Надежный одноламповый сигнал-генератор. Стабильный диапазонный генератор

ЛАМПОВЫЙ ГЕНЕРАТОР

ЛАМПОВЫЙ ГЕНЕРАТОР

(Electron tube generator) - прибор, применяемый в радиотехнике для генерирования (получения) незатухающих колебаний с помощью электронной лампы. Л. Г. преобразует энергию постоянного тока в энергию переменного тока высокой частоты. Элементарная схема Л. Г.: трехэлектродная электронная лампа, колебательный контур, катушка связи и источник питания.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ЛАМПОВЫЙ ГЕНЕРАТОР" в других словарях:

    ламповый генератор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN tube generatorvalve generatortube oscillatorvacuum tube… …

    ламповый генератор - lempinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrinių virpesių generatorius, kuriame naudojama stiprintuvinė elektroninė lempa. atitikmenys: angl. tube generator; valve generator; valve oscillator vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    ламповый генератор - lempinis generatorius statusas T sritis fizika atitikmenys: angl. tube generator; valve generator; valve oscillator vok. Röhrengenerator, m; Röhrenoszillator, m rus. ламповый генератор, m pranc. générateur à lampes, m; générateur à tube… … Fizikos terminų žodynas

    ламповый генератор импульсов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN pulsed tube oscillator … Справочник технического переводчика

    - (Valve transmitter) ламповый генератор, связанный с антенной, что позволяет осуществлять излучение тока высокой частоты в виде радиоволн. По роду работы Л. П. разделяются на телеграфные, телефонные, для телевидения и фототелеграфии. Самойлов К. И … Морской словарь

    Схемы генераторов Армстронга из патента US1,113,149 Oct.06, 1914 Генератор Армстронга и генератор Мейснера (Майснера)) называются в честь их изобретателей, электротехников Эдвина Армстронга и Александра Мейснера. В обоих генераторах… … Википедия

    - (лат. generator, от genus, generis род). 1) родоначальник. 2) котел в паровых машинах. 3) машина для получения электрического тока. 4) прибор, производящий искусственный лед. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (лат. generator производитель) устройство, аппарат, машина, производящие какой либо продукт (напр., ацетиленовый генератор, парогенератор), вырабатывающие электрическую энергию (напр., электромашинный, магнитогидродинамический, термоэмиссионный… … Большой Энциклопедический словарь

    А; м. [от лат. generator производитель]. 1. Устройство, аппарат или машина, предназначенные для производства какого л. вещества, выработки энергии или преобразования одного вида энергии в другой. Г. переменного тока. Г. радиосигналов. Квантовый г … Энциклопедический словарь

    - (от лат. generator производитель) устройство, аппарат или машина: производящие какие либо продукты (генератор ацетиленовый, лёдогенератор, парогенератор, газогенератор, генератор водорода) вырабатывающие электрическую энергию… … Википедия

Стабильный диапазонный генератор в радиолюбительской практике до сих пор проблемой номер один является стабильность частоты генераторов с плавной настройкой. Каждый коротковолновик знает, как неприятно, а иногда и трудно работать с корреспондентом, когда частота его передатчика «ползет» вверх или вниз. Это особенно ощутимо при работе CW или SSB. Но кроме субъективного фактора, имеется и официальное положение, которое жестко определяет стабильность частоты коротковолновой радиостанции. Уход частоты генератора в радиолюбительской практике не всегда вызван небрежностью конструктора-оператора: работой на коротких волнах занимаются люди различного возраста и профессий, обладающие различной степенью специальной подготовки.

В лабораторных условиях в результате анализа и многочисленных экспериментов была выбрана схема задающего стабильный диапазонный генератор, который и предлагается вниманию читателей. Этот генератор может быть использован также в качестве гетеродина в приемнике, в измерительной аппаратуре и пр. При выборе схемы генератора был рассмотрен ряд кривых, характеризующих уход частоты в зависимости от изменения напряжения питания различных схем ламповых генераторов, описанная ниже схема обладает наибольшей стабильностью. Остальные факторы, влияющие на стабильность частоты лампового генератора, учтены и скомпенсированы известными способами, Очевидно, будет удобнее это проследить непосредственно на предложенной схеме (рис.).

Весь содержит три каскада: собственно генератор на лампе 6Н15П (Л1), катодный повторитель и усилитель на лампе 6Ф1П (Л2).

Собственно стабильный диапазонный генератор

собран по схеме с отрицательным сопротивлением. Работа генераторов с отрицательным сопротивлением достаточно полно освещена в литературе (например, см. А. А. Куликовский «Новое в технике любительского радиоприема», Томас Мартин «Электронные цепи»). По сути, схема представляет собой несимметричный мультивибратор, в одну из цепей которого включен реактивный элемент. Прямая связь между триодами генератора осуществляется через -тод; положительная обратная связь, необходимая для возникновения генерации, - с анода правого (по схеме) триода на сетку левого триода.

Здесь необходимо остановиться на-одной очень существенной детали, не акцентируемой в литературе. Эта деталь главным образом влияет на работу генератора и на которую многие конструкторы не обратили внимания и вынуждены были отказаться от него.
Дело заключается в том, что, как уже отмечалось выше, прямая связь между триодами генератора осуществляется через катод. Таким образом катодная нагрузка будет являться нагрузкой и по перемеменному и по постоянному току. Что получится в том случае, если в катоде будет стоять только активное сопротивление? В первую очередь величина этого сопротивления будет подбираться, чтобы обеспечить нужный режим каскада.

Практически его величина не превысит 2-3 ком. В свою очередь это сопротивление является нагрузкой и для высокочастотного напряжения. И здесь, как правило, оказывается, что его величина слишком мала и не обеспечивает достаточной передачи ВЧ энергии на правый по схеме триод. Кроме того, это сопротивление значительно шунтирует контур генератора, сильно снижая его добротность, ухудшая и без того тяжелые условия возбуждения. Проанализировав подобным образом схему стабильный диапазонный генератор, можно прийти к простому решению: последовательно с катодным сопротивлением нагрузки включить ВЧ дроссель. Теперь комплексная катодная нагрузка будет складываться по постоянному току.

В общем же случае емкость конденсатора C1 может быть выбрана в пределах нескольких пикофарад. Генерация получается такой устойчивой, что при снижении анодного напряжения до 10 в на катодном дросселе остается напряжение ВЧ около 1,5 в. Возвращаясь к конкретным данным приведенной схемы, отметим, что положительное изменение емкости контура генератора от нагрева во время работы компенсируется конденсатором С3 (КТК голубой). Конденсатор С3 должен быть обязательно КСО-2 группы «Г». Конденсатор C1 - типа КТК голубой.

Для большего повышения стабильности целесообразно снимать напряжение ВЧ на следующий каскад именно с дросселя катодной нагрузки, а не с какой-нибудь другой точки схемы по следующим соображениям: снимая ВЧ напряжение непосредственно с контура генератора, с анода правого триода или-непосредственно с катода генератора, нарушаем стабильность колебаний. Снимая сигнале катодного дросселя, мы практически полностью изолируем генератор.

Здесь особенно видно, насколько оправдана именно такая последовательность включения сопротивления и дросселя в катод генератора. В самом деле, цепь катодной нагрузки в нашем случае для ВЧ можно представить как делитель, состоящий из двух последовательных сопротивлений: R1, которое в зависимости от типа лампы и выбранного режима генератора может быть от нескольких ом до 2-3 ком; и реактивного сопротивления дросселя Rx, которое в лучшем случае несоизмеримо велико по сравнению с R1 (рис.)Таким образом для ВЧ сигнала величина R1 в нашем делителе получается очень малой, и можно полагать, что в лучшем случае по ВЧ Uвх будет равно Uвых, или, иными словами, снимаемое напряжение ВЧ с дросселя будет равно напряжению ВЧ на катоде генератора. Однако в реальных условиях, разумеется, сопротивление дросселя по ВЧ будет иметь конкретное значение в силу конечных параметров последнего и влияния схемы в целом.

Но тем не менее его величина будет гораздо больше R1 и проигрыш в снимаемом напряжении будет незначительным. В то же время сопротивление R1 защищает в значительной степени от возможного вмешательства в цепь связи, обеспечивающую работу генератора. Чтобы еще больше «развязать» стабильный диапазонный генератор от последующих каскадов, имеется буферный каскад, собранный по схеме катодного повторителя на триоде лампы Л2. Как известно, катодный повторитель обладает высоким входным сопротивлением и практически не шунтирует дроссель Др1. Необходимо отметить еще одно достоинство этого генератора.

При соответственно выбранном режиме он обладает малым процентом гармоник. В большинстве случаев даже вторую гармонику не удавались замерить. Это является весьма положительным качеством, особенно при использовании подобного генератора в качестве гетеродина в приемнике с несколькими преобразователями или как VFO в SSB передатчике, где возникает опасность появления комбинационных частот или интерференционных свистов.

Однако в описываемом стабильный диапазонный генератор имеется в виду дальнейшее умножение частоты для получения всех любительских диапазонов, для этой цели после катодного повторителя следует каскад усилителя на основной частоте (80 м любительский диапазон), собранный на пентодной части лампы Л2. Для замера ухода частоты генератора использовался декадный счетчик ЭЧ-1, так как, например, волномером 526У вообще не удалось замерить уход частоты при часовой проверке. Основной замер производился после двадцатиминутного прогрева. Уход частоты за первые 15 минут замера составлял: 3 645 282- 3 645 245 гц-37 гц! За следующие 15 минут уход частоты составил 33 гц.

Необходимо заметить, что при эксперименте было стабилизировано только анодное напряжение. Экран контура задающего генератора (L1) находился около экрана лампы генератора на расстоянии 22 мм. Контур был выбран заведомо с невысокой добротностью Q = 60. Он имел 60 витков провода ПЭ 0,29, намотанных виток к витку на полистироловом каркасе диаметром 8 мм, и был заключен в латунный экран диаметром 21 мм (катушка L2 намотана на таком же каркасе с таким же экраном с настройкой ферритовым сердечником и имела 37 витков провода ПЭЛШКО 0,2, намотка «универсалы), ширина намотки 4 мм). Можно утверждать, что если принять дополнительные меры; стабилизировать накал генераторной лампы барретором, применить контур задающего генератора с высокой добротностью, как можно лучше изолировать контур генератора в тепловом отношении, то стабильность будет еще выше.

В заключение остановимся на примененном здесь способе манипуляции. Манипуляция производится не срывом генерации, как обычно, а уводом частоты в сторону, за пределы пропускания контуров передатчика. Это осуществляется миниатюрным реле РЭС-10 (возможно использовать реле РЭС-9), которое имеет размеры 10Х 16 X 19 мм, весит 7,5 г, работает при температуре до +125° С и относительной влажности до 98%. При этом является малоемкостным и имеет время срабатывания 5 мсек. Это реле и процессе манипуляции подключает к контуру стабильный диапазонный генератор конденсатор Са, уводя частоту генератора в сторону, но не срывая ее.

Проверка производилась субъективно при помощи волномера 526У. При манипуляции не было замечено ни малейшего «хлюпания», ни каких бы то ни было других нежелательных явлений. Полностью отсутствуют щелчки. Произведенный эксперимент позволяет утверждать, что подобный метод манипуляции может быть рекомендован коротковолновикам, как простой, высококачественный и весьма эффективный.

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10...+12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора C a.р и блокировочного дросселя L а.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель L а.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор С а.р. Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение С а.р выбирается из условия:

где R э – эквивалентное сопротивление колебательного контура.

Назначение L а.б – не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором C б (см. рис. 2).

Сеточная цепь

Генераторы могут быть с независимым возбуждением (на сетку лампы подаются колебания от маломощного генератора) и с самовозбуждением.

Независимое возбуждение используется в радиопередатчиках, в генераторах для электротехнологии обычно используют самовозбуждение (используется положительная обратная связь с колебательного контура).

Для существования колебаний необходимо, чтобы напряжение на сетке было в фазе с напряжением на контуре, и, следовательно, в противофазе с напряжением на аноде (рис. 3). Это условие самовозбуждения по фазе.

Если сигнал обратной связи будет очень малым, то колебания не возникнут. Отсюда следует условие самовозбуждения по амплитуде.

К ос > К ос min ,

где К ос = U g /U a – коэффициент обратной связи, U g – напряжение на сетке;U a –напряжение на аноде (cм. рис. 3), К ос min – минимальное значение коэффициента обратной связи, оно получается из расчета генераторной лампы.

В зависимости от соотношения между остаточным напряжением на аноде e а min максимальным напряжением на сетке e g max различают три режима работы: недонапряженный, перенапряженный и критический (граничный).

На рис. 4 представлены графики анодного тока и сеточного напряжения. Если анодно-сеточная характеристика линейна, то импульсы сеточного и анодного токов имеют вид отрезка синусоиды. Когда ток такой формы протекает через колебательный контур, то в нем возникают синусоидальные колебания, так как колебательный контур выделяет первую гармонику тока, которая и поддерживает колебания за счет положительной обратной связи. Для нормальной работы лампы на ее сетку необходимо подать отрицательное смещение E g (рис. 4).

Рис. 4. Диаграммы анодного тока и сеточного напряжения

Оно может быть фиксированным (от постороннего источника) или автоматическим и необходимо для того, чтобы выбрать рабочую точку на характеристике лампы (рис. 3 и 4).

В генераторах для электротермии обычно используется автоматическое смешение. Оно подается с помощью гридлика (рис. 5).При протекании сеточного тока через элементы гридликаR g , L g , C g на сопротивленииR g выделяется постоянное напряжениеЕ g , которое прикладывается между сеткой и катодом.

Элементы гридлика определяются таким образом: R g = - E g / I g о, где Е g – отрицательное смещение; I g о – постоянная cоставляющая сеточного тока лампы, они известны из расчета лампы. Блокировочные элементы L g , C g находятся из соотношений:

При изменении R g изменяется угол отсечки анодного тока (см. рис. 4). Оптимальным является значение θ = 70º ÷ 90º. При этом обеспечивается достаточно высокий КПД генераторной лампы по аноду и хорошее использование лампы по мощности.

Рис. 5. Гридлик лампового генератора

Одноконтурный генератор

На рис. 6 представлена принципиальная схема промышленного генератора ВЧГ1-25/0,44, имеющего один колебательный контур. Индуктивностью колебательного контора является закалочный трансформатор Т р, нагруженный на индуктор ИЗ. Согласование генератора с нагрузкой осуществляется путем переключения отводов на первичной стороне закалочного трансформатора Т р. Если колебательный контур настроен в резонанс, то его эквивалентное сопротивление

где – характеристическое сопротивление контура; r – активное сопротивление; С – емкость; L индуктивность; Q – добротность.

Добротность отражает способность колебательного контура поддерживать электромагнитные колебания. Это отношение реактивной мощности P r к активной P a или реактивного сопротивления к активному:

Иногда вместо добротности используют затухание:

Чтобы генераторная лампа отдавала номинальную мощность, необходимо, чтобы на ней было номинальное колебательное напряжение U a 1 и через нее шел номинальный ток первой гармоники I a 1 . Отсюда вытекает, что эквивалентное сопротивление колебательного контура, подключенного к лампе, должно быть равно эквивалентному сопротивлению лампы:

R ЭЛ = U a1 / I a1 ,

где U a1 и I a1 определяются из расчета лампы.

Если сопротивление колебательного контура R ЭК > R ЭЛ то режим генератора будет перенапряженным, иначе – недонапряженным.

Процесс согласования генератора с нагрузкой заключается в том, чтобы выполнить условие:

R эк = R эк.

Если это условие не выполняется, то включают не всю первичную обмотку трансформатора, а ее часть, используя отводы. При этом уменьшается коэффициент анодной связиp = U a / U k (см. рис. 6), а также эквивалентное сопротивление, приведенное к лампе:

R эк = p 2 R эк

При R эк < R эл следует взять другой индуктор, с большим числом витков.

Как известно, генерация в схемах с самовозбуждением происходит благодаря положительной обратной связи. Она осуществляется делителем С о ’, С о ’’ и звеном обратной связи С о, L о (см. рис. 6).

Особенностью данной схемы является возможность бесконтактного изменения величины индуктивности обратной связи L о. Перемещением катушки L кз внутри L о изменяется индуктивность L о и, следовательно, величина коэффициента обратной связи

K ос = U g / U a

Рассмотрим подробнее влияние положения короткозамкнутой катушки L кз на индуктивность соленоидаL 0 (см. рис. 6)

Известно определение индуктивности соленоида:

L 0 = w Φ / I ,

где w , Ф, I число витков, поток и ток соответственно.

При введении внутрь соленоида L о короткозамкнутой катушки в ней наводится ток, магнитное поле которого уменьшает потокФ, что приводит к уменьшению индуктивности L о.

Путем описанных регулировок генератор настраивается на критический или слабо перенапряженный режим, что обеспечивает высокий КПД по аноду.

Рис. 6. Принципиальная электрическая схема генератора ВЧИ1-25/0,44

Критический режим характеризуется отношением I a о / I g о = 5÷7. Это соотношение обычно используется при настройке, так как все промышленные генераторы имеют приборы, измеряющие постоянные составляющие анодного и сеточного токов.

Многоконтурные схемы ламповых генераторов для электротермии

Эти схемы (см. рис. 7) являются основными для целой серии высокочастотных установок на частоты до 5,28 МГц. Их преимуществом является: гибкость регулировок, возможность изменения режима без отключения генератора, универсальность, Недостатки по сравнению с одноконтурной схемой: сложность схемы, большие габариты и стоимость. Подробные описания схем и методы их расчета имеются в .

Отличительной особенностью этих схем является наличие анодного регулятора L 1 . Этот регулятор позволяет изменять напряжение на нагрузочном контуре без выключения генератора.

Короткозамкнутая катушка L КЗ перемещается внутри L 1 не выходя за ее пределы .

Рис. 7. Принципиальная схема трехконтурного генератора для электротермии

Этим обеспечивается постоянное значение индуктивности L 1 и, следовательно, постоянство рабочей частоты генератора. Катушка L 1 разделена на две части (см. рис. 7).

Когда L КЗ находится а верхней части L 1 , то магнитный поток в этом месте уменьшается, следовательно, уменьшается индуктивность этой части катушки. В результате на нагрузочном контуре будет максимальное напряжение. При перемещении L кз в нижнюю часть L 1 картина будет обратной.

Многоконтурная схема, может генерировать колебания на нескольких частотах. Чтобы убедиться в том, что генератор будет устойчиво работать на заданной частоте, выполняется частотный анализ. Для этого составляется эквивалентная схема генератора. В этой схеме обычно пренебрегают теми элементами, которые дают резонансные частоты, сильно отличающиеся от рабочей. Если анализ выполняется графическим методом, то пренебрегают также активными сопротивлениями.

При анализе частотных характеристик на ЭВМ этого можно не делать. На рис. 8 представлена схема, эквивалентная рис. 7. В ней пренебрегается L а.б и С р, а также цепями постоянных составляющих анодного и сеточного токов.

При курсовом проектировании анализ проводится на компьютере по программе PALEC.

На эквивалентной схеме предварительно обозначить номера узлов и ветвей. При этом анодный узел ввода должен иметь номер 1, катодный – 0, сеточный – 2, остальные нумеруются произвольно. После этого ввести исходные данные аналогично образцу, имеющемуся в вычислительной лаборатории кафедры ЭТПТ.

КОНСТРУКТИВНЫЙ РАСЧЕТ ЭЛЕМЕНТОВ ЛАМПОВОГО ГЕНЕРАТОРА

Конструктивный расчет высокочастотных (ВЧ) дросселей и контурных индуктивностей

Расчет выполняется на основе методики, изложенной в . Известна формула для индуктивности цилиндрическогосоленоида:

где k =k (а/2 R ) – коэффициент Нагаока; R – радиус соленоида; a - его длина; w - число витков. Выразим L , через длину провода l :

l = 2Rw ,

длина катушки a = wh , где h – шаг намотки; тогда число витков:

где Следовательно

Обозначив получим

Эта формула дает возможность найти длину провода, необходимого для изготовления катушки:

Обычно для высокочастот­ных дросселей 2 R / a = 0,3÷0,5.

Поэтому можно принять:

F = 1,03…1,13 (см. рис. 9).

Кроме индуктивности, дроссель имеет также емкость, которая может играть значительную роль на высоких частотах. Для ее уменьшения многослойные обмотки выполняются с транспозицией (рис. 10). Этот тип намотки используется и на низких частотах для уменьшения межвиткового напряжения (сравнить максимальные напряжения между соседними витками катушек на рис. 10, а и б).

рис. 9. График функции F

Порядок расчета блокировочного дросселя

1. Выбор диаметра провода по току дросселя. По дросселю протекает постоянная составляющая анодного тока I a о и переменныйток, который примерно равен: I = U a / (wL а.б). Плотность тока можно принять 3 А/мм 3 .

2. Выбор шага намотки h и отношения 2 R / a .

3. Длина провода определяется по формуле (1).

Скачать c Letitbit.net

или

Для скачивания методического пособия "Ламповый генератор" поделитесь ссылкой с друзьями.

Под этой строчкой в течении 30 секунд появится обещанная Вам ссылка:

Современный радиоприемник трудно наладить без соответствующей измерительной аппаратуры. При этом в первую очередь необходим сигнал-генератор, т. е. генератор, создающий высокочастотные колебания в определенном диапазоне частот. С его помощью можно настроить резонансные усилители высокой и промежуточной частоты, проверить сопряжение контуров в супергетеродинном приемнике, определить собственную частоту колебательных контуров и провести ряд других измерений.

Принципиальная схема

Принципиальная схема снгнал-генератора приведена на рис. 1. Он состоит из генератора высокой частоты, генератора низкой частоты (модулятора), выпрямителя и выходного устройства. Прибор позволяет получать высокочастотные модулированные или немодулированные колебания, а также низкочастотные колебания с частотой порядка 400 гц. Диапазон частот сигнал-генератора 100 кгц — 16 Мгц разбит на следующие поддиапазоны:

  • 100 - 250 кгц;
  • 250 - 700 кгц;
  • 700 - 2000 кгц;
  • 2 - 5,5 Мгц
  • 5,5 - 16 Мгц.

Величина выходного напряжения на выходе сигнал-генератора может достигать 0,8 — 1 В и зависит от добротности контуров. Питание прибора осуществляется от сети переменного тока напряжением 127 или 220 в.

Генератор высокой частоты выполнен на левом триоде лампы Л1 по трехточечной схеме с автотрансформаторной обратной связью. На каждом из поддиапазонов колебательный контур образован одной из катушек индуктивности L1— L5, одним из подстроечных конденсаторов С1— С5 и переменным конденсатором С7, Переход с одного поддиапазона на другой осуществляется с помощью переключателя В1. Постоянное напряжение на анод лампы подается через резистор R3. Плавное изменение частоты производится конденсатором переменной емкости С7. Функции гридлика выполняют конденсатор С6 и резисторы R1, R2. По высокой частоте анод лампы заземлен конденсатором С8,

Модулятор представляет собой обычный генератор звуковой частоты с емкостной обратной связью. В качестве контурной катушки используется обычный дроссель Др1 низкой частоты. Колебательный контур низкочастотного генератора образован катушкой дросселя Др1 и конденсаторами постоянной емкости СИ, С12.

Модулятор собран на правом триоде лампы Л1. Для уменьшения содержания гармоник (улучшения формы кривой низкочастотного напряжения) в катод правого триода включен резистор R12. Выключение звукового генератора производится выключателем В3.

В схеме сигнал-генератора применена анодная модуляция. Переменное напряжение низкой частоты с анода правого триода подается иа анод левого триода одновременно с питающим напряжением через резистор R3. Благодаря происходящим в лампе высокочастотного генератора нелинейным процессам и осуществляется процесс модуляции.

Выходное устройство снгнал-генератора состоит из плавного делителя R2, шкала которого разделена на 10 делений. Для дальнейшего уменьшения выходного напряжения служит ступенчатый делитель, образованный резисторами R4— R11. Каждая ячейка, содержащая два резистора, понижает напряжение в 10 раз.

Необходимое ослабление сигнала снимаемого с плавного делители (называемого иногда аттенюатором, т. е. ослабителем) в 1, 10, 100, 1000 и 10.000_раз производится переключателем В2. Например, при установке переключателя В2 в положение «10—1» на выходное гнездо ВЧ с резистора R5 поступает напряжение, равное десятой доле напряжения, снимаемого с потенциометра R2; девять десятых последнего напряжения гасится на резисторе R4, сопротивление которого в 9 раз превышает сопротивление правой части делителя между точками а— б.

Таким образом, четыре ячейки делителя позволяют уменьшить напряжение в 10 раз, что при установке плавного делителя в положение, соответствующее 0,1 в, позволяет получить наименьшее напряжение порядка 10 мкв.

Следует отметить, что в сигнал-генераторе простейшего типа амплитуда колебаний по диапазонам и в пределах каждого диапазона довольно сильно меняется, поэтому применение подобных делителей позволяет лишь косвенно судить о фактическом напряжении сигнал-генератора.

Резистор R1 служит для уменьшения влияния нагрузки сигнал-генератора на частоту колебаний. На рис. 1 указаны фактические значения сопротивлений резисторов R4— R11. Они подбираются из ближайших номиналов резисторов, выпускаемых нашей промышленностью.

Напряжение низкой частоты для проверки различных усилительных низкочастотных устройств снимается с потенциометра R13 и поступает на гнездо НЧ. Резистор R17, являясь сопротивлением утечки сетки, одновременно уменьшает реакцию нагрузки на режим работы низкочастотного генератора.

Выпрямитель смонтирован по обычной однополупериодной схеме на двух германиевых диодах Д1 и Д2. Для уменьшения вероятности пробоя диодов последние зашунтированы резисторами R18, R19. Переключение обмотки трансформатора Тр1 для работы от сети с различными напряжениями осуществляется предохранителем Пр. Фильтр выпрямителя двухзвениый и состоит из конденсаторов С13, С14 и резисторов R15, R16.

Детали и конструкция

Сигнал-генератор смонтирован на угловом шасси из дюралюминия толщиной 1,5 мм. Для того, чтобы предохранить проверяемую аппаратуру от непосредственного излучения цепей генератора (помимо аттенюатора), все контуры, переключатель и конденсатор переменной емкости необходимо заключить в отдельный экран.

Катушки наматываются на керамических каркасах диаметром 10 мм и имеют для подстройки сердечники типа СЦР-1. Намотка катушек L1— L4 типа (универсаль), ширина намотки 5 мм. Катушка L1 содержит 850 витков провода ПЭЛШО 0,12 с отводом от 200-го витка; L2 — 275 витков провода ПЭЛШО 0,2 с отводом от 70-го витка; L3— 112 витков провода лицендрат 7X0,07 с отводом от,45-го витка; L4 — 42 витка провода лицендрат 7X0,07 с отводом от 15-го витка.

Катушка L5 однослойная, имеет 11 витков рядовой намотки, провод ПЭЛШО 0,51 с отводом от 5-го витка. Катушки можно намотать и иа пропитанные церезином бумажные или бакелитовые каркасы соответствующих размеров. При выполнении намотки внавал необходимо сделать щечки. Число витков в этом случае будет отличаться от указанных.

Переменный конденсатор С7 можно применить любой, но желательно примо-частотный, тогда при градуировке можно получить равномерное размещение делений на шкале. Переключатель диапазонов лучше всего применить керамический.

Дроссель Др1 выполнен на сердечнике Ш16, толщина набора 16 мм. На каркас до заполнения наматывают провод ПЭЛ 0,15. Практически можно использовать любой междуламповый трансформатор.

Трансформатор Тр1 имеет сердечник Ш22, толщина набора 32 мм. Сетевая обмотка состоит из двух секций. Секция I содержит 763 витка провода ПЭЛ 0,31, секция II—557 витков провода ПЭЛ 0,2. Повышающая обмотка III содержит 1140 витков провода ПЭЛ 0,2, обмотка накала ламп IV — 44 витка провода ПЭЛ 1,0. В данной конструкции можно применить любой силовой трансформатор от приемников «Москвич-В», «Волна», АРЗ и др.

Для удобства работы с прибором вращение ротора переменного конденсатора С7 осуществляется с помощью верньерного устройства, конструкцию которого легко уяснить из рис. 2.

Передняя панель прибора имеет размеры 210X160 мм. Монтаж основных деталей осуществлен на горизонтальной панели размером 200Х 120 мм. В зависимости от типа примененных деталей размеры шасси могут изменяться.

Налаживание

Налаживание прибора начинают с проверки генерации, прослушивая сигнал на заведомо исправном приемнике. Для этого с помощью отрезка коаксиального кабеля, иа конце которого имеется специальный штекер, высокочастотный выход сигнал-генератора соединяют со входом приемника.

Наличие генерации можно также проверить с помощью авометра, работающего в режиме измерения постоянных напряжений, который присоединяют к аноду левого триода. Если при закорачивании управляющей сетки левого триода на катод напряжение на аноде несколько падает, генератор работает. Обычно при исправных деталях и лампе он сразу начинает работать.

Работу звукового генератора легко проверить путем подачи низкочастотного напряжения с выхода сигнал-генератора на гнезда звукоснимателя вещательного приемника. Требуемая частота генерации устанавливается изменением емкости конденсаторов C11, С12.

Установив, что высокочастотный генератор работает при всех положениях переключателя В1 н имеет место нормальная модуляция, приступают к подгонке границ отдельных поддиапазонов. Регулировку начинают с длинноволнового участка первого диапазона (при максимальной емкости переменного конденсатора С7).

Вращением сердечника или изменением чнсла витков катушки L1 устанавливают частоту, равной 100 кгц. Затем ручку настройки переводят в другое крайнее положение (соответствующее минимальной емкости конденсатора С7) и определяют частоту генератора.

Если она будет выше требуемой, увеличивают емкость подстроечного конденсатора С1 и настройку повторяют вновь. Для установки границ второго поддиапазона также устанавливают конденсатор С7 в положение максимальной емкости и подбором индуктивности катушки L2 добиваются, чтобы в начале шкалы этого поддиапазона частота генератора была несколько ниже частоты (250 кгц) на конце шкалы первого поддиапазона.

Границы остальных поддиапазонов устанавливаются аналогичным образом. Градуировка С Г производится по общепринятой методике — с помощью ГСС по методу биений, с помощью контрольного приемника или гетеродинного индикатора резонанса — ГИРа.