющих им поворачиваться в пределах ±10 градусов (±12° у современных моделей), как показано на рис. 8. В зависимости от управляющих напряжений каждое зеркало может занимать крайние положения "включено" или "выключено". В первом случае отраженный зеркалом свет попадает в оптическую систему объектива, а во втором поглощается. Время переключения состояний зеркал не превышает 2 мкс, и их положение управляется широтно-импульсной модуляцией с частотой полей. Уровень цветовых составляющих светового потока определяется относительным временем нахождения зеркал во включенном положении на интервале каждого телевизионного поля, длительность которого подвергается 10-разрядной дискретизации. Воспринимаемая подсознанием цветность определяется способностью зрения усреднять мгновенные яркости и цветовые оттенки всех пикселей экранного изображения. Для того, чтобы это получалось лучше, применяется увеличение частоты коммутации пикселей путем преобразования длинных импульсов в совокупность более коротких той же продолжительности.
Трехчиповые DLP-проекторы доминируют на рынке оборудования для цифровых кинотеатров. Почти все они имеют разрешение 2К, а световой поток самых ярких из них составляет 30000 лм. Три года назад появился трехчиповый проектор InFocus ScreenPlay 777 (2000 лм, 1280x720), предназначенный для домашнего кинотеатра. Заметного распространения на мировом рынке такие проекторы не получили, поскольку ЖК- и одночиповые DLP-проекторы с разрешением 1920x1080 оказались гораздо дешевле.

Микрозеркальные проекторы с одним DMD. Нагрузка на зрение возрастает при просмотре изображений от DLP-проекторов с одним DMD-чипом. Здесь глазам приходится делать, кроме высокочастотного усреднения яркости, низкочастотное усреднение цветности, так как изображение на всем экране появляется последовательно в первичных цветах. Почти все одночиповые DLP-проекторы оснащаются вращающимся светофильтром (ColorWheel), который в первых моделях содержал 3 цветных сектора и вращался с частотой 60 Гц, т.е. 3600 об./мин Модели с такими светофильтрами называются DLP-проекторами с однократной скоростью фильтра. При этом частота мелькания цветов составляет 180 Гц, что оказалось недостаточным для исключения зрительных артефактов и усталости зрения, возникающей при длительных просмотрах мелькающих изображений.
Хорошо известный зрительный артефакт одночиповых DLP-проекторов получил название эффекта "радуги". Этот эффект проявляется в том, что зритель с хорошей быстротой зрения иногда видит вместо однотонно окрашенных фрагментов изображения чередующиеся вспышки основных цветов на них. Обычно такие вспышки становятся заметными в процессе перевода зрения на фрагменты изображения, расположенные на большом расстоянии друг от друга. В современных DLP-проекторах с одним DMD частота вращения фильтра увеличена, и его стали выполнять с шестицветными секторами, что уменьшило Заметность мельканий и эффекта "радуги". Недавно фирмой TI разработан ColorWheel с шестью секторами, чередующимися в основных и дополнительных цветах, и технология BrilliantColor, обеспечивающая формирование высококачественных видеосигналов для DLP-проекторов с такими светофильтрами.
Оптическая схема DLP-проектора с трехсекторным ColorWheel показана на рис. 9а. Ее особенностью является фирменный светотехнический узел Oerlikon LightTunnel™, обеспечивающий при малых габаритах высокую пылезащищенность и минимальные потери света за счет применения высокоэффективных внутренних покрытий Silflex™ и Deflex™.
Несколько другая оптическая схема, показанная на рис. 9б, применяется в проекционных дисплеях и телевизорах (RPTV) с просветными экранами. Такая продукция благодаря меньшей цене и простоте обслуживания тем успешнее конкурирует с большеэкранными LCD- и PDP-дисплеями, чем меньше толщина конструкции. Поэтому у них используются короткофокусные объективы, специальные просветные экраны и другие ухищрения, уменьшающие габариты оптической системы по толщине, например, призма полного внутреннего отражения Oerlikon LightGate™ 7б (рис. 9б).
Первой 60-дюймовый тонкий DLP-дисплей (толщина 26 см, разрешение 1024x768) стала выпускать японская корпорация Mitsibishi четыре года назад (модель DDP60). За ней последовала американская фирма InFocus, которой удалось уменьшить толщину широкоформатных RPTV с разрешением 1280x720 до 17,4 см! Фирмы JVC и Sony недавно начали выпускать 70-дюймовые жидкокристаллические RPTV с разрешением 1920x1080 технологий D-ILA и SXRD соответственно.

Рис. 10. Схема проектора ProjectionDesign Action! Model Three 1080
Разновидностями DLP-проекторов с одним DMD-модулятором являются модели со светофильтром ColorWheel, содержащим дополнительный, прозрачный сектор. Очевидно, применение фильтра ColorWheel с прозрачным сектором увеличивает световой поток проектора, но за счет уменьшения цветовой насыщенности изображения. Заметим, что работы по совершенствованию конструкции продолжаются. В частности, предлагаются новые разновидности светофильтра ColorWheel и все более совершенные оптические системы в целом. Например, новинкой, реализованной в проекторе Action! Model Three 1080 норвежской фирмы ProjectionDesign, является показанная на рис. 10 схема с двумя дуговыми лампами, светофильтрами ColorWheel и сдвоенным LightTunnel.
Одночиповые DLP-проекторы в целом не менее успешно показывают себя на тестированиях, чем жидкокристаллические. Приз симпатий редакции получили лучший видеопроектор EISA 2006-2007 InFocus IN76 и модель BenQ РЕ7700 (см. №9"06 и №11 "06). Кроме того, на равных с ЖК-проекторами HDTV выступила модель SIM2 НТ3000 (см. № 12"06).

Видеопроекторы с полупроводниковыми источниками света
Какие бы технологии модуляции светового потока ни изобретались, очевидно, главную роль в проекционной аппаратуре играет источник света. Так как сегодня почти исчерпаны ресурсы повышения эффективности дуговых ламп, все больше внимания уделяется альтернативным источникам света. К ним относятся мощные светодиоды (Light Emitting Diode, LED) и лазеры, которые превосходят дуговые лампы по ресурсу и спектральной стабильности светового потока.

Отличие полупроводникового лазера от светодиода

Принципиальным отличием полупроводникового лазера от светодиода является наличие в p-n-структуре лазера оптического резонатора, зазор между образующими зеркалами которого равен длине волны излучения X, причем выходное зеркало резонатора полупрозрачно. В светодиодах носители заряда p и n рекомбинируют самопроизвольно (спонтанно), и возникающее при этом излучение занимает довольно широкую полосу частот. Лазерное излучение имеет вынужденный характер и возникает при очень большой плотности тока накачки (смещения p-n-структуры в проводящем направлении), исключающей спонтанную рекомбинацию носителей. При этом квант света, пролетая от одного зеркала к другому и обратно, вынуждает излучение таких же вторичных квантов, т.е. происходит усиление света. Кванты спонтанного излучения испускаются в случайных направлениях, а квант вынужденного излучения испускается в том же направлении, что и квант, вызвавший это излучение, то есть оба кванта тождественны. В идеале лазер должен создавать монохроматическое излучение, но на практике этого добиться довольно трудно.


Светодиодная проекция. Светодиоды особо интересны для разработчиков DLP-проекторов, так как позволяют создавать модели с одним DMD без светофильтра ColorWheel. Первый светодиодный DLP-проектор появился в 2005 г.
Рис. 11. Проектор Mitsubishi РК20
Это была модель Mitsubishi РК10, открывшая категорию Pocket самых маленьких проекторов, способных обслуживать экран диагональю до 60 дюймов. Источниками света у РК10 служили три мощных светодиода серии LumiLEDS® с ресурсом 10000 часов и последовательным чередованием цветов. В дальнейшем появились аналогичные проекторы других производителей, например, Box-light, Samsung и Toshiba. На выставке CES"2007 фирмой Mitsubishi был продемонстрирован модифицированный PocketProjector РК20 (рис. 11, световой поток 25 лм, разрешение 800x600, размеры 123x97x48 мм, масса 500 г). В качестве источников света у РК20 использована сборка из 8 светодиодов. Панель разъемов проектора допускает подключение любых источников информации, в том числе карты памяти SD. Предусмотрена комплектация проектора внешним аккумулятором, способным поддерживать работу проектора в течение 2 часов. Потребляемая светодиодами мощность составляет 23 Вт, а проектором в целом - 37 Вт.
Оптическая схема светодиодного DLP-проектора приведена на рис. 12. Здесь роль источников света выполняют светодиоды 1 с рефлекторами 2, последовательно излучающие световые потоки первичных цветов R, G и В. Совмещение оптических осей излучений светодиодов обеспечивается юстировкой двух дихроичных зеркал 3. Далее, отражаясь от зеркала 4, эти потоки через оптический конденсор 5 последовательно попадают на DMD-модулятор 6, после чего объективом 7 проецируются на экран. Принципиально эта схема выглядит более эффективной, чем у DLP-проекторов (рис. 9). Действительно, здесь нет фильтра ColorWheel и меньше других оптических компонентов с неизбежными световыми потерями. Кроме того, ColorWheel с любым секторным делением в светодиодных проекторах можно легко реализовать введением программного чередования цветов и даже сделать такие программы выбираемыми пользователем по критерию минимальной утомляемости при просмотре.
Рис. 13. ЖК-проектор Sony
В прошлом году компания Sony продемонстрировала самый миниатюрный на тот момент светодиодный ЖК-проектор (рис. 13). Его световой поток 50 лм создается блоком излучателей, содержащим 14 светодиодов (4 красных, 4 синих и 6 зеленых) мощностью 20 Вт при общем энергопотреблении проектора 30 Вт. Получается, что реальная световая отдача светодиодного проектора примерно 2,5 лм/Вт, что как минимум на порядок меньше световой отдачи светодиодов и существенно меньше, чем у лучших проекторов с дуговыми лампами (порядка 10 лм/Вт). Впрочем, Pocket-проекторы находятся на начальной стадии их развития. Можно ожидать, что этот показатель скоро будет улучшен совершенствованием оптики блока излучателей, которая должна собирать и направлять в оптическую систему проектора по возможности весь световой поток, создаваемый светодиодами.

Лазерная проекция. Использование полупроводниковых лазеров для проекции изображений в настоящее время считается одним из самых перспективных. В их пользу говорит более широкая гамма отображаемых цветов и длительный (десятки тысяч часов) срок службы с неизменной световой отдачей. Кроме того, изучаемый лазерами свет имеет круговую поляризацию, которая просто и с высоким КПД может быть преобразована в линейную, что позволяет исключить из ЖК-проекторов конвертеры поляризации и упростить конструкцию в целом.
Оптическая схема лазерного DLP-RPTV и дисплея приведена на рис. 14. Здесь в качестве источников света 1 используются полупроводниковые лазеры типа Oerlikon OLM™ 3000 красного (615,25 нм), зеленого (532,5 нм) и синего (465 нм) цветов с излучаемой мощностью по 3 Вт. Эти излучения поступают на дифракционные формирователи 2 (Diffractive Beam Shapers, DBS), обеспечивающие равномерность излучений по их сечениям. Далее они отражаются и совмещаются дихроичными зеркалами 3 и, отражаясь от зеркала 4, преобразуются оптическим компонентом 5 в широкий пучок лучей, соответствующий апертуре DMD-модулятора 6, а модулированный им свет отражается и проецируется объективом 7 на просветный экран дисплея.
Известно, что глаз человека обладает максимальной спектральной чувствительностью для зеленого света, и что 1 Вт мощности однородного энергетического потока с длиной волны зеленого излучения 555 нм в Международной системе единиц СИ эквивалентен световому потоку 683 лм. Расчеты показывают, что равно-энергетическое излучение белого света мощностью 1 Вт с учетом спектральной чувствительности зрения к основным цветам RGB, принятым Международной комиссией по освещению (МКО), соответствует световому потоку 250 лм. Следовательно, световой поток, излучаемый диодами 1 (рис. 14) мощностью по 3 Вт, соответствует 750 лм, что достаточно для получения яркости 250 кд/м2 40-дюймового просветного экрана, но без учета потерь энергии на оптических компонентах 2-7 схемы и самом экране (данные по их КПД не публикуются).
Американская компания Novalux разработала технологию производства мощных лазерных источников света оптического диапазона NECSEL (Novalux Extended Cavity Surface Emitting Laser), построенных на принципе удвоения на нелинейных кристаллах частоты излучения мощного инфракрасного лазера. Утверждается, что ресурс работы излучателей превышает 50 тыс. часов без снижения выходной мощности и изменения длины волны излучения в видимом диапазоне, а прогнозируемая цена трехцветного лазерного излучателя при производстве 1 млн штук в год - менее 100 долларов. Красный, зеленый и синий цвета могут быть реализованы в едином блоке излучателей (рис. 16).

Рис. 15. Лазер OLM 3000
Первый образец лазерного телевизора был изготовлен австралийской фирмой Arasor, занимающейся оптоэлектроникой, путем доработки 52-дюймового RPTV Mitsubishi, содержащего одночиповый DLP-проектор. Доработка свелась к введению в проектор лазерного источника света Novalux и использованию в телевизоре оптических компонентов Arasor. В октябре прошлого года модифицированный телевизор был продемонстрирован вместе с PDP-аналогом, показав явные преимущества по яркости изображения и чистоте цветов. Первый лазерный DLP-телевизор без светофильтра СоlorWheel на излучателях NECSEL продемонстрировала компания Mitsubishi Electric на выставке CES"2007. По утверждению фирмы, этот 52-дюймовый RPTV обеспечивает яркость 500 кд/м2, контрастность 4000:1 и имеет лучший показатель цена/качество, чем плазменные дисплеи. На той же выставке Sony продемонстрировала прототип лазерного HD-телевизора (55", 1920x1080, толщина 27 см). На выставке lnfoComm"2007 Mitsubishi анонсировала 62-дюймовый HD-телевизор с толщиной, сравнимой с толщиной плазменных дисплеев, и прогнозируемой ценой $3000. Словом, процесс пошел...
Отметим также, что идея применения микропроекторов на лазерах уже поддержана производителями аппаратуры PDA (Personal Digital Assistant) и сотовых телефонов. Уже появились лазерные пикопроекционные DLP-модули для встраивания в такую продукцию, например, фирм Texas Instruments и Motorola.
Началась эта революция с появления на выставке CES"2007 интересной разработки израильской фирмы ExPlay под названием Nano-Projector. Его особенностью является использование гибридного источника света, содержащего лазерные и светодиоды. Далее световой поток через дифракционные формирователи DBS, обеспечивающие равномерность излучения, поступает на корректирующий оптический компонент Despeckling Devise, устраняющий Заметность так называемых "спеклов" - гранулированной структуры изображения, создаваемого интерферирующими когерентными пучками лазерных излучений.
Рис. 16. Схема DLP-проектора по версии Novalux
Сформированный таким образом равномерный световой поток белого света проходит цветной, просветный ЖК-модулятор ASML (Advanced Spatial Light Modulator) с максимальным светопропусканием 60% и проецируется объективом (Lens). Дистанция наводки на резкость фиксирована и равна гиперфокальному расстоянию этого объектива, что без дополнительной фокусировки обеспечивает резкость проецируемого изображения, размеры которого по диагонали могут быть от 7 до 30 дюймов (зависит от проекционного расстояния). Совместимость нанопроектора с различными системами представления отображаемой информации обеспечивается специализированным микропроцессором Mixed Signal ASIC (Application Specific Integrated Circuit) с 40-контактным интерфейсом. Еще одним достоинством разработки ExPlay является применение жидкокристаллического модулятора, формирующего абсолютно безвредное для зрения изображение при модуляции источника света, спектр которого близок к солнечному. В данном случае это не совсем так из-за наличия в спектре лазерной составляющей (и совсем не так у лазерных DLP-проекторов, особенно с одним DMD).

Проблемы и перспективы.
Лазерные дисплеи почти по всем показателям превосходят аналогичную продукцию с источниками света других типов. Это следует из уже достигнутых результатов и из таблицы (

Проекционный аппарат/ проектор (от латинского projicio — бросаю вперед) — оптекомеханический прибор для проецирования на экран увеличенных изображений различных объектов.

Первый проектор изобрел немецкий физик и математик Афанасий Кирхер в 1640г., назвав свой аппарат «волшебный фонарь». Аппарат, в котором источником света служила свеча, позволял создавать на экране теневые проекции изображения людей, животных или предметов, вырезанных из картона.

Современные проекционные аппараты проецируют на экран изображения с экрана монитора и подключаются к ПК. В компьютерных проекторах в качестве источника проецируемого изображения используется специальный электронно-управляемый модулятор, на который подается сигнал от видеоадаптера ПК. Модулятор используется в качестве управляемого светофильтра, модулирующего световой поток от проекционной лампы.

Конструкции и принципы действия модуляторов отличаются большим разнообразием, хотя в основном они построены на базе ЖК-панелей.

В мультимедийном проекторе проекционная лампа, ЖК- матрица и оптическая система конструктивно размещаются в одном корпусе, что делает их похожими на диапроекторы, предназна­ченные для просмотра слайдов или диафильмов.

По принципу действия мультимедийный проектор не отличается от оверхед-проектора: изображение создается с помощью мощной проекци­онной лампы и встроенного в проектор электронно-оптического модулятора, управляемого сигналом видеоадаптера ПК, а затем посредством оптической системы проецируется на внешний эк­ран. Основным отличием в мультимедийных проекторах является конструкция модулятора и способы построения и переноса изоб­ражения на экран.

В зависимости от конструкции модулятора про­екторы бывают следующих типов:

  • TFT-проекторы;
  • полисилико­новые проекторы
  • DMD/DLP-проекторы.

В зависимости от способа освещения модулятора мультимедий­ные проекторы подразделяют на проекторы просветного и отражательного типов .

TFT-проекторы

В TFT -проекторах , относящихся к проекторам просветного типа, в качестве модулятора используется малогабаритная цветная ак­тивная ЖК – матрица, выполненная по технологии TFT. Принцип действия мультимедийного TFT-проектора просветного типа ил­люстрирует рис. 1.

Основным элементом установки является миниатюрная ЖК- матрица , выполненная по технологии TFT, как и ЖК-экран плос­копанельного цветного монитора . Равномерное освещение поверх­ности ЖК-матрицы достигается за счет применения системы линз, называемой конденсором.

Полисилико­новые проекторы

Полисиликоновые мультимедийные проекторы также относятся к проекторам просветного типа и применяются в том случае, когда необходимо получить более яркое изображение. В них используется не одна цветная TFT-матрица, а три монохромных миниатюр­ных ЖК-матрицы размером около 1,3″ . Каждая из матриц форми­рует монохромное изображение красного, зеленого или синего цвета. Оптическая система проектора, как показано на рис. 2, обеспечивает совмещение трех монохромных изображений, в результате чего формируется цветное изображение. Такая техноло­гия получила название полисиликоновой (p Si ) . Каждый элемент полисиликоновой матрицы содержит только один тон­копленочный транзистор, поэтому его размер меньше, чем раз­мер элемента TFT-матрицы, что позволяет повысить четкость изображения .

Цветоделителъная система полисиликонового проектора , со­стоящая из двух дихроичных (D 1 D 2 ) и одного обычного (N 1) зеркал (рис.2), используется для разложения белого света проекционной лампы на три составляющие основных цветов (красный, зеленый, синий).

Цветоделение необходимо выполнить для того, чтобы подать на каждую из трех монохромных матриц световой поток соот­ветствующего цвета. Дихроичное (цветоделительное) зеркало пропус­кает свет только одной длины волны (один цвет) и представляет собой хорошо отполированную стеклянную подложку с нанесен­ной на него тонкой пленкой из диэлектрического материала.

Система цветосмешения полисиликонового проектора состоит из двух дихроичных (D 3 D 4 ) и одного отражающего (N 2 ) зеркал и служит для получения цветного изображения путем наложения одного на другой трех монохромных изображений, создаваемых соответствующими ЖК -матрицами.

Полисиликоновые проекторы обеспечивают более высокое качество изображения, яркость и насыщенность цветов по сравнению с проекторами на основе TFT-матриц . Они более надежны в работе и долговечны , поскольку три ЖК-матрицы работают в менее напряженном тепловом режиме, чем одна. Благодаря этому поли­силиконовые проекторы можно использовать при проецировании изображения на большой экран в таких помещениях, как конфе­ренц-залы, кинотеатры.

DMD/DLP-проекторы

ЖК-проекторы отражательного типа предназначены для рабо­ты в больших аудиториях и отличаются по принципу действия: модуляции подвергается не проходящий, а отраженный световой поток.

В настоящее время наиболее используемой в конструкциях ЖК-проекторов отражательного типа является технология DMD/DLP , разработанная фирмой Texas Instruments .

В DMD / DLP -проекторах отражательного типа излучение ис­точника света модулируется изображением при отражении от мат­рицы.

В DMD/DLP-проекторах в качестве отражающей поверхно­сти используется матрица, состоящая из множества электронно — управляемых микрозеркал, размер каждого из которых около 1 мкм . Каждое микрозеркало имеет возможность отражать падаюший й него свет либо в объектив, либо в поглотитель, что определяется уровнем поданного на него электрического сигнала. При попадании света в объектив образуется яркий пиксел экрана, а в поглотитель — темный. Такие матрицы обозначаются аббревиатурой DMD(Digital Micromirror Device- цифровой микрозеркальный прибор) , а технология, на которой основан их принцип действия, - DLP (Digital Light Processing - цифровая обработка света).

Как правило, в одной DMD-матрице содержится около 848 х 600 = 508 800 микрозеркал, что превосходит SVGA-разрешение (800×600 = 480 000 пикселов).

Для получения цветного изображения используются проекто­ры двух вариантов: с тремя или одной DMD-матрицей.

Трехматричный проектор , схема которого дана на рис. 3, по способу формирования цветного изображения аналогичен полисиликоно­вому (см. рис. 2).

В одноматричных DMD/DLP-проекторах полный цветной кадр формируется в результате последовательного наложения трех бы­стро меняющихся монохромных кадров: черно-красного, черно-зеленого и черно-синего. Смена монохромных кадров на экране незаметна благодаря инерционности человеческого зрения. Мо­нохромные кадры образуются при последовательном освещении DMD-матрицы лучом красного, зеленого и синего цветов. Луч каждого цвета образуется за счет пропускания светового потока г проекционной лампы через вращающийся диск с красным, зеленым и синим светофильтрами, как это показано на схеме одноматричного проектора (рис. 4). Управление микрозеркалами синхронизировано с поворотом светофильтра.

Схема одноматричного отражательного мультимедийного проектора

По сравнению с ЖК-технологиями технология DLP обладает следующими преимуществами:

  • практически полным отсутствием зернистости изображения,
  • высокой яркостью и равномерностью ее распределения.

К недостаткам одноматричных DMD-проекторов следует отнести заметное мелькание кадров.


Wikimedia Foundation . 2010 .

Смотреть что такое "Проектор (устройство)" в других словарях:

    У этого термина существуют и другие значения, см. Проектор (математика). Проекционный экран в домашнем кинотеатре … Википедия

    проектор - ▲ оптическое устройство для (чего), воспроизвести, изображение, в (направлении), экран проектор аппарат для проецирования на экран изображений с оригиналов. проецировать. проекционный (# изображение). проекционный фонарь. волшебный фонарь.… … Идеографический словарь русского языка

    Устройства вывода периферийные устройства, преобразующие результаты обработки цифровых машинных кодов в форму, удобную для восприятия человеком или пригодную для воздействия на исполнительные органы объекта управления. Содержание 1… … Википедия

    Устройство, проецирующее на экран изображение, созданное одной или несколькими жидкокристаллическими матрицами. Механической основой LCD (матрица на жидких кристаллах англ. liquid crystal display LCD) и reflective LCD проекторов является… … Википедия

    Aaxatech P1 Пико проектор проектор небольшого, карманного размера. Часто выполнен в форм факторе со … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

    LCoS (англ. Liquid Crystal on Silicon жидкие кристаллы на полупроводнике) технология получения изображения, используемая в проекторах. Является третьей по распространенности после технологий 3LCD (LCD), но занимает значительно меньшую долю рынка … Википедия

    Упрощенная схема ячейки LCoS матрицы. LCoS (англ. Liquid Crystal on Silicon жидкие кристаллы на кремнии) технология получения изображения, используемая в проекторах. Является третьей по распространенности после технологий DLP и 3LCD… … Википедия

    Звуковой проектор электронное устройство, акустическая система, предназначенная для имитации пятиканального звука. Для создания эффекта пятиканального звучания вместо пяти источников звука, ставится один, содержащий несколько динамиков.… … Википедия

    Безлинзовое устройство, создающее увеличенное изображение поверхности, эмитирующей электроны. Эмитированные катодом (в виде острия) электроны (автоэлектронная эмиссия) ускоряются сильным радиальным электрический полем и, попадая на внутреннюю… … Энциклопедический словарь

Книги

  • Проектор отдельной реальности. Практика Трансерфинга. Практический курс Трансерфинга за 78 дней. Трансерфинг реальности, ступень 1-5 (количество томов: 8) , . В комплект входят следующие книги. "Проектор отдельной реальности" . Людей можно разделить на два типа: Приемники и Трансляторы. Приемники потребляют чужую информацию, 171;смотрят чужое…

Для получения изображения объекта нам необходим как минимум сам объект и линза (или объектив, состоящий из нескольких линз, но работающий, как одна). Чтобы понять работу проектора, сначала вспомним курс физики. Основное свойство линзы заключается в следующем: все лучи, попадающие в линзу параллельно ее оптической оси, пройдя через линзу, сходятся в одну точку на оптической оси. Эта точка называется фокусом, а расстояние от центра линзы до этой точки -- фокусным расстоянием. Верно и обратное: любой луч, проходящий через фокус линзы и попадающий в линзу, покидает ее параллельно оптической оси. Кроме того, любой луч, проходящий через центр линзы, сохраняет свое направление.

Смотрим на схему:

Имеем объект O , находящийся за фокусом линзы (F ). Чтобы понять ход лучей, нам достаточно рассмотреть две крайние точки объекта (все остальные точки будут подчиняться той же схеме). Кроме того, при геометрическом построении достаточно рассмотреть всего по два луча для каждой точки (пунктирные линии): один проходящий через центр линзы, другой -- параллельно оптической оси. Каждая пара лучей, проходящие от объекта через линзу, пересекаются с другой стороны на расстоянии, большем удвоенного фокусного расстояния линзы. При этом все остальные лучи (сплошные линии), исходящие от объекта, пересекутся там же. В месте пересечения лучей и будет сформировано изображение объекта O" , причем изображение будет перевернуто и увеличено. Для того, чтобы его увидеть, нужно в эту точку поместить экран.

Для нашего проектора схема с учетом пропорций компонентов будет иметь примерно следующий вид (пунктирные линии -- не реальные лучи, а используются только для геометрического построения) :

Для того, чтобы получить яркое изображение, объект должен излучать свет. В нашем случае объект излучать свет не может, зато в наших силах его подсветить, установив за объектом лампу. В обычных кинопроекторах лампа освещает кинопленку, в нашем случае проецируемым объектом является матрица (панель) от LCD монитора. Подробнее о матрице см. соответствующий раздел .

Если просто установить за объектом лампу, получим следующую картину:

Выходит, что в объектив попадает только часть лучей от лампы, проходящих сквозь панель. В итоге на экране мы получим лишь часть изображения. Чтобы этого избежать, используется вторая линза. Размер этой линзы должен быть не меньше размера панели.

Изготовить стеклянную выпуклую линзу такого размера практически нереально, а ее вес исчислялся бы десятками килограмм. Поэтому в проекторе используется плоская линза Френеля. В форуме и на этом сайте используется уменьшительно-ласкательно-жаргонное наименование "френель" (женского рода). Подробнее о линзе Френеля см. следующий раздел . Сейчас нам достаточно знать, что френель плоская, тонкая, но ведет себя, как обычная выпуклая линза. Установив френель между лампой и панелью, получаем вот что:

На этой схеме ход лучей несколько упрощен, подробнее см. в разделе оптика .

Если рассматривать в качестве источника света лампу (любой конструкции), приходится принимать во внимание, что свет излучается ей во все стороны практически равномерно. Наша задача -- собрать максимум светового потока на френели. Для этого используются два дополнительных элемента -- сферический отражатель и конденсорная линза.

Сферический отражатель устанавливается за лампой и отражает все лучи от лампы обратно. Строго говоря, он формирует зеркальное изображение лампы на самой лампе. Лампа при этом располагается в центре кривизны зеркала, т.е. на расстоянии от поверхности, равном радиусу кривизны сферы. Это расстояние, в свою очередь, равно удвоенному фокусному расстоянию сферического зеркала. При использовании галогенной лампы, где свет излучается непрозрачной нитью, это зеркальное отражение нити частично затеняется самой нитью. При использовании металлогалогенной лампы, в которой свет излучается электрической дугой, эффективность отражателя наиболее высока -- лучи проходят от отражателя сквозь дугу, фактически удваивая эффективный световой поток.

В правильности термина "конденсораная линза" я в данном случае не уверен. Кроме этого названия мне еще встречалось "менисковая линза". Если точно знаешь, как правильно, сообщи, исправлю.

Конденсорная линза -- это выпукло-вогнутая линза, устанавливаемая между лампой и френелью. Ее форма позволяет захватить более широкий пучок света от лампы (другими словами, увеличить телесный угол светового пучка), увеличивая таким образом яркость. Длина системы при этом также уменьшается. Конденсорные линзы ставятся во многих оверхед-проекторах. Отдельно достать конденсорную линзу довольно сложно.

Все рассматриваемые выше схемы являются, так сказать, линейными, т.е. все компоненты лежат на одной оси. Это наиболее простой, но наименее компактный вариант. Чтобы создать более компактный аппарат, можно использовать зеркала. Причем необходимы зеркала с внешним отражающим слоем, чтобы изображение не двоилось. Вот некоторые варианты использования зеркал:

Вопрос на сообразительность: что напоминает левая схема? Правильно, оверхед-проектор.

Итак, при строительстве проектора главная задача -- реализовать одну из вышеуказанных схем. А это значит, что необходимо изготовить корпус, раздобыть объектив, френель, матрицу, лампу, отражатель, конденсорную линзу (если получится), зеркала (если нужно), установить это все в корпус и обеспечить вентиляцию. Ну или не изготавливать корпус, если речь идет об использовании оверхед-проектора.

Просмотр кинофильмов дома на большом экране – это весьма распространенное желание. Но его реализация для большинства мечтателей ощутимо дорога. Иначе они просто купили бы либо проектор, либо телевизор. Но тем, кто разбирается в устройстве электроприборов, вполне по силам самостоятельно изготовить проекционное устройство для домашнего кинотеатра. Об этом и пойдет речь далее.

Немного теории

Для начала посмотрим на схему правильного проектора. Очевидно, что сделать такое устройство сможет не каждый. Хотя бы потому, что потребуется несколько точных и качественных оптических деталей заводского изготовления:

  • объектив;
  • линзы.

От них будет зависеть равномерность распределения света на экране. В объектив свет должен входить под правильным углом. При незнании оптических характеристик объектива и линз все расстояния можно определить опытным путем.

Источником изображения в проекционном устройстве служит матрица на жидких кристаллах. Они работают на просвет. Причем каждый пиксель на экране проецируется с увеличением размеров. Поэтому исходное изображение должно быть максимально четким. Чем больше пикселей, тем лучше. Так называемое FULL HD – это 1920×1080 пикселей. От яркости проекционной лампы будет зависеть максимальный размер экрана, на котором можно смотреть фильмы с приемлемой яркостью и контрастом.

Простейший проектор

Если читатель является обладателем смартфона или планшета с ярким экраном и разрешением, близким к FULL HD, а также мечтает о просмотре фильмов на большом экране, он может попробовать сделать простейший аппарат из коробки, линзы и своего гаджета. Коробка-корпус должна быть в любом поперечном сечении больше гаджета, а линза по диаметру соизмерима с размерами его экрана. Но от ее фокусного расстояния будет зависеть расстояние до экрана. Идея проста:

  • в коробке вырезается отверстие под линзу;
  • внутрь помещается гаджет, который можно приблизить или отдалить от линзы.

Гаджет устанавливается в оправку, которую удобно перемещать в коробке. Для оправки вполне подходящей заготовкой может служить другая коробка с меньшими размерами. Отражение света от стенок коробок должно быть минимальным. Для этого лучше всего обклеить поверхности черной бархатной бумагой для аппликаций. Либо покрасить черной матовой краской. Вместо краски можно применить густой черный обувной крем. Лучше всего проложить между стенками коробок направляющие, особенно при использовании бархатной бумаги. Они предохранят покрашенные поверхности от протирания.

Вот и весь проектор. Детали его смотрим на изображениях ниже.



Окрашенная коробка-корпус
Линза прикладывается к корпусу и обводится карандашом.
По линии от карандаша острым ножом вырезается отверстие.
В отверстие вставляется линза, которая приклеивается по контуру

Помещаем каретку внутрь коробки-корпуса и пользуемся проектором

Результат, который мы видим на экране, сильно зависит от размеров изображения на нем. Если размер уменьшить, яркость и четкость кадра улучшатся. Качество изображения в этом простейшем проекционном устройстве на уровне «это лучше, чем ничего». Но причина этого очевидна – необходима более высокая яркость источника изображения и дополнительная оптика.

Качественный самодельный проектор

Далее расскажем, как сделать проектор своими руками, соблюдая все требования. Начинать надо с разборки гаджета. Он разбирается с сохранением своей работоспособности так, чтобы жидкокристаллическая матрица экрана была доступна для просвечивания посторонним источником света. Если вы не можете этого сделать, значит, сборка такого проектора не для вас.



Используемые детали:

  1. плата источника питания светодиода;
  2. светодиод 100 Вт (преимущество имеет источник света с минимальными размерами);
  3. плата источника питания вентиляторов;
  4. плата управления вентиляторами;
  5. промежуточная линза;
  6. выходной объектив;
  7. пульт управления гаджетом через Wi-Fi;
  8. две промежуточные линзы Френеля;
  9. жидкокристаллическая матрица от гаджета.


Светодиод, смонтированный на радиаторе



Демонстрация эффективности линзы Френеля.
Промежуточная линза размещается между светодиодом и линзой Френеля для того, чтобы уменьшить потери света




Устранение искажений проекции подвеской матрицы с линзами с отклонением по горизонтали и вертикали

И вот результат проделанной работы. Расстояние до экрана 4 метра, диагональ кадра на экране 100 дюймов. Все хорошо видно.



На основе проектора для слайдов

Но существует и более простой путь для создания проектора. Для этого можно использовать проектор для слайдов, которые проецируются с листа бумаги формата А4 (оверхед-проектор). Поскольку вся оптика уже есть в наличии, остается приложить к ней только источник изображения. Им может стать матрица монитора. Его придется разобрать с сохранением работоспособности. Поскольку после установки матрицы в проектор монитор, как обычно, подключается к компьютеру. Лучше всего использовать проектор, который просвечивает слайд, а не использует отраженный свет.

Что получается в результате такой гибридизации монитора с проектором, показано на изображениях ниже.



Вот и все, что надо сделать. Если, конечно, у вас есть такой проектор. Какая видимость в результате получается на экране, демонстрирует изображение ниже.




Размеры и качество кадра на экране получаются очень хорошими. Причем существуют проекторы для проецирования небольших слайдов, которые соизмеримы с экраном смартфона. Они дешевле. Поэтому можно купить смартфон с битым экраном и неисправный проектор для его матрицы. А что должно получиться в результате, уже показано выше.