Обзор программного обеспечения на основе нечеткой логики. Что такое нечеткая логика (fuzzy logic): принцип работы, примеры, применение

6 сентября 2017 в возрасте 96 лет умер Лотфи Заде, создатель нечеткой логики.
6 сентября 2017 в компании, которая основана на технологиях нечеткой логики и нейронных сетей, и в которой я пока работаю, начались такие преобразования, которые только в рамках этой самой нечеткой логики и можно как-нибудь описать. И с завтрашнего дня будет расторгнут мой контракт, хотя если с 15 сентября я и становлюсь безработным, то это можно будет оценить только в терминах нечетной логики - на 0,28, на 0,78 или 1,58 - жизнь покажет.
А два года назад, к 50-летию нечеткой логики, Александр Малютин написал заметку на научпоп-сайт «Перельман перезвонит» (nowwow.info). Сайт этот ныне уже умер, и поэтому следует спасти статью. Ведь про нечетную логику написал журналист, который в свое время возглавлял «Известия». Кстати, блогеры-домохозяйки могут не выходить - нечетная логика объясняется на примере стиральной машины. Лучше поучитесь у профи, как надо писать.

К 50-ЛЕТИЮ ОДНОГО ИЗ САМЫХ УДАЧНЫХ МАТЕМАТИЧЕСКИХ ТЕРМИНОВ

Нечеткой логике полвека - в июне 1965 года в журнале Information and Control вышла основополагающая статья «Нечеткие множества» (Fuzzy Sets), которую написал американский математик азербайджанского происхождения Лотфи Заде. Долгих ему лет. Жаль, до юбилея не дожил британский математик танзанийского происхождения Ибрагим Мамдани, который в 1975 году представил первую реальную систему управления с нечеткой логикой - контроллер, следящий за работой парового двигателя. После чего технология стала активно развиваться, найдя применение во многих областях.

Заде 50 лет назад предложил математическое описание живой человеческой логики. В обычной математической логике есть только «истина» (обозначаемая еще числом 1) или «ложь» (0). В нечеткой логике степень истинности высказывания может быть любой - точнее, любым числом от 0 до 1. Красива ли вон та девушка? Ни да, ни нет, а «0,78; что красива».

Непривычно звучит. Как это вообще понять? Для простоты можно считать, что кто-то провел опрос, в котором 78% респондентов назвали девушку красивой, а остальные нет. А может ли быть от таких конструкций практическая польза? Вполне. Допустим, нужно принять решение, отправлять ли девушку на конкурс мисс чего-нибудь (серьезные расходы!), а для этого нужно оценить ее шансы на призовое место. Тогда-то и пригодятся оценки не только красоты, но и других важных для победы и тоже нечетких параметров: остроумия, эрудированности, доброты и т. п. Нужно только понять, откуда брать степени истинности и как оперировать с нечеткими данными. Заде понял. Необходимый для практики математический аппарат он разработал к 1973 году. Мамдани на его основе и сделал свой контроллер.

Заслуга Лотфи Заде не только в том, что он разработал новую теорию. Он ее крайне удачно назвал, выбрав общеупотребительное слово. Если бы вместо «нечеткой» взяли заумный термин, например, «континуальнозначная логика» (что, кстати, так и есть), у него не было бы шансов на широкую известность. Неспециалисты просто не употребляли бы это словосочетание, поскольку кто ж его знает, что оно означает.

Другое дело, когда у научного понятия есть бытовой омоним. Тогда обывателю кажется, что он понимает, о чем речь, особенно если посмотрел про это кино. Таких «понятных» терминов в математике и физике тоже немало. Черная дыра. Магический квадрат. Горизонт событий. Очарованный кварк. Теорема о двух милиционерах. Ну и конечно - матрица! Кто же не знает, что матрица - это когда Киану Ривз бегает по потолку. И не надо нам рассказывать про какие-то таблицы с числами.

Для развития науки вульгарные представления широких масс полезны. Обычных слов следовало бы даже добавить. Фильмов про горизонт событий снять побольше. Натяжек и ляпов не бояться. Главное, чтобы зритель ощущал прикосновение к переднему краю науки и величие человеческого, а, значит, и своего личного разума. Особенно если от такого зрителя зависит принятие решений о финансировании исследований.

Выдающийся советский ядерщик Георгий Флеров говорил: «Объяснять важному начальству научную проблему нужно не так, как правильно, а так, как ему будет понятно. Это ложь во благо». Правильно. Руководство не нужно смущать лекциями про «спонтанные нарушения электрослабой симметрии». Расскажите лучше про «частицу Бога» и «Великую тайну гравитации». Вранья, кстати, в этом особого нет - а инвестиции есть. Не беда, что околонаучные сказки порождают завышенные ожидания и, как следствие, избыточное вливание денег, заканчивающееся разорением. Общая польза в итоге перевешивает. Пузырь доткомов в 2001 году лопнул, но интернет-технологии получили мощнейший импульс.

Нечеткой логике в этом смысле повезло не только с собственным названием, но и с причислением к списку наук и технологий, объединенных названием «искусственный интеллект» - наряду с нейронными сетями, логическим программированием, экспертными системами и др. Это уже большая маркетинговая игра, где участники списка получают эффект от пакетной рекламы в рамках раскрутки единого научного мегабренда. Шутка ли: искусственный интеллект! Вот уж чарующая перспектива понятней некуда. Каждому в дом по железному слуге. Пусть умные кибернетические организмы делают всю работу, а мы будем только вводить пин-коды и пить пина-колады. Ради такого света в конце тоннеля не жаль никаких денег.

Флеровская «ложь во благо» на примере искусственного интеллекта сработала на 100%. Японское правительство с 1982-го по 1992 год потратило полмиллиарда долларов на разработку «компьютера пятого поколения» с элементами «мышления». Как задумывалось, не получилось. В частности, скис язык логического программирования Prolog, которому в 1980-е прочили первые роли. Ну и ладно. Все ж как с доткомами: роботов в некоторых странах в итоге все равно научились делать отличных.

Сегодня кибернетические системы видят, слышат и читают почти как люди, обыгрывают шахматных гроссмейстеров и зачастую эффективнее дипломированных специалистов управляют производственными процессами. Спасибо за столь мощное развитие темы помимо непосредственных разработчиков нужно сказать авторам удачной терминологии, а также Айзеку Азимову, Артуру Кларку, братьям Вачовски и всему коллективу киностудии имени Горького, подарившей советским детям образы роботов-вершителей.

Никаких разумных киборгов при этом на самом деле не создано. Пока даже нельзя уверенно сказать, что, пытаясь их сотворить, мы движемся в правильном направлении. Чтобы убедиться в этом, давайте посмотрим, как в самых общих чертах работает «умная» стиральная машина, которая благодаря блоку управления с нечеткой логикой умеет определять, когда одежда стала уже «достаточно чистой», чтобы слить воду и начать отжим. Пример любопытен еще и тем, что показывает, как практический результат достигается на стыке нескольких дисциплин: физики, химии и математики.
Задача управляющего устройства машины состоит в следующем. Принять на вход данные о степени загрязнения одежды и типе загрязнения. Проанализировать их и сформировать выходной параметр: время стирки.

За оба входных показателя отвечает оптический датчик, который определяет, насколько прозрачен моющий раствор. По степени его прозрачности можно судить о степени загрязнения: чем более грязная одежда загружена в бак, тем менее прозрачен раствор. А тип загрязнения определяется по скорости изменения прозрачности раствора. Жирные вещества плохо растворяются, поэтому чем медленнее изменяется концентрация раствора, тем с более жирным загрязнением приходится иметь дело. Все, датчик работу закончил.

Отметим, что он выдал два точных параметра, два конкретных числа: степень прозрачности раствора и скорость изменения прозрачности раствора. А вот дальше начинает работать алгоритм Ибрагима Мамдани.

На первом этапе, который называется фаззификацией (введением нечеткости), оба числа превращаются в нечеткие понятия. Допустим, мы ввели три градации загрязнения: «слабое», «среднее» и «сильное». Тогда вместо уровня прозрачности раствора появляются три нечетких суждения о загрязнении, скажем: «0,3; слабое», «0,6; среднее», «0,1; сильное».

Что значат эти цифры? Как и в случае с девушкой, чью нечеткую красоту мы обсуждали в начале текста, их можно считать результатами некоего референдума, на котором 30% граждан проголосовали, что загрязнение при данном уровне прозрачности раствора слабое, 60% - что среднее, 10% - сильное. А что, кто-то этот референдум проводил? Можно считать, что да.

В ходе разработки изделия собрались эксперты по машинной стирке и прикинули, как разложатся голоса «избирателей» в зависимости от уровня прозрачности раствора. А не шарлатанство ли это, спросите вы, математика же точная наука, какие еще эксперты по стирке? Да вот такие. Если вы всерьез хотите решить задачу, то найдете стоящих специалистов, чьи прикидки и оценки будут осмысленными и полезными.

Итак, у нас есть один нечеткий параметр «степень загрязнения», теперь нужен второй: «тип загрязнения». Проводим еще один «референдум». Допустим, он показал, что при такой скорости изменения концентрации раствора, которую нам выдал датчик, загрязнение следует считать, например, «0,2; малой жирности», «0,5; средней жирности», «0,3; большой жирности».

Наступает второй этап алгоритма: применение нечетких правил. Теперь вместе с экспертами мы обсуждаем, каким должно быть время стирки в зависимости от степени и типа загрязнения. Перебирая все возможные варианты, получаем - трижды три - девять правил следующего вида: «если загрязнение сильное и средней жирности, то время стирки - большое». Далее по законам логики (мы их для простоты пропустим) подсчитываем степень истинности для времени стирки. Пусть в результате нечеткое время стирки получилось таким: «0,1; малое», «0.7; среднее», «0,2; большое». Можно приступать к заключительному этапу.

Он называется дефаззификацией, то есть ликвидацией нечеткости - нам ведь необходимо дать машине точную вводную, сколько времени вращать барабан. Подходы есть разные, один из распространенных заключается в вычислении «центра тяжести». Допустим, эксперты сказали, что малое время стирки это 20 минут, среднее - 40 минут, большое - 60 минут. Тогда с учетом «веса» каждого значения получаем итоговый параметр: 20*0,1 + 40*0,7 + 60*0,2 = 42. Одежда будет «достаточно чистой» после 42 минут стирки. Ура.

Ибрагим Мамдани придумал красивую штуку, не правда ли? На первый взгляд, чуть ли не шаманство. У вас есть точные исходные цифры и нужно из них получить другие точные цифры. Но вы не корпите над выводом формул, а погружаетесь в мир нечетких понятий, как-то там ими оперируете, а потом возвращаетесь обратно в «точный» мир - с готовым ответом на руках.

Производители стиральных машин даже принялись рекламировать применение нечеткой логики и прямо на изделиях или в инструкциях писать Fuzzy Logic, Fuzzy Control, Logic Control. Бизнесмены люди прагматичные и не размещают каких попало слов на своем товаре. Так что если вы увидели на машине надпись Fuzzy Logic, это значит: она «продает» товар. Технология помимо своих сугубо потребительских свойств гипнотизирует покупателя еще и названием, мотивируя на расставание с лишней сотней долларов. Уж не знаю, получает ли с этого роялти Лотфи Заде, но это было бы справедливо. Ни один другой раздел математики на бытовой технике не упоминается.

Но вы же заметили, наверное, что по ходу описания работы стиральной машины с нечеткой логикой не встретилось ни одного места, где можно было бы заподозрить, что у машины появился собственный разум. Только инструкции вроде служебных, только решение запрограммированных задач. Машина будет вовремя сливать воду. Но она не будет понимать, что она делает и зачем. В ее микропроцессорную голову никогда не придет мысль перестать стирать и ради прикола устроить в ванной потоп. Если только эта мысль не посетит программиста, который для прикола встроит в машину еще какую-нибудь Funny Logic. Сама же машина до такого додуматься не может.

Вот вам и весь искусственный интеллект. Роботы учатся только имитировать человеческую деятельность, пусть даже такую, на которую мы сейчас тратим интеллектуальные усилия, например, на перевод с другого языка. Пусть даже они переводят лучше. Вы же не обижаетесь на подъемный кран, что он сильнее вас. И появление кранов не привело к исчезновению штангистов. Только теперь поднятие тяжестей это спорт и удовольствие, а таскать на себе мешки с цементом на стройке не надо. С переводами то же самое. Программа не умнее нас, просто мы смогли формализовать и эффективно сгрузить на нее некоторые наши умения, и теперь можем не тратить свои интеллектуальные усилия на технические переводы, а заняться, скажем, Шекспиром.
Считать, что машины приобретают интеллект благодаря передовым достижениям кибернетики - все равно что верить в карго-культ. Помните, как жители затерянного острова, увидев в небе самолет, сделали такую же фигуру из соломы и думали, что полетит? Они тогда ничего не знали о металлах и керосине, не говоря уже о подъемной силе - и поди объясни.

Так и у нас с «искусственным интеллектом». Роботы скоро смогут водить автомобили и наверняка когда-нибудь обыграют команду людей в футбол - тем более, что этот момент приближают не только японские инженеры, но и наша сборная. Но это будет не более чем имитация разумных действий на поле. Как те аборигены, мы не знаем пока чего-то критически важного, что позволило бы создать разумное существо.

У нас, говоря словами Станислава Лема, обязательно получится Усилитель Умения Водить Авто - как уже получился Усилитель Умения Остановить Стирку. А вот Усилитель Интеллекта, появление которого предсказывал великий фантаст, на основе нынешних технологий «искусственного интеллекта», в том числе нечеткой логики, несмотря на все ее изящество и полезность, не получится. Нечеткая логика это всего лишь способ сократить объем вычислений при решении некоторого класса задач. И на том спасибо.

Можно не бояться роботов-вершителей. Муки творчества, благородные порывы, научный поиск, мечтательность, достоинство, самопожертвование, готовность к подвигу, авантюризм, честь, дружба, гордость, предубеждение, зависть, алчность, жлобство, чванство, подлость, пошлость, доносительство, разводки, сливы, подставы - во всех этих номинациях мы с вами еще долго будем выступать куда круче наших меньших полупроводниковых собратьев.

Лекция № 1

Нечеткая логика

  1. Понятие нечеткой логики.
  2. Операции с нечеткими множествами.
  3. Лингвистическая переменная.
  4. Нечеткое число.
  1. 1. Понятие нечеткой логики

Нечеткая логика является многозначной логикой, что позволяет определить промежуточные значения для таких общепринятых оценок, как да|нет, истинно|ложно, черное|белое и т.п. Выражения подобные таким, как слегка тепло или довольно холодно возможно формулировать математически и обрабатывать на компьютерах. Нечеткая логика появилась в 1965 в работах Лотфи А. Задэ (Lotfi A. Zadeh ), профессора технических наук Калифорнийского университета в Беркли.

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы.

Нечеткая логика - раздел математики, являющийся новой мощной технологией.

Нечеткая логика возникла как наиболее удобный способ построения систем управления метрополитенами и сложными технологическими процессами, а также нашла применение в бытовой электронике, диагностических и других экспертных системах. Несмотря на то, что математический аппарат нечеткой логики впервые был разработан в США, активное развитие данного метода началось в Японии, и новая волна вновь достигла США и Европы. В Японии до сих пор продолжается бум нечеткой логики и экспоненциально увеличивается количество патентов, большая часть которых относится к простым приложениям нечеткого управления .

Термин fuzzy (англ. нечеткий, размытый - произносится "фаззи ") стал ключевым словом на рынке. Статьи по электронике без нечетких компонент постепенно исчезали и пропали совсем, как будто кто-то закрыл кран. Это показывает насколько стала популярной нечеткая логика; появилась даже туалетная бумага с напечатанными на ней словами "Fuzzy Logic".

В Японии исследования в области нечеткой логики получили широкую финансовую поддержку. В Европе и США усилия были направлены на то, чтобы сократить огромный отрыв от японцев. Так, например, агентство космических исследований NASA стало использовать нечеткую логику в маневрах стыковки.

Таким образом, нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

2. Операции с нечеткими множествами

Определение и основные характеристики

нечетких множеств

Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать - обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = {µ A (х )/х } , где

µ A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = {µ A (х )/х } , где

µ A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть E = {x 1 , x 2 , x 3 , x 4 , x 5 } , M = ; A - нечеткое множество, для которого

µ A (x 1)=0,3;

µ A (x 2)=0;

µ A (x 3)=1;

µ A (x 4)=0,5;

µ A (x 5)=0,9.

Тогда A можно представить в виде:

A = {0,3/x 1 ; 0/x 2 ; 1/x 3 ; 0,5/x 4 ; 0,9/x 5 } или

A = 0,3/x 1 + 0/x 2 + 1/x 3 + 0,5/x 4 + 0,9/x 5 , или

Замечание. Здесь знак "+ " не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть M = и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M .

Величина µ A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1 (µ A (x )=1 ). При µ A (x ) <1 нечеткое множество называется субнормальным .

Нечеткое множество пусто , если µ A (x )=0. Непустое субнормальное множество можно нормализовать по формуле A (x ) = .

Нечеткое множество унимодально , если µ A (x )=1 только на одном x из E.

Носителем нечеткого множества A является обычное подмножество со свойством µ A (x )>0 , т.е. носитель A = {x/µ A (x )>0} , x E .

Элементы x E , для которых µ A (x )=0,5 называются точками перехода множества A .

Примеры нечетких множеств

1) Пусть E = {0,1,2,..,10}, M =. Нечеткое множество "несколько" можно определить следующим образом: "несколько " = 0,5/3+0,8/4+1/5+1/6+0,8/7+0,5/8; его характеристики: высота = 1 , носитель = {3,4,5,6,7,8}, точки перехода - {3,8}.

2) Пусть E = { 0,1,2,3,...,n ,...}. Нечеткое множество "малый " можно определить:

"малый" = .

3) Пусть E = {1,2,3,...,100} и соответствует понятию "возраст ", тогда нечеткое множество "молодой ", может быть определено с помощью

4) Нечеткое множество "молодой " на универсальном множестве E" ={Иванов, Петров, Сидоров ,...} задается с помощью функции принадлежности µ "молодой " (x ) на E = {1,2,3,..100} (возраст), называемой по отношению к E" функцией совместимости, при этом:

µ "молодой" (Сидоров )= µ "молодой" (x ), где x - возраст Сидорова.

5) Пусть E = {Запорожец, Жигули, Мерседес ,....} - множество марок автомобилей, а E" = , формируя векторную функцию принадлежности { µ A (x 1 ), µ A (x 2 ),... µ A (x 9 )}.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкретное лицо и каждый должен дать один из двух ответов: "этот человек лысый " или "этот человек не лысый ", тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение µ "лысый" (данного лица). (В этом примере можно действовать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц).

Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравнений. Если бы значения функций принадлежности были нам известны, например, µ A (x i ) = w i , i =1,2,...,n , то попарные сравнения можно представить матрицей отношений A = {a ij }, где a ij =w i /w j (операция деления).

На практике эксперт сам формирует матрицу A , при этом предполагается, что диагональные элементы равны 1, а для элементов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в n раз сильнее чем другой, то этот последний должен быть в 1/n раз сильнее, чем первый. В общем случае задача сводится к поиску вектора w , удовлетворяющего уравнению вида А w = λ max w , где λ max - наибольшее собственное значение матрицы A . Поскольку матрица А положительна по построению, решение данной задачи существует и является положительным.

Пример. Рассмотрим нечеткое множество A , соответствующее понятию «расход теплоносителя небольшой». Объект x - расход теплоносителя, x0; x max - множество физически возможных значений скорости изменения температуры. Эксперту предъявляются различные значения расхода теплоносителя x и задается вопрос: с какой степенью уверенности 0 ≤ μ A (x) ≤ 1 эксперт считает, что данный расход теплоносителя x небольшой. При μ A (x) = 0 - эксперт абсолютно уверен, что расход теплоносителя x небольшой. При μ A (x) = 1 - эксперт абсолютно уверен, что расход теплоносителя x нельзя классифицировать как небольшой.

Операции над нечеткими множествами

Включение .

Пусть A и B - нечеткие множества на универсальном множестве E.

Говорят, что A содержится в B , если .

Обозначение : .

Иногда используют термин "доминирование ", т.е. в случае когда A Ì B , говорят, что B доминирует A .

Равенство .

A и B равны, если " x Î E m A (x ) = m B (x ).

Обозначение : A = B .

Дополнение.

Пусть М = , A и B - нечеткие множества, заданные на E . A и B дополняют друг друга, если

" x Î E m A (x ) = 1 - m B (x ).

Обозначение : или.

Очевидно, что. (Дополнение определено для M = , но очевидно, что его можно определить для любого упорядоченного M ).

Пересечение .

A ÇB - наибольшее нечеткое подмножество, содержащееся одновременно в A и B .

m A Ç B(x ) = min(m A (x ), m B (x )).

Объединение.

А È В - наименьшее нечеткое подмножество, включающее как А , так и В , с функцией принадлежности:

m A È B(x ) = max(m A (x ), m B (x )).

Разность.

А - B = А Ç с функцией принадлежности:

m A-B (x ) = m A Ç (x ) = min(m A (x ), 1 - m B (x )).

Дизъюнктивная сумма.

А Å B = (А - B) È (B - А) = (А Ç ) È (Ç B) с функцией принадлежности:

m A-B (x ) = max{; }

Примеры.

A = 0,4/ x 1 + 0,2/ x 2 +0/ x 3 +1/ x 4 ;

B = 0,7/ x 1 +0,9/ x 2 +0,1/ x 3 +1/ x 4 ;

C = 0,1/ x 1 +1/ x 2 +0,2/ x 3 +0,9/ x 4 .

A Ì B , т.е. A содержится в B или B доминирует A , С несравнимо ни с A , ни с B , т.е. пары {A, С } и {A, С } - пары недоминируемых нечетких множеств.

0,6/ x 1 + 0,8/x 2 + 1/x 3 + 0/x 4 ;

0,3/x 1 + 0,1/x 2 + 0,9/x 3 + 0/x 4 .

A Ç B = 0,4/x 1 + 0,2/x 2 + 0/x 3 + 1/x 4 .

А È В = 0,7/x 1 + 0,9/x 2 + 0,1/x 3 + 1/x 4 .

А - В = А Ç = 0,3/x 1 + 0,1/x 2 + 0/x 3 + 0/x 4 ;

В - А В = 0,6/x 1 + 0,8/x 2 + 0,1/x 3 + 0/x 4 .

А Å В = 0,6/x 1 + 0,8/x 2 + 0,1/x 3 + 0/x 4 .

Наглядное представление операций над нечеткими множествами

Для нечетких множеств можно строить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значения m A (x ) , на оси абсцисс в произвольном порядке расположены элементы E (мы уже использовали такое представление в примерах нечетких множеств). Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.

На верхней части рисунка заштрихованная часть соответствует нечеткому множеству A и, если говорить точно, изображает область значений А и всех нечетких множеств, содержащихся в A . На нижней - даны, A Ç , A È .

Свойства операций È и Ç.

Пусть А, В, С - нечеткие множества, тогда выполняются следующие свойства:

Коммутативность;

Ассоциативность;

Идемпотентность;

Дистрибутивность;

A ÈÆ = A , где Æ - пустое множество , т.е. (x) = 0 " >x Î E ;

A Ç E = A , где E - универсальное множество;

Теоремы де Моргана.

В отличие от четких множеств, для нечетких множеств в общем случае:

Замечание. Введенные выше операции над нечеткими множествами основаны на использовании операций max и min . В теории нечетких множеств разрабатываются вопросы построения обобщенных, параметризованных операторов пересечения, объединения и дополнения, позволяющих учесть разнообразные смысловые оттенки соответствующих им связок "и ", "или ", "не ".

Расстояние между нечеткими множествами

Пусть A и B - нечеткие подмножества универсального множества E . Введем понятие расстояния r(A , B ) между нечеткими множествами. При введении расстояния обычно предъявляются следующие требования:

r(A, B ) ³ 0 - неотрицательность;

r(A, B ) = r(B, A ) - симметричность;

r(A, B ) < r(A, C ) + r(C, B ).

К этим трем требованиям можно добавить четвертое: r(A, A ) = 0.

Евклидово или квадратичное расстояние:

e(A, B ) = , e(A, B )Î.

Перейдем к индексам нечеткости или показателям размытости нечетких множеств.

Если объект х обладает свойством R (порождающим нечеткое множество A ) лишь в частной мере, т.е.

0< m A (x ) <1, то внутренняя неопределенность, двусмысленность объекта х в отношении R проявляется в том, что он, хотя и в разной степени, принадлежит сразу двум противоположным классам: классу объектов, "обладающих свойством R ", и классу объектов, "не обладающих свойством R ". Эта двусмысленность максимальна, когда степени принадлежности объекта обеим классам равны, т.е. m A (x ) = (x ) = 0,5, и минимальна, когда объект принадлежит только одному классу, т.е. либо m A (x ) = 1 и (x ) = 0, либо m A (x ) = 0 и (x ) = 1.

3. Лингвистическая переменная

В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются ТЕРМАМИ. Так, значением лингвистической переменной ДИСТАНЦИЯ являются термы ДАЛЕКО, БЛИЗКО и т. д.

Конечно, для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Пусть, например, переменная ДИСТАНЦИЯ может принимать любое значение из диапазона от 0 до 60 метров. Как же нам поступить? Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет СТЕПЕНЬ ПРИНАДЛЕЖНОСТИ данного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной ДИСТАНЦИЯ. В нашем случае расстоянию в 50 метров можно задать степень принадлежности к терму ДАЛЕКО, равную 0,85, а к терму БЛИЗКО - 0,15. Конкретное определение степени принадлежности возможно только при работе с экспертами. При обсуждении вопроса о термах лингвистической переменной интересно прикинуть, сколько всего термов в переменной необходимо для достаточно точного представления физической величины. В настоящее время сложилось мнение, что для большинства приложений достаточно 3-7 термов на каждую переменную. Минимальное значение числа термов вполне оправданно. Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Для большинства применений этого вполне достаточно. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число же 7 обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.

Понятие нечеткой и лингвистической переменных используется при описании объектов и явлений с помощью нечетких множеств.

Нечеткая переменная характеризуется тройкой <α, X, A>, где

α - наименование переменной,

X - универсальное множество (область определения α),

A - нечеткое множество на X, описывающее ограничения (т.е. μ A (x )) на значения нечеткой переменной α.

Лингвистической переменной называется набор <β ,T,X,G,M>, где

β - наименование лингвистической переменной;

Т - множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X.

Множество T называется базовым терм-множеством лингвистической переменной;

G - синтаксическая процедура, позволяющая оперировать элементами терм-множества T, в частности, генерировать новые термы (значения). Множество TÈ G(T), где G(T) - множество сгенерированных термов, называется расширенным терм-множеством лингвистической переменной;

М - семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой G, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.

Замечание. Чтобы избежать большого количества символов

символ β используют как для названия самой переменной, так и для всех ее значений;

пользуются одним и тем же символом для обозначения нечеткого множества и его названия, например терм "молодой ", являющийся значением лингвистической переменной β = "возраст ", одновременно есть и нечеткое множество М ("молодой ").

Присвоение нескольких значений символам предполагает, что контекст позволяет разрешить возможные неопределенности.

Пример: Пусть эксперт определяет толщину выпускаемого изделия с помощью понятий "малая толщина ", "средняя толщина " и "большая толщина ", при этом минимальная толщина равна 10 мм, а максимальная - 80 мм.

Формализация такого описания может быть проведена с помощью следующей лингвистической переменной < β, T, X, G, M>, где

β - толщина изделия;

T - {"малая толщина ", "средняя толщина ", "большая толщина "};

G - процедура образования новых термов с помощью связок "и ", "или " и модификаторов типа "очень ", "не ", "слегка " и др. Например: "малая или средняя толщина ", "очень малая толщина " и др.;

М - процедура задания на X = нечетких подмножеств А 1 ="малая толщина ", А 2 = "средняя толщина ", А 3 ="большая толщина ", а также нечетких множеств для термов из G(T) в соответствии с правилами трансляции нечетких связок и модификаторов "и ", "или ", "не ", "очень ", "слегка " и др. операции над нечеткими множествами вида: А Ç В, АÈ В, CON А = А 2 , DIL А = А 0,5 и др.

Замечание. Наряду с рассмотренными выше базовыми значениями лингвистической переменной "толщина " (Т={"малая толщина ", "средняя толщина ", "большая толщина "}) возможны значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм ", "около 50 мм ", "около 70 мм ", т.е. в виде нечетких чисел .

Продолжение примера:

Функции принадлежности нечетких множеств:

"малая толщина" = А 1 , "средняя толщина "= А 2 , " большая толщина "= А 3 .

Функция принадлежности:

нечеткое множество "малая или средняя толщина " = А 1 ?А 1 .

4. Нечеткое число

Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел R с функцией принадлежности m A (x )Î, где x - действительное число, т.е. x Î R.

Нечеткое число А нормально , если μ A (x )=1, выпуклое , если для любых x≤y≤z выполняется μ A (x )≥ μ A (y )∩ μ A (z ).

Подмножество S A ÌR называется носителем нечеткого числа А, если

S = {x /μ A (x )>0}.

Нечеткое число А унимодально , если условие m A (x ) = 1 справедливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем , если

m A (0) = (m A (x )).

Нечеткое число А положительно , если "x Î S A , x >0 и отрицательно , если "x Î S A , x <0.

Операции над нечеткими числами

Расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел определяются через соответствующие операции для четких чисел с использованием принципа обобщения следующим образом.

Пусть А и В - нечеткие числа, и - нечеткая операция, соответствующая операции над обычными числами. Тогда

С = АB Ûm C (z )=(m A (x )Lm B (y ))).

С = Ûm C (z )=(m A (x )Lm B (y ))),

С = Û m C (z )=(m A (x )Lm B (y ))),

С = Û m C (z )=(m A (x )L m B (y ))),

С = Û m C (z )=(m A (x )Lm B (y ))),

С = Û m C (z )=(m A (x )Lm B (y ))),

С = Û m C (z )=(m A (x )Lm B (y ))).

Замечание. Решение задач математического моделирования сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удобства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стандартного вида.

Нечеткие множества, которыми приходится оперировать в большинстве задач, являются, как правило, унимодальными и нормальными. Одним из возможных методов аппроксимации унимодальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.

Список литературы

1. Орлов А.И. Теория принятия решений. Учебное пособие / А.И.Орлов.- М.: Издательство «Экзамен», 2005. - 656 с.

2. Борисов А. Н., Кроумберг О. А., Федоров И. П. Принятие решений на основе нечетких моделей: примеры использования. - Рига: Зинатве, 1990. - 184 с.

3. Андрейчиков А.В., Андрейчикова О.Н. Анализ, синтез, планирование решений в экономике — М.: Финансы и статистика, 2000. — 368 с.

4. Нечеткие множества в моделях управления и искусственного интеллекта/Под ред. Д. А. Поспелова. — М.: Наука, 1986. — 312 с.

5. Боросов А.Н. Принятие решений на основе нечетких моделей: Примеры использования. Рига: Зинанте, 1990.

6. Вопросы анализа и процедуры принятия решений/Под ред. И.Ф. Шахнова. М.: Мир, 1976.

7. Кофман А. Введение в теорию нечетких множеств/Пер, с франц. М,: Радио и связь, 1982.

9. Лебег А. Об измерении величин. - М.: Учпедгиз, 1960. - 204 с.

10. Орлов А.И. Основания теории нечетких множеств (обобщение аппарата Заде). Случайные толерантности. - В сб.: Алгоритмы многомерного статистического анализа и их применения. - М.: Изд-во ЦЭМИ АН СССР, 1975. - С.169-175.

Математическая теория нечетких множеств (fuzzy sets) инечеткая логика (fuzzy logic ) являются обобщениями классическойтеории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких иприближенных рассуждений при описании человеком процессов, систем, объектов.

Одной из основных характеристик нечеткой логики является лингвисти­ческая переменная, которая определяется набором вербальных (словесных) характеристик некоторого свойства. Рассмотрим лингвисти­ческую переменную «скорость», которую можно характеризовать через набор следующих по­нятий-значе­ний: «ма­лая», «средняя» и «большая», данные значения называются термами.

Следующей основополагающей характеристикой нечеткой логики является понятие функции принадлежности. Функция принадлежности определяет, насколько мы уверены в том, что данное значение лингвистической переменной (например, скорость) можно отнести к соответствующим ей категори­ям (в частности для лингвистической переменной скорость к категориям «малая», «средняя», «большая»).

На следующем рисунке (первая часть) отражено, как одни и те же значения лингвистической переменной могут соответствовать различным понятиям-значениям или термам. Тогда функции принадлежности, характеризующие нечеткие множества понятий скорости, можно выразить гра­фически, в более привычном математическом виде (рис. 35, вторая часть).

Из рисунка видно, что степень, с которой численное значение скорости, например v = 53, совместимо с понятием «большая», есть 0,7, в то время как совместимость значений скорости, рав­ных 48 и 45, с тем же понятием есть 0,5 и 0,1 соответственно.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Рисунок 1. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Рисунок 2. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке приведен пример описанной лингвистической переменной "Цена акции".

Рис. Описание лингвистической переменной "Цена акции".

Количество термов в лингвистической переменной редко превышает 7.

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

    Существует хотя бы одно правило для каждого лингвистического терма выходной переменной .

    Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида: R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1 … R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i … R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m , где x k , k=1..n – входные переменные; y – выходная переменная; A ik – термы соответствующих переменных с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

    Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.

    Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Под дефаззификацией понимается процедура преобразования нечетких величин, получаемых в результате нечеткого вывода, в четкие. Эта процедура является необходимой в тех случаях, где требуется интерпретация нечетких выводов конкретными четкими величинами, т.е. когда на основе функции принадлежности возникает потребность определить для каждой точки вZ числовые значения.

В настоящее время отсутствует систематическая процедура выбора стратегии дефаззификации. На практике часто используют два наиболее общих метода: метод центра тяжести (ЦТ - центроидный), метод максимума (ММ).

Для дискретных пространств в центроидном методе формула для вычисления четкого значения выходной переменной представляется в следующем виде:

Стратегия дефаззификации ММ предусматривает подсчет всех тех z , чьи функции принадлежности достигли максимального значения. В этом случае (для дискретного варианта) получим

где z - выходная переменная, для которой функция принадлежности достигла максимума;m - число таких величин.

Из этих двух наиболее часто используемых стратегий дефаззификации, стратегия ММ дает лучшие результаты для переходного режима, аЦТ - в установившемся режиме из-за меньшей среднеквадратической ошибки.

Пример нечеткого правила

Как работает.

По максимальному значению функций принадлежности (для скорости 60 км в час значение функции принадлежности «низкая» = 0, а для дорожных условий 75 % от нормы значение функции принадлежности «тяжелые» = около 0.7) по 0.7 проводится прямая которая рассекает геометрическую фигуру заключения (подача топлива) на две части, в результате берется фигура лежащая ниже прямой а верхняя часть отбрасывается. Это для одного правила, таких правил может быть 100 и более в реальных задачах.

Рассмотрим процесс получения нечеткого вывода по трем правилам одновременно с последующим получением чет­кого решения. Данная процедура включает в себя три этапа. На первом этапе получают нечеткие выводы по каждому из правил в отдельности по схеме, показанной на рис. 3.13. На втором эта­пе производится сложение результирующих функций, получен­ных на предыдущем этапе (применяется логическая операция ИЛИ, т.е. берется максимум). Третий этап - этап получения чет­кого решения (дефаззификация). Здесь применяется любой из известных классических методов: метод центра тяжести и т.д. Полученное в виде числового значения четкое решение служит задающей величиной системы управления. В нашем примере это будет величина, в соответствии с которой ИСУ должна бу­дет изменить подачу топлива. Процесс получения нечетких выводов по нескольким прави­лам с последующей дефаззификацией для рассматриваемого примера показан на рис. 3.14. При начальном значении скорости = 65 км в час, и дорожным условиям = 80 % от норматива получаем следующую схему решения об уровне подачи топлива.

Рис. 3.14. Процесс получения нечетких выводов по правилам и их преобразование в четкое решение.

Как видно из рис. 3.14, в результате дефаззификации получе­но четкое решение: при заданных значениях скорости и дорожных условий подача топлива должна составлять 63% от

максимального значения. Таким образом, несмотря на нечет­кость выводов, в итоге получено вполне четкое и определенное решение. Такое решение, вероятно, принял бы и водитель авто­мобиля в процессе движения. Данный пример демонстрирует великолепные возможности моделирования человеческих рас­суждений на основе методов теории нечетких множеств.

С.Д.Штовба "Введение в теорию нечетких множеств и нечеткую логику"

1.7. Нечеткая логика

Нечеткая логика это обобщение традиционной аристотелевой логики на случай, когда истинность рассматривается как лингвистическая переменная, принимающая значения типа: "очень истинно", "более-менее истинно", "не очень ложно" и т.п. Указанные лингвистические значения представляются нечеткими множествами.

1.7.1. Лингвистические переменные

Напомним, что лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации типа: "очень высокая температура"; "длительная поездка"; "быстрый ответ"; "красивый букет"; "гармоничный вкус" и т.п. Психологи установили, что в человеческом мозге почти вся числовая информация вербально перекодируется и хранится в виде лингвистических термов. Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

Определение 44. Лингвистическая переменная задается пятеркой , где - ; имя переменной; - ; терм-множество, каждый элемент которого (терм) представляется как нечеткое множество на универсальном множестве ; - ; синтаксические правила, часто в виде грамматики, порождающие название термов; - ; семантические правила, задающие функции принадлежности нечетких термов, порожденных синтаксическими правилами .

Пример 9. Рассмотрим лингвистическую переменную с именем "температура в комнате". Тогда оставшуюся четверку можно определить так:

Таблица 4 - Правила расчета функций принадлежности

Графики функций принадлежности термов "холодно", "не очень холодно", "комфортно", "более-менее комфортно", "жарко" и "очень жарко" лингвистической переменной "температура в комнате" показаны на рис. 13.

Рисунок 13 - Лингвистическая переменная "температура в комнате"

1.7.2. Нечеткая истинность

Особое место в нечеткой логике занимает лингвистическая переменная "истинность". В классической логике истинность может принимать только два значения: истинно и ложно. В нечеткой логике истинность "размытая". Нечеткая истинность определяется аксиоматически, причем разные авторы делают это по-разному. Интервал используется как универсальное множество для задания лингвистической переменной "истинность". Обычная, четкая истинность может быть представлена нечеткими множествами-синглтонами. В этом случае четкому понятию истинно будет соответствовать функция принадлежности , а четкому понятию ложно - ; , .

Для задания нечеткой истинности Заде предложил такие функции принадлежности термов "истинно" и "ложно":

;

где - ; параметр, определяющий носители нечетких множеств "истинно" и "ложно". Для нечеткого множества "истинно" носителем будет интервал , а для нечеткого множества ложно" - ; .

Функции принадлежности нечетких термов "истинно" и "ложно" изображены на рис. 14. Они построены при значении параметра . Как видно, графики функций принадлежности термов "истинно" и "ложно" представляют собой зеркальные отображения.

Рисунок 14 - Лингвистическая переменная "истинность" по Заде

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно":

Квантификаторы "более-менее" и "очень" часто применяют к нечеткими множествами "истинно" и "ложно", получая таким образом термы "очень ложно", "более-менее ложно", "более-менее истинно", "очень истинно", "очень, очень истинно", "очень, очень ложно" и т.п. Функции принадлежности новых термов получают, выполняя операции концентрации и растяжения нечетких множеств "истинно" и "ложно". Операция концентрации соответствует возведению функции принадлежности в квадрат, а операция растяжения - возведению в степень ½. Следовательно, функции принадлежности термов "очень, очень ложно", "очень ложно", "более-менее ложно", "более-менее истинно", "истинно", "очень истинно" и "очень, очень истинно" задаются так:

Графики функций принадлежности этих термов показаны на рис. 15.

Рисунок 15 - Лингвистическая переменная "истинность" по Балдвину

1.7.3. Нечеткие логические операции

Вначале кратко напомнить основные положения обычной (булевой) логики. Рассмотрим два утверждения A и B, каждое из которых может быть истинным или ложным, т.е. принимать значения "1" или "0". Для этих двух утверждений всего существует различных логических операций, из которых содержательно интерпретируются лишь пять: И (), ИЛИ (), исключающее ИЛИ (), импликация () и эквивалентность (). Таблицы истинности для этих операций приведены в табл. 5.

Таблица 5 - Таблицы истинности булевой логики

Предположим, что логическое утверждение может принимать не два значения истинности, а три, например: "истинно", "ложно" и "неопределенно". В этом случае мы будем иметь дело не с двухзначной, а трехзначной логикой. Общее количество бинарных операций, а, следовательно, и таблиц истинности, в трехзначной логике равно . Нечеткая логика является разновидностью многозначной логики, в которой значения истинности задаются лингвистическими переменными или термами лингвистической переменной "истинность". Правила выполнения нечетких логических операций получают из булевых логических операций с помощью принципа обобщения.

Определение 45. Обозначим нечеткие логические переменные через и , а функции принадлежности, задающие истинностные значения этих переменных через и , . Нечеткие логические операции И (), ИЛИ (),
НЕ () и импликация () выполняются по таким правилам:

;

В многозначной логике логические операции могут быть заданы таблицами истинности. В нечеткой логике количество возможных значений истинности может быть бесконечным, следовательно в общем виде табличное представление логических операций невозможно. Однако, в табличной форме можно представить нечеткие логические операции для ограниченного количества истинностных значений, например, для терм-множества {"истинно", "очень истинно", "не истинно", "более-менее ложно", "ложно"}. Для трехзначной логики с нечеткими значениями истинности T - ; "истинно", F - ; "ложно" и T+F - "неизвестно" Л Заде предложил такие лингвистические таблицы истинности:

Применяя правила выполнения нечетких логических операций из определения 45 можно расширить таблицы истинности для большего количества термов. Как это сделать рассмотрим на следующем примере.

Пример 10. Заданы следующие нечеткие истинностные значения:

Применяя правило из определения 45, найдем нечеткую истинность выражения "почти истинно ИЛИ истинно":

Сравним полученное нечеткое множество с нечетким множеством "более-менее истинно". Они почти равны, значит:

В результате выполнения логических операций часто получается нечеткое множество, которое не эквивалентно ни одному из ранее введенных нечетких значений истинности. В этом случае необходимо среди нечетких значений истинности найти такое, которое соответствует результату выполнения нечеткой логической операции в максимальной степени. Другими словами, необходимо провести так называемую лингвистическую аппроксимацию , которая может рассматриваться как аналог аппроксимации эмпирического статистическими распределения стандартными функциями распределения случайных величин. В качестве примера приведем предложенные Балдвином лингвистические таблицы истинности для показанных на рис. 15 нечетких значений истинности:

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

очень истинно

очень истинно

более-менее истинно

более-менее истинно

1.7.3. Нечеткая база знаний

Определение 46. Нечеткой базой знаний называется совокупность нечетких правил "Если - то", определяющих взаимосвязь между входами и выходами исследуемого объекта. Обобщенный формат нечетких правил такой:

Если посылка правила, то заключение правила.

Посылка правила или антецедент представляет собой утверждение типа "x есть низкий", где "низкий" - ;это терм (лингвистическое значение), заданный нечетким множеством на универсальном множестве лингвистической переменной x. Квантификаторы "очень", "более-менее", "не", "почти" и т.п. могут использоваться для модификации термов антецедента.

Заключение или следствие правила представляет собой утверждение типа "y есть d", в котором значение выходной переменной (d) может задаваться:

  1. нечетким термом: "y есть высокий";
  2. классом решений: "y есть бронхит"
  3. четкой константой: "y=5";
  4. четкой функцией от входных переменных: "y=5+4*x".

Если значение выходной переменной в правиле задано нечетким множеством, тогда правило может быть представлено нечетким отношением. Для нечеткого правила "Если x есть , то y есть ", нечеткое отношение задается на декартовом произведении , где - ; универсальное множество входной (выходной) переменной. Для расчета нечеткого отношения можно применять нечеткую импликацию и t-норму. При использовании в качестве t-нормы операции нахождения минимума, расчет нечеткого отношения осуществляется так:

Пример 11. Следующая нечеткая база знаний описывает зависимость между возрастом водителя (x) и возможностью дорожно-транспортного происшествия (y):

Если x = Молодой, то y = Высокая;

Если x = Средний, то y = Низкая;

Если x = Очень старый, то y = Высокая.

Пусть функции принадлежностей термов имеют вид, показанный на рис. 16. Тогда нечеткие отношения, соответствующие правилам базы знаний, будут такими, как на рис. 17.

Рисунок 16 - Функции принадлежности термов

Рисунок 17 - Нечеткие отношения, соответствующие правилам базы знаний из примера 11

Для задания многомерных зависимостей "входы-выходы" используют нечеткие логические операции И и ИЛИ. Удобно правила формулировать так, чтобы внутри каждого правил переменные объединялись логической операцией И, а правила в базе знаний связывались операцией ИЛИ. В этом случае нечеткую базу знаний, связывающую входы с выходом , можно представить в следующем виде.

механизмы мышления, заметили, что в действительности существует не одна логика (например, булева), а столько, сколько мы пожелаем, потому что все определяется выбором соответствующей системы аксиом. Конечно, как только аксиомы выбраны, все утверждения, построенные на их основе, должны быть строго, без противоречий увязаны друг с другом согласно правилам, установленным в этой системе аксиом.

Человеческое мышление - это совмещение интуиции и строгости, которое, с одной стороны, рассматривает мир в целом или по аналогии, а с другой стороны - логически и последовательно и, значит, представляет собой нечеткий механизм. Законы мышления, которые мы захотели бы включить в программы компьютеров, должны быть обязательно формальными; законы мышления, проявляемые в диалоге человека с человеком - нечеткие. Можем ли мы поэтому утверждать, что нечеткая логика может быть хорошо приспособлена к человеческому диалогу? Да - если математическое обеспечение , разработанное с учетом нечеткой логики , станет операционным и сможет быть технически реализовано, то человеко-машинное общение станет намного более удобным, быстрым и лучше приспособленным к решению проблем.

Термин " нечеткая логика " используется обычно в двух различных значениях. В узком смысле, нечеткая логика - это логическое исчисление, являющееся расширением многозначной логики. В ее широком смысле, который сегодня является преобладающим в использовании, нечеткая логика равнозначна теории нечетких множеств. С этой точки зрения, нечеткая логика в узком смысле является разделом нечеткой логики в широком смысле.

Определение . Любая нечеткая переменная характеризуется тройкой

Где - название переменной, - универсальное множество , - нечеткое подмножество множества , представляющее собой нечеткое ограничение на значение переменной , обусловленное .

Используя аналогию с саквояжем, нечеткую переменную можно уподобить саквояжу с ярлыком, имеющим "мягкие" стенки. Тогда - надпись на ярлыке (название саквояжа), - список предметов, которые в принципе можно поместить в саквояж, а - часть этого списка, где для каждого предмета указано число , характеризующее степень легкости, с которой предмет можно поместить в саквояж .

Рассмотрим теперь различные подходы к определению основных операций над нечеткими переменными , а именно конъюнкции, дизъюнкции и отрицания. Данные операции являются основными для нечеткой логики в том смысле, что все ее конструкции основываются на этих операциях. В настоящее время в нечеткой логике в качестве операций конъюнкции и дизъюнкции широко используют -нормы и -конормы, пришедшие в нечеткую логику из теории вероятностных метрических пространств. Они достаточно хорошо изучены и лежат в основе многих формальных построений нечеткой логики . В то же время расширение области приложений нечеткой логики и возможностей нечеткого моделирования вызывает необходимость обобщения этих операций. Одно направление связано с ослаблением их аксиоматики с целью расширения инструментария нечеткого моделирования. Другое направление обобщения операций конъюнкции и дизъюнкции нечеткой логики связано с заменой множества значений принадлежности на линейно или частично упорядоченное множество лингвистических оценок правдоподобности. Эти обобщения основных операций нечеткой логики , с одной стороны, вызываются необходимостью разработки экспертных систем, в которых значения истинности фактов и правил описываются экспертом или пользователем непосредственно в лингвистической шкале и носят качественный характер. С другой стороны, такие обобщения вызываются смещением направления активного развития нечеткой логики от моделирования количественных процессов, поддающихся измерению, к моделированию процессов мышления человека, где восприятие мира и принятие решений происходит на основе гранулирования информации и вычисления словами.

Естественным обобщением инволютивных операций отрицания нечеткой логики являются неиволютивные отрицания. Они представляют самостоятельный интерес и рассматриваются в нечеткой и других неклассических логиках. Необходимость исследования подобных операций отрицания вызывается также введением в рассмотрение обобщенных операций конъюнкции и дизъюнкции, связанных друг с другом с помощью операции отрицания .