Оптимальное значение целевой функции называется. Решение задачи линейного программирования графически

Линейное программирование.

Краткие теоретические сведения

Постановка задач

Решение прямой задачи линейного программирования отвечает на следующий вопрос:

при каких интенсивностяхn процессов получения прибыли (оказании различных услуг, производственных процессов), в которых используютсяm видов ресурсов (факторов производства) с известными предельными интенсивностями использования этих ресурсов выручка от реализации (прибыль) будет максимальна в случае, когда интенсивность расхода каждого ресурса и интенсивность получения прибыли (выручки) в каждом из процессов линейно зависят от интенсивности этого процесса.

Решение двойственной к ней задачи отвечает на следующий вопрос:

при каких наименьших ценах на единицу ресурса экономическому агенту будет невыгодно дальнейшее расширение процесса получения прибыли за счёт приобретения новых объёмов дефицитных в сложившихся условиях экономической деятельности ресурсов.

Прямая задача линейного программирования может быть связана со следующей ситуацией. Имеются n способов получения прибыли (оказание n видов услуг) с объёмами x i (число штук i -й оказанных услуг) . При этом используются m видов ресурсов, запас j -го изкоторых равен b j . При этом расход каждого ресурса j и величина прибыли в каждом из процессов i линейно зависят от количества оказанных услуг i -го вида с коэффициентами a ji и c i , соответственно. Матрица А =(a ji ) m ´ n по смыслу аналогична такой же из первой части и также называется матрицей технологических, или структурных коэффициентов. Тогда оптимальный по критерию максимума получения прибыли план может быть получен из решения следующей прямой задачи линейного программирования:

Этой задаче можно поставить в соответствие расширенную матрицу следующего вида:

(4.1)

Двойственная к задаче (4) задача имеет следующий вид (z j – искомые предельные цены):

При такой формулировке двойственной задачи из условия минимизации цен вытекают (5.1) и (5.3), а из условия невыгодности продолжения деятельности прямо возникает условие превышения или равенства издержек над выручкой от реализации.

Основные понятия модели

Решение (план, программа)- набор, вектор конкретных значений всех переменных параметров управления модели – тех величин которые могут быть изменены по воле управляющего объектом моделирования. Решения бывают допустимые (реализуемые на практике), недопустимые (не реализуемые в силу существующих в модели ограничений) и оптимальные (лучшие из допустимых).

Целевая функция L(x) – математическое выражение, связывающее факторы (параметры) модели. Экономический смысл целевой функции отражает критерий оптимальности – показатель, имеющий экономическое содержание и служащий формализацией конкретной цели управления, например: максимизация прибыли (строка 1 в (4)), максимизация качества продукции или минимизация издержек (5.1).


Система ограничений модели – пределы, ограничивающие область допустимых (приемлемых, осуществимых) решений , фиксирующие основные внутренние и внешние свойства объекта, связанные с целью оптимизации. Уравнения связи (типа f j (x) )– математическая формализация системы ограничений (строки 2 и 3 в (4), (5.2 , 5.3)). Система ограничений отражает экономический смысл уравнений связи.

Система, состоящая из целевой функции и уравнений связи, -задача экономико- математического моделирования (ЭММ). В случае, когда целевая функция и уравнения связи линейны, а переменные управления меняются непрерывно, задача ЭММ называетсязадачей линейного программирования (ЛП) . Основное свойство множества допустимых планов (МДП) задачи ЛП - оно является выпуклым многогранником. Выпуклым называется множество, которому принадлежат все отрезки, соединяющие любые две точки этого множества. Если задача ЛП имеет решение, то оно находится в вершине МДП. Планы, находящиеся в вершинах МДП, называются базовыми. Задачи линейного программирования делятся на задачи с ограничениями в форме неравенств (общая задача ЛП) и в форме равенств (каноническая задача ЛП). При математической формализации экономических задач с помощью линейной модели получаются общие задачи ЛП – например, (4), (5). Любой общей задаче путём введения дополнительных переменных может быть сопоставлена каноническая задача. Так, задаче (4) путём введения в каждое неравенство типа “расход ресурса £ запас ресурса” (строка 2 в (4)) дополнительной переменной x n+j (неизрасходованный остаток j -го ресурса) сопоставляется следующая каноническая:

При этом размерность задачи (6) – число переменных плана - по сравнению с (4) увеличилась с n до n+m .

При решении задачи (4) важное значение имеют коэффициенты ресурсоотдачи, среди которых здесь будут использованы дифференциальные и приростные. Дифференциальный коэффициент ресурсоотдачи k ji показывает стоимость оказанных при использовании единицы j -го ресурса i –ых услуг. Те виды услуг, для которых все k ji оказываются наименьшими по всем видам услуг, являются наименее выгодными. Они не должны присутствовать в оптимальном плане. Это позволяет, путём принудительного обнуления объёмов оказания таких услуг снизить размерность задачи и, таким образом, упростить её решение. Вычисляются они следующим образом - k ji =c i /a ji .

приростной коэффициент ресурсоотдачи К j – это коэффициент пропорциональности между приращением значения целевой функции оптимального плана и вызвавшим это приращение изменением запасов j -го ресурса. Можно считать, что К j показывают, на сколько увеличится значение целевой функции исходной задачи в оптимальном плане при увеличении величины запаса j -го ресурса на единицу. С математической точки зрения является полной производной от оптимального значения целевой функции по величине запаса j -го ресурса: К j =dL opt /db j .

Являясь централизованным, выполняет следующие функции функцию регулирования цен между новой и серийной продукцией функцию целевого и постоянного обеспечения -процесса производства новой техники денежными средствами функцию перераспределения средств по освоению новой техники между предприятиями, в различной степени участвующими в освоении новой техники.  

Что касается расходов государства, то они представляют целевые фонды денежных средств , ассигнованные и фактически использованные государством для реализации своих функций. К основным функциям целевых расходов относят  

Перейдем теперь к описанию целевых функций. Целевая функция ПМ  

Целевая функция. Целевая функция определяет задачу, которая должна быть решена в процессе оптимизации. Например, в этой главе мы занимаемся минимизацией риска портфеля активов. Типичной целевой функцией для портфеля рискованных активов будет  

ФУНКЦИЯ ЦЕЛЕВАЯ - это функция, которая связывает цель (оптимизируемую переменную) и управляемые переменные в задаче оптимизации.  

Первое выражение называется целевой функцией (равно произведению прибыли на единицу продукта с,- на выпуск этого продукта Xj). Остальные уравнения составляют линейные ограничения , которые означают, что расход сырья, полуфабрикатов, качество продукции , мощности, т. е. исходные ресурсы, не должны превышать заранее установленных величин / /. Коэффициенты а,7 - постоянные величины , показывающие расход ресурса на /-и продукт. Задача может быть решена при неотрицательности переменных и при числе неизвестных большем, чем число ограничений. Если последнее условие не удовлетворяется, то задача является несовместной.  

В качестве целевой функции принимаем выработку автобензина А-76  

Целевая функция имеет вид  

Поскольку от объема производства зависят переменные затраты , то максимизации подлежит разность между ценой и переменными затратами . Условно-постоянные расходы (амортизационные отчисления , затраты па текущий ремонт , заработная плата с начислениям общецеховые и общезаводские расходы) в модель не включают и вычитают из целевой функции, полученной на ЭВМ. Если в качестве неизвестных принята длительность работы установки по каждому варианту, то рассчитывают переменные затраты на один день ее работы.  

Условие (4,56) характеризует целевую функцию, те максимальную разность между оптовой ценой и себестоимостью товарных бензинов.  

В качестве целевой функции при решении данной задачи может быть как максимум прибыли по предприятию (4.52), так и максимум объема производства товарной продукции в стоимостном выражении (4.53)  

Приведенная модель расчета себестоимости является одновременно и моделью расчета прибыли предприятия. Однако основной эффект реализации расчета себестоимости на ЭВМ состоит в возможности использования результатов этого расчета для оптимизации производственной программы предприятия . В данном случае в качестве целевой функции может быть принят максимум прибыли от реализации продукции . Оптимизируя производственную программу , необходимо максимизировать функцию вида  

Преимущества и недостатки структуры, ориентированной на покупателя, в общем те же, что и у продуктовой структуры , если учесть различия, связанные с разной целевой функцией.  

Так как интегральную энергоемкость определяют с учетом энергозатрат прямых и опосредованных (через материальные, технические и трудовые ресурсы), то и в суммарной народнохозяйственной экономии учитывают снижение энергоемкости каждого из расходуемых и используемых ресурсов. Энергоемкость каждого целевого эффекта (продукта, услуги) рассчитывают как сумму энергоемкостей по стадиям его формирования. Например, энергоемкость трубы складывается из энергоемкости добычи руды, выплавки стали, проката листа и собственно изготовления трубы и измеряется в килограммах условного топлива на 1 руб. ее стоимости. Существующие формы учета и предложенная методика позволяют определить эти показатели для любого продукта, услуги и т.д. Таким образом, для экономии энергии необходимо снизить расход производственных ресурсов всех видов при достижении заданного целевого эффекта. Эти ресурсы и конечный целевой эффект измеряют в стоимостном выражении. Затраты на них зависят от масштаба применяемой технологии, уровня срвершенства технических средств , в которых реализуется главная целевая функция - целевой технологический процесс , числа масштабности и разветвленности вспомогательных функций, обеспечивающих выполнение главной функции, а также уровня применяемой техники и технологии.  

Выражение (I) обычно наз. исходной системой уравнений и неравенств, а выражение (II) - функционалом задачи линейного программирования или целевой функцией. Целевая функция является критерием оптимальности . Первая группа неравенств системы (I) позволяет учесть в расчете ограничения в существующих на начало планируемого периода мощностях топливодобывающих предприятий. Вторая группа неравенств учиты-  

К М. м. в з. и. относят след, разделы прикладной математики математическое программирование , теорию игр, теорию массового обслуживания , теорию расписании , теорию управления запасами и теорию износа п замены оборудования . М а т е м а т и ч. (или оптимальное) п р о г р а м м н р о в а н и о разрабатывает теорию и методы решения условных экстремальных адач, является осн. частью формального аппарата анализа разнообразных задач управления , планирования и проектирования. Играет особую роль в задачах оптимизации планирования нар. х-ва и управления нронз-вом. Задачи планирования экономики п управления техникой сводятся обычно к выбору совокупности чисел (т. н. параметров управления), обеспечивающих оптимум пек-рой функции (целевой функции пли показателя качества решения) при ограничениях вида равенств и неравенств, определяемых условиями работы системы . В зависимости от свойств функций, определяющих показатель качества и ограничения задачи, математич. программирование делится на линейное и нелинейное. Задачи, и к-рых целевая функция - линейная, а условия записываются в виде линейных равенств и неравенств, составляют предмет линейного программа-ронпии.ч. Задачи, в к-рых показатель качества решения или нек-рые из функций, определяющих ограничения, нелинейны, относятся к н е л и н е и н о м у п р о-г р а м м и [) о н а н п го. Нелинейное программирование , в свою очередь, делится на выпуклое и невынуклое программирование. В зависимости от того, являются лп исходные параметры, характеризующие условия задачи, вполне определёнными числами или случайными величинами , в математич. программировании различаются методы управления и планирования в условиях полной и неполной информации . Методы постановки и решения условных экстремальных задач , условия к-рых содержат случайные параметры, составляют предмет с т о х а с т и ч о с к о г о п р о г р а м м и р о в а-  

Цель модели - максимизация суммарного дисконтированного чистого дохода (до на-огов) для совокупности месторождений и газопроводных систем при заданных ехнологических и экономических ограничениях. Модель позволяет использовать льтернативные критерии - минимизации взвешенной суммы отклонений от заданного начения целевой функции (целевое программирование) расчеты могут проводиться ля заданного уровня инвестиций, для заданного уровня добычи, для заданного начения ДЧД.  

Успех такой деловой женщины зависит от того, насколько администрацией будутугаданы возможные поприща, способные дать удовлетворение трудом. Замечено, что женщины хорошо справляются с функциями, требующими общения с людьми, если же это еще и интеллектуальная деятельность -учительница, журналист, экскурсовод и т. п. - то высокая эффективность их труда и положительная ими самими оценка почти наверняка совпадут. В Японии женщинам редко удается получить инженерное, естественно-научное образование, особенно по современным, наиболее перспективным специальностям, тем не менее их включение в широко распростра-няющиеся подвижные целевые группы по решению нестандартных задач оказывается продуктивным. Изобретательность женского ума замечена давно и во всех странах. В Японии же, когда хотят привести яркое тому доказательство, вспоминают конкурс, объявленный известной фирмой "Адзи-но мото". Она предложила большой денежный приз за подсказку, как увеличить продажи, выпускаемой ею приправы, с виду похожей на соль и продаваемой в подобии солонок. Люди писали трактаты, привлекали всевозможные научные знания. Но победительницей стала домохозяйка, ответ которой уместился в одной строке "Сделать покрупнее дырки у солонки".  

Переменные задачи

Построим модель задачи.

Решение

Прежде чем построить математическую модель задачи, ᴛ.ᴇ. записать ее с помощью математических символов, крайне важно четко разобраться с экономической ситуацией, описанной в условии. Для этого крайне важно с точки зрения экономики, а не математики, ответить на следующие вопросы:

1) Что является искомыми величинами задачи?

2) Какова цель решения? Какой параметр задачи служит критерием эффективности (оптимальности) решения, к примеру, прибыль, себестоимость, время и т.д. В каком направлении должно изменяться значение этого параметра (к max или к min) для достижения наилучших результатов?

3) Какие условия в отношении искомых величин и ресурсов задачи должны быть выполнены?

Эти условия устанавливают, как должны соотноситься друг с другом различные параметры задачи, к примеру, количество ресурса, затраченного при производстве, и его запас на складе; количество выпускаемой продукции и емкость склада, где она будет храниться; количество выпускаемой продукции и рыночный спрос на эту продукцию и т.д.

Только после экономического ответа на всœе эти вопросы можно приступать к записи этих ответов в математическом виде, ᴛ.ᴇ. к записи математической модели.

В задаче требуется установить, сколько краски каждого вида нужно производить. По этой причине искомыми величинами, а значит, и переменными задачи являются суточные объёмы производства каждого вида красок:

x1 – суточный объём производства краски 1-го вида, [т краски/сутки];

x2 – суточный объём производства краски 2-го вида, [т краски/сутки].

В условии задачи сформулирована цель – добиться максимального дохода от реализации продукции. Т.е. критерием эффективности служит параметр суточного дохода, который должен стремиться к максимуму. Чтобы рассчитать величину суточного дохода от продажи красок обоих видов, крайне важно знать объёмы производства красок, ᴛ.ᴇ. x1 и x2 т краски в сутки, а также оптовые цены на краски 1-го и 2-го видов – согласно условию, соответственно 3 и 2 тыс. руб. за 1 т краски. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, доход от продажи суточного объёма производства краски 1-го вида равен 3 x 1 тыс. руб. в сутки, а от продажи краски 2-го вида – 2x 2 тыс. руб. в сутки. По этой причине запишем целœевую функцию в виде суммы дохода от продажи красок 1-го и 2-го видов (при допущении независимости объёмов сбыта каждой из красок)

Целевая функция - понятие и виды. Классификация и особенности категории "Целевая функция" 2017, 2018.

  • - Основные понятия. Критерии эффективности. Целевая функция

    ГЛАВА 16. ЭФФЕКТИВНОСТЬ МЕНЕДЖМЕНТА КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Чем вызвана необходимость внешнеэкономической деятельности предприятия? 2. Что благоприятствует внешнеэкономической деятельности предприятия? 3. Что является препятствием для... .


  • - В нашем примере целевая функция имеет вид

    F(X) = 75X1 + 800/X1 + 78X2 + 1600/X2 . Функция выпукла, если F"(x)>0 для любого x. Проверим: ; ; ; . Значит, функция выпукла, поскольку "x>0. Следовательно, выбор оптимального числа поездов на двух участках оказывается задачей выпуклого программирования, которая может быть решена... .


  • - Целевая функция потребления и моделирование поведения потребителей

    В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе...

  • Действие системы, ее поведение характеризуются не только установлением факта достижения цели, но и степенью ее достижения, определяемой с помощью целевой функции.

    Целевая функция – есть обобщенный показатель системы, который характеризует степень достижения системой ее цели. Составление целевой функции одна из важнейших задач при проектировании системы. Однако нет общей теории построения целевых функций, есть только некоторые рекомендации.

    Целевая функция составляется по указаниям ТЗ о критерии оптимизации путем анализа внешних параметров системы и ограничений на них.

    Целевая функция должна существенно зависеть от внешних параметров или части их. В противном случае оптимизация по данной целевой функции не имеет смысла. Целевая функция представляет вектор в m -мерном пространстве внешних параметров системы

    Обычно целевая функция задается в скалярном виде.

    Используются следующие четыре формы целевой функции.

    1. Наиболее часто используется целевая функция одного внешнего параметра

    В этом случае целевая функция просто равна одному из внешних параметров или его обратной величине

    Все остальные (m – 1) внешних параметров переводятся в систему ограничений.

    Физический смысл целевой функции приведенных видов заключается в том, что чем больше (или меньше) параметр y i , тем лучше при прочих равных условиях данная система, причем равенство прочих условий понимается в смысле ограничений на остальные внешние параметры. Типичные задачи с приведенной формой целевой функции: оптимизация системы по надежности (y = P (t )), помехоустойчивости, стоимости и другим внешним параметрам. Такая целевая функция имеет ясный физический (технический или экономический) смысл, объективно характеризует систему и поэтому часто используется. То есть в этом случае целевой функцией является внешний параметр системы. Он и называется целевой функцией системы. Это могут быть: точность, быстродействие, время, стоимость, надежность, масса, габариты, какой-то технологический показатель и т.п.

    2. Вторая форма целевой функции – это сумма параметров одной размерности или сумма функций от этих параметров

    Такая форма характерна при оптимизации по экономическим критериям, по критериям сложности и т.п.

    Например, при минимизации годовых приведенных затрат на систему целевая функция представляет собой сумму двух внешних параметров: годовых эксплуатационных расходов и капитальных затрат, отнесенных к сроку окупаемости системы. В этом случае каждый из этих внешних параметров системы является сложной функцией ее внутренних (подлежащих нахождению) параметров.

    Целевые функции задач оптимизации по критерию сложности также имеют вторую форму, т.к. они представляются в виде суммы сложностей отдельных подсистем или блоков системы.

    3. Третья форма целевой функции – ранжированная форма – представляет собой упорядоченную совокупность целевых функций первой формы с приоритетами

    Первая целевая функция наиболее важная, последняя целевая функция наименее важная.

    В частном случае целевая функция этого вида записывается так:

    Пример ранжирования – это (например) такая последовательность целевых функций: точность, надежность, стоимость. Смысл целевой функции третьей формы состоит в следующем. Самым главным – первым по рангу – признается некоторый i -й параметр системы – y i (например, точность). Если у некоторой системы этот i -ый параметр больше, чем у всех других систем, то независимо от значений других параметров (если только они удовлетворяют ограничениям) данная система считается лучшей. Затем по второму параметру и т.д.

    Процедура оптимизации в этом случае, как правило, является многошаговой. Такая оптимизация часто неосознанно применяется в технических системах. Сначала выбирают систему лучшую по точности, при одинаковой точности нескольких систем – более надежную, а затем – более дешевую. На каждом шаге при оптимизации используется только один критерий, что не противоречит концепции системного подхода (оптимизация по одному единственному критерию, см. далее).

    4. Четвертая – наиболее общая – форма целевой функции представляет собой произвольную зависимость от всех или части (но не меньше двух) разнородных внешних параметров

    При этом разнородные параметры преобразуются в безразмерные (или одноразмерные) и целевая функция формируется как некоторая композиция (например, среднее арифметическое) полученных безразмерных показателей.

    Единую целевую функцию четвертой формы можно получить из целевых функций третьей формы путем умножения их на весовые коэффициенты и последующего суммирования :

    где F S (y i ) – одна из k целевых функций третьей формы;

    ω S – ее весовой коэффициент.

    Однако, как указывается там же, определение весовых коэффициентов отдельных целевых функций является очень сложным.

    Экстремальное значение полученной суммы будет считаться оптимальным.

    Таким образом, можно указать, что в большинстве случаев (1-я и 3-я формы) показатели качества системы оцениваются численными значениями компонентов векторной целевой функции, которые носят названия функционалов :

    - - - - - - - - - - - - - - - - - -

    Так как системы работают в условиях случайных воздействий, то значения функционалов часто оказываются случайными величинами. Это неудобно при использовании функционалов в виде показателей качества. Поэтому в таких случаях обычно пользуются средними значениями соответствующих функционалов. Например: среднее количество изделий, выпускаемых за смену; средняя стоимость продукции и т.д.

    В некоторых случаях показатели качества представляют собой вероятности некоторых случайных событий. При этом в качестве целевой функции выбирается вероятность
    выполнения системой поставленной цели (задачи)

    Например, вероятность обнаружения цели радиолокатором и т.п.

    Целевая функция - вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

    Примеры

    Гладкие функции и системы уравнений

    Задача решения любой системы уравнений

    { F 1 (x 1 , x 2 , … , x M) = 0 F 2 (x 1 , x 2 , … , x M) = 0 … F N (x 1 , x 2 , … , x M) = 0 {\displaystyle \left\{{\begin{matrix}F_{1}(x_{1},x_{2},\ldots ,x_{M})=0\\F_{2}(x_{1},x_{2},\ldots ,x_{M})=0\\\ldots \\F_{N}(x_{1},x_{2},\ldots ,x_{M})=0\end{matrix}}\right.}

    может быть сформулирована как задача минимизации целевой функции

    S = ∑ j = 1 N F j 2 (x 1 , x 2 , … , x M) (1) {\displaystyle S=\sum _{j=1}^{N}F_{j}^{2}(x_{1},x_{2},\ldots ,x_{M})\qquad (1)}

    Если функции гладкие, то задачу минимизации можно решать градиентными методами.

    Для всякой гладкой целевой функции можно приравнять к 0 {\displaystyle 0} частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) {\displaystyle (1)} это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

    Линейное программирование

    Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

    Комбинаторная оптимизация

    Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра. Эта функция равна длине гамильтонова цикла на графе. Она задана на множестве перестановок n − 1 {\displaystyle n-1} вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

    Глава 1. Постановка основной задачи линейного программирования

    1. Линейное программирование

    Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Такие задачи находят обширные приложения в различных сферах человеческой деятельности. Систематическое изучение задач такого типа началось в 1939 – 1940 гг. в работах Л.В. Канторовича.

    К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

    Круг задач, решаемых при помощи методов линейного программирования достаточно широк.Это, например:

      задача об оптимальном использовании ресурсов при производственном планировании;

      задача о смесях (планирование состава продукции);

      задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или);

      транспортные задачи (анализ размещения предприятия, перемещение грузов).

    Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

      математические модели большого числа экономических задач линейны относительно искомых переменных;

      данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

      многие задачи линейного программирования, будучи решенными, нашли широкое применение;

      некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

    Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

    В общем виде модель записывается следующим образом:

    целевая функция

    (1.1) при ограничениях

    (1.2) требования неотрицательности

    (1.3) где x j – переменные (неизвестные);

    - коэффициенты задачи линейного программирования.

    Задача состоит в нахождении оптимального значения функции (1.1) при соблюдении ограничений (1.2) и (1.3).

    Систему ограничений (1.2) называют функциональными ограничениями задачи, а ограничения (1.3) - прямыми.

    Вектор, удовлетворяющий ограничениям (1.2) и (1.3), называется допустимым решением (планом) задачи линейного программирования. План, при котором функция (1.1) достигает своего максимального (минимального) значения, называется оптимальным.

    1.2. Симплекс метод решения задач линейного программирования

    Симплекс-метод был разработан и впервые применен для решения задач в 1947 г. американским математиком Дж. Данцигом.

    Двумерные задачи линейного программирования решаются графически. Для случая N=3 можно рассмотреть трехмерное пространство и целевая функция будет достигать своё оптимальное значение в одной из вершин многогранника.

    Допустимым решением (допустимым планом) задачи ЛП, данной в стандартной форме, называется упорядоченное множество чисел (х1, х2, …, хn), удовлетворяющих ограничениям; это точка в n-мерном пространстве.

    Множество допустимых решений образует область допустимых решений (ОДР) задачи ЛП. ОДР представляет собой выпуклый многогранник (многоугольник).

    В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах.

    Базисным называется решение, при котором все свободные переменные равны нулю.

    Опорное решение - это базисное неотрицательное решение. Опорное решение может быть невырожденным и вырожденным. Опорное решение называется невырожденным, если число его ненулевых координат равно рангу системы, в противном случае оно является вырожденным.

    Допустимое решение, при котором целевая функция достигает своего экстремального значения, называется оптимальным и обозначается .

    Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.

    Симплекс-метод - это универсальный метод решения задач ЛП, представляющий собой итерационный процесс, который начинается с одного решения и в поисках лучшего варианта движется по угловым точкам области допустимых решений до тех пор, пока не достигнет оптимального значения.

    С его помощью можно решить любую задачу линейного программирования.

    В основу симплексного метода положена идея последовательного улучшения получаемого решения.

    Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

    Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.

    Процесс применения симплексного метода предполагает реализацию трех его основных элементов:

      способ определения какого-либо первоначального допустимого базисного решения задачи;

      правило перехода к лучшему (точнее, не худшему) решению;

      критерий проверки оптимальности найденного решения.

    Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

    6.1.Введение

    Оптимизация. Часть 1

    Методы оптимизации позволяют выбрать наилучший вариант конструкции из всех возможных вариантов. В последние годы этим методам уделялось большое внимание, и в результате был разработан целый ряд высокоэффективных алгоритмов, позволяющих найти оптимальный вариант конструкции при помощи ЭЦВМ. В данной главе излагаются основы теории оптимизации, рассмат-риваются принципы, лежащие в основе построения алгоритмов оптимальных решений, описываются наиболее известные алгоритмы, анализируются их достоинства и недостатки.

    6.2.Основы теории оптимизации

    Термином «оптимизация» в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или «оптимального», решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

    Рассматривая некоторую произвольную систему, описываемую m уравнениями с n неизвестными, можно выделить три основных типа задач. Если m=n , задачу называют алгебраической. Такая задача обычно имеет одно решение. Если m>n, то задача переопределена и, как правило, не имеет решения. Наконец, при m

    Прежде чем приступить к обсуждению вопросов оптимизации, введем ряд определений.

    Проектные параметры

    Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или произ-водные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, време-ни, температуры. Число проектных параметров характеризует сте-пень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через n, а сами проектные пара-метры через х с соответствующими индексами. Таким образом n проектных параметров данной задачи будем обозначать через

    X1, x2, x3,...,xn.

    Целевая функция

    Это - выражение, значение которого инженер стремится сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С мате-матической точки зрения целевая функция описывает некоторую (n+1) - мерную поверхность. Ее значение определяется проектными параметрами

    M=M(x 1 , x 2 ,...,x n).

    Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.6.1). Если проектных параметров два, то целевая функция будет изображаться поверх-ностью в пространстве трех измерений (рис.6.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изобра-

    жению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

    Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в

    Рис.1.Одномерная целевая функция.

    Рис.6.2.Двумерная целевая функция.

    замкнутой математической форме, в других случаях она может

    представлять собой кусочно-гладкую функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

    В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несов-местимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный мно-житель. В результате появляется «функция компромисса», позво-ляющая в процессе оптимизации пользоваться одной составной целевой функцией.

    Поиск минимума и максимума

    Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним т тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется рис.6.3.

    Пространство проектирования

    Так называется область, определяемая всеми n проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом

    условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного

    Рис.6.3.Изменением знака целевой функции на противоположный

    задача на максимум превращается в задачу на минимум.

    удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

    Ограничения - равенства

    Ограничения - равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

    C 1 (x 1 , x 2 ,...,x n)=0,

    C 2 (x 1 , x 2 ,...,x n)=0,

    ..................

    C j (x 1 , x 2 ,...,x n)=0.

    Если какое-либо из этих соотношений можно разрешить отно-сительно одного из проектных параметров, то это позволяет исключить данный параметр из процесса оптимизации. Тем самым уменьшается число измерений пространства проектирования и упрощается решение задачи.

    Ограничения - неравенства

    Это особый вид ограничений, выраженных неравенствами. В общем случае их может быть сколько угодно, причем все они имееют вид

    z 1 r 1 (x 1 , x 2 ,...,x n) Z 1

    z 2 r 2 (x 1 , x 2 ,...,x n) Z 2

    .......................

    z k r k (x 1 , x 2 ,...,x n) Z k

    Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не тем, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

    Локальный оптимум

    Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности.

    Рис.6.4.Произвольная целевая функция может иметь несколько

    локальных оптимумов.

    На рис. 6.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.

    Глобальный оптимум

    Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений, соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Как ставится задача оптимизации, лучше всего показать на примере.

    Пример 6.1

    Пусть требуется спроектировать прямоугольный контейнер объемом 1м , предназначенный для перевозки неупакованного волокна. Желательно, чтобы на изготовление таких контейнеров затрачивалось как можно меньше материала (при условии посто-янства толщины стенок это означает, что площадь поверхности должна быть минимальной), так как при этом он будет дешевле. Чтобы контейнер удобно было брать автопогрузчиком, его ширина должна быть не менее 1,5м.

    Сформулируем эту задачу в виде, удобном для применения алгоритма оптимизации.

    Проектные параметры: x 1 , x 2 , x 3 .

    Целевая функция (которую требуется минимизировать) - площадь боковой поверхности контейнера:

    A=2(x 1 x 2 +x 2 x 3 +x 1 x 3), м2.

    Ограничение - равенство:

    Объем = x 1 x 2 x 3 =1м3.

    Ограничение - неравенство:

    Задачи линейного программирования

    Линейное программирование (ЛП) является одним из разделов математического программирования – дисциплины, изучающей экстремальные (оптимизационные) задачи и разработкой методов их решения.

    Оптимизационная задача – это математическая задача, заключающаяся в нахождении оптимального (т.е. максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (ОДЗ).

    В общем виде постановка экстремальной задачи математического программирования состоит в определении наибольшего или наименьшего значения функции , называемой целевой функцией , при условиях (ограничениях) , где и – заданные функции, а – заданные постоянные величины. При этом ограничения в виде равенств и неравенств определяют множество (область) допустимых решений (ОДР), а – называют проектными параметрами .

    В зависимости от вида функций и задачи математического программирования делятся на ряд классов (линейной, нелинейное, выпуклое, целочисленное, стохастическое, динамическое программирование и др.).

    В общем виде задача ЛП имеет следующий вид:

    , (5.1)

    , , (5.2)

    , , (5.3)

    где , , – заданные постоянные величины.

    Функцию (5.1) называют целевой функцией; системы (5.2), (5.3) – системой ограничений; условие (5.4) – условием неотрицательности проектных параметров.

    Совокупность проектных параметров , удовлетворяющих ограничениям (5.2), (5.3) и (5.4), называют допустимым решением или планом .

    Оптимальным решением или оптимальным планом задачи ЛП называется допустимое решение , при котором целевая функция (5.1) принимает оптимальное (максимальное или минимальное) значение.

    Стандартной задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.2) и (5.4), где , , т.е. т.е. ограничения только в виде неравенств (5.2) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде равенств отсутствуют:

    ,

    , , (5.5)

    .

    Канонической (основной) задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.3) и (5.4), где , , т.е. т.е. ограничения только в виде равенств (5.3) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде неравенств отсутствуют:

    ,

    .

    Каноническую задачу ЛП можно также записать в матричной и векторной форме.

    Матричная форма канонической задачи ЛП имеет следующий вид:

    Векторная форма канонической задачи ЛП.