Основные характеристики цап и ацп. Аналого-цифровые преобразователи. Статические и динамические параметры АЦП

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2N-1 через единицу младшего разряда (ЕМР) выходной сигнал U вых (t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 22), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Статические параметры

Разрешающая способность - приращение Uвых при преобразовании смежных значений Dj, т.е. отличающихся на ЕМР. Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=U пш /(2N-1), где U пш - номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N - разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

Погрешность полной шкалы - относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля - значение Uвых, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

Нелинейность - максимальное отклонение реальной характеристики преобразования U вых (D) от оптимальной (линия 2 на рис. 22). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 22.

Дифференциальная нелинейность - максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования Uвых(D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 22,

Монотонность характеристики преобразования - возрастание (уменьшение) выходного напряжения ЦАП Uвых при возрастании (уменьшении) входного кода D. Если дифференциальная нелинейность больше относительного шага квантования h/Uпш, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦА-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические параметры

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" (рис. 23).

Время установления - интервал времени от момента изменения входного кода (на рис. 23 t=0) до момента, когда в последний раз выполняется равенство

|U вых -U пш |=d /2,

Скорость нарастания - максимальная скорость изменения Uвых(t) во время переходного процесса. Определяется как отношение приращения D Uвых ко времени t , за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

Шумы ЦАП

Шум на выходе ЦАП может появляться по различным причинам, вызываемым физическими процессами, происходящими в полупроводниковых устройствах. Для оценки качества ЦАП с высокой разрешающей способностью принято использовать понятие среднеквадратического значения шума. Измеряются обычно в нВ/(Гц) 1/2 в заданной полосе частот.

Выбросы (импульсные помехи) - крутые короткие всплески или провалы в выходном напряжении, возникающие во время смены значений выходного кода за счет несинхронности размыкания и замыкания аналоговых ключей в разных разрядах ЦАП. Например, если при переходе от значения кода 011...111 к значению 100...000 ключ самого старшего разряда ЦА-преобразователя с суммированием весовых токов откроется позже, чем закроются ключи младших разрядов, то на выходе ЦАП некоторое время будет существовать сигнал, соответствующий коду 000...000.

Выбросы характерны для быстродействующих ЦАП, где сведены к минимуму емкости, которые могли бы их сгладить. Радикальным способом подавления выбросов является использование устройств выборки-хранения. Выбросы оцениваются по их площади (в пВ*с).

В табл. 2 приведены важнейшие характеристики некоторых типов цифро-аналоговых преобразователей.

Таблица 2

Наимено-вание ЦАП Разряд-ность, бит Число кана-лов Тип вы-хода Время установ., мкс Интер-фейс Внутрен-ний ИОН Напряж. питания, В Мощность потр. мВт Примечание
ЦАП широкого применения
572ПА1 10 1 I 5 - Нет 5; 15 30 На МОП-ключах, перемножающий
10 1 U 25 Посл. Есть 5 или +/-5 2
594ПА1 12 1 I 3,5 - Нет +5, -15 600 На токовых ключах
МАХ527 12 4 U 3 Парал. Нет +/-5 110 Загрузка входных слов по 8-ми выводной шине
DAC8512 12 1 U 16 Посл. Есть 5 5
14 8 U 20 Парал. Нет 5; +/-15 420 На МОП-ключах, с инверсной резистивной матрицей
8 16 U 2 Парал. Нет 5 или +/-5 120 На МОП-ключах, с инверсной резистивной матрицей
8 4 - 2 Посл. Нет 5 0,028 Цифровой потенциометр
Микромощные ЦАП
10 1 U 25 Посл. Нет 5 0,7 Перемножающий, в 8-ми выводном корпусе
12 1 U 25 Парал. Есть 5 или +/-5 0,75 Перемножающий, потребление - 0,2 мВт в экономичном режиме
МАХ550В 8 1 U 4 Посл. Нет 2,5:5 0,2 Потребление 5 мкВт в экономичном режиме
12 1 U 60 Посл. Нет 2,7:5 0,5 Перемножающий, SPI-совместимый интерфейс
12 1 I 0,6 Посл. Нет 5 0,025 Перемножающий
12 1 U 10 Посл. Нет 5 или 3 0,75 (5 ч)
0,36 (3 ч)
6-ти выводной корпус, потребление 0,15 мкВт в экономичном режиме. I 2 C-совместимый интерфейс
Прецизионные ЦАП
Предисловие
Глава 1. Особенности построения быстродействующих микросхем ЦАП, АЦП и аппаратуры для измерения их электрических параметров
1.1. Особенности построения и конструктивное исполнение ЦАП
1.2. Особенности построения и конструктивное исполнение АЦП
1.3. Особенности построения аппаратуры для измерения электрических параметров ЦАП и АЦП
Глава 2. Параметры микросхем ЦАП, АЦП и их определения
2.1. Общие понятия
2.2. Статические параметры ЦАП
2.3. Динамические параметры ЦАП
2.4. Статические параметры АЦП
2.5. Динамические параметры АЦП
Глава 3. Схемы построения и электрические характеристики микросхем ЦАП
3.1. Двенадцатиразрядный ЦАП К594ПА1 с временем установления 3,5 мкс
3.2. Десятиразрядные ЦАП КМ1118ПА2, КР1 118ПА2 с временем установления 50 нс
3.3. Восьмиразрядные ЦАП КП18ПА1, КМ1118ПА1 с временем установления 20 нс
3.4. Восьмиразрядный ЦАП K1118ПАЗ с временем установления 10 нс
Глава 4 Схемы построения и электрические характеристики микросхем АЦП
4.1. Шестиразрядный АЦП К1Ю7ПВ1 с частотой преобразования 20 M1ц
4.2. Шестиразрядные АЦП КП07ПВЗ с частотой преобразования 100 и 50 МГц
4.3. Восьмиразрядный АЦП К1107ПВ2 с частотой преобразования 20 МГц
4.4. Восьмиразрядные АЦП КП07ПВ4 с частотой преобразования 100 и 60 МГц
Глава 5. Методы и аппаратура для измерения статических и динамических параметров, микросхем ЦАП
5.1. Методы измерения статических параметров ЦАП
5.2. Аппаратура для измерения статических параметров ЦАП
5.3. Методы измерения динамических параметров ЦАП
5.4. Аппаратура для измерения времени установления ЦАП
5.5. Схемы включения ЦАП К594ПА1, К1П8ПА1, K1118ПА2, КП8ПАЗ, К1118ПА4 при измерении времени установления и особенности их конструктивного исполнения
Глава 6. Методы и аппаратура для измерения статических и динамических параметров микросхем АЦП
6.1. Методы измерения статических параметров АЦП
6.2. Аппаратура для измерения статических параметров АЦП
6.3. Методы измерения и принципы построения измерителей динамических параметров АЦП
6.4. Аппаратура для измерения динамических параметров АЦП
6.5. Схемы включения ИС АЦП КП07 при измерении динамических параметров и особенности их конструктивного исполнения
Глава 7. Основные функциональные узлы измерителей динамических параметров микросхем ЦАП и АЦП
7.1. Измерители временных интервалов
7.2. Контактирующие головки для измерения динамических параметров ИС
7.3. Генераторы тестовых импульсов
7.4. Корпуса для ИС и их паразитные конструктивные параметры
7.5. Усилители выходных сигналов ЦАП
7.6. Адаптерные платы
Глава 8 Особенности измерения и аппаратуры для контроля электрических параметров микросхем ЦАП и АЦП в процессе их изготовления
8.1. Контроль на пластинах
8.2. Функциональная подгонка
8.3. Контроль и измерение параметров ИС в диапазоне температур
8.4. Электротермотренировка
Глава 9. Перспективы развития быстродействующих микросхем ЦАП, АЦП и измерение их параметров
9.1. Пути увеличения быстродействия и разрядности АЦП
9.2. Пути увеличения быстродействия и разрядности ЦАП
9.3. Пути увеличения точности и широкополосности измерителей электрических параметров ЦАП и АЦП

Существуют различные методы компенсации статических погрешностей ЦАП. Основным классификационным признаком методов является класс учитываемых ошибок. По этому признаку выделяются следующие методы:

1. Коррекция масштаба и нулевой точки характеристики;

2. Коррекция отклонения коммутируемых мер;

3. Коррекция нелинейности общего вида (как интегральной, так и дифференциальной).

Прежде всего, коррекция погрешностей производится при изготовлении преобразователей (технологическая подгонка). Однако, часто она желательна и при использовании конкретного образца БИС в том или ином устройстве. В последнем случае коррекция проводится за счет введения в структуру устройства кроме БИС ЦАП дополнительных элементов, т. е. на структурном уровне. Вследствие этого такие методы получили название структурных.

В состав ЦАП входят различные функциональные узлы. При осуществлении подгонки каждый из узлов подгоняется независимо от других. Алгоритм подгонки должен, прежде всего, обеспечить монотонность функции преобразования, затем ее линейность, отсутствие смещения нуля и требуемый коэффициент преобразования.

Самым сложным процессом является обеспечение монотонности и линейности, ибо они определяются связанными параметрами многих элементов и узлов. Чаще всего осуществляют подгонку только смещения нуля, коэффициента преобразования и дифференциальной нелинейности симметричного типа, т.е. нелинейности обусловленной погрешностями делителя и той части погрешностей ключей, которые можно свести к погрешностям такого рода. Остального рода погрешности носят суперпозиционный характер, т.е. проявляются во взаимовлиянии элементов друг на друга. Такие погрешности выявлять, контролировать и корректировать очень сложно.

Точностные параметры, обеспечиваемые технологическими приемами, ухудшаются при воздействии на преобразователь различных дестабилизирующих факторов, в первую очередь – температуры. Необходимо помнить и о факторе старения элементов.

С ростом точности затраты на разработку преобразователей и их изготовление всегда растут. С учетом всего этого улучшения метрологических показателей рационально добиваться комплексно, используя технологические приемы с различными структурными методами. А при использовании готовых интегральных преобразователей структурные методы это единственный путь дальнейшего повышения метрологических характеристик системы преобразования.

Погрешность смещения нуля и масштабная погрешность легко корректируются на выходе ЦАП. Для этого в выходной сигнал вводят постоянное смещение, компенсирующее смещение характеристики преобразователя. Необходимый масштаб преобразования устанавливают, либо корректируя коэффициент усиления, устанавливаемого на выходе преобразователя усилителя, либо подстраивая величину опорного напряжения, если ЦАП является умножающим.


Среди структурных методов линеаризации характеристики необходимо выделить компенсационные методы и методы с контролем по тестовому сигналу.

Методы коррекции с тестовым контролем заключаются в идентификации погрешностей ЦАП на всем множестве допустимых входных воздействий и добавлением, рассчитанных на основе этого поправок, к входной или выходной величине для компенсации этих погрешностей.

При любом методе коррекции с контролем по тестовому сигналу предусматриваются следующие действия:

1. Измерение характеристики ЦАП на достаточном для идентификации погрешностей множестве тестовых воздействий.

2. Идентификация погрешностей вычислением их отклонений по результатам измерений.

3. Вычисление корректирующих поправок для преобразуемых величин или требуемых корректирующих воздействий на корректируемые блоки.

4. Проведение коррекции.

Первые три пункта относятся к процессу контроля, последний пункт - к процессу преобразования, т.к. проведение коррекции осуществляется во время преобразования.

Контроль может проводиться один раз перед установкой преобразователя в устройство с помощью специального лабораторного измерительного оборудования. Может проводиться и с помощью специализированного оборудования встроенного в устройство. При этом контроль, как правило, проводится периодически, все то время пока преобразователь не участвует непосредственно в работе устройства. Это обеспечивает долговременную метрологическую стабильность работы преобразователя даже при постоянном воздействии на него каких-либо дестабилизирующих факторов. Такая организация контроля и коррекции преобразователей может осуществляться при его работе в составе микропроцессорной измерительной системы.

Простейшая модель нелинейной составляющей погрешности ЦАП основана на допущении стабильности погрешности для каждого кода и случайной зависимости ее от кода. Очевидно, что идентификация параметров такой модели требует измерения выходного сигнала на всех допустимых кодах (метод сквозного контроля). Обязательным для этого метода является использование прецизионного измерителя.

Основной недостаток любого метода сквозного контроля – большое время контроля наряду с разнородностью и большим объемом используемой аппаратуры.

Большая группа методов контроля по тестовому сигналу основывается на предположении о независимости весов разрядов от преобразуемого кода. При этом можно составить систему независимых уравнений, число которых равно количеству корректируемых разрядов преобразователя. Часто эту систему уравнений добавляют еще двумя, определяющими погрешность смещения нуля и масштабную погрешность. Для составления каждого уравнения на вход преобразователя подают код из заданного набора. После разрешения такой системы уравнений удается найти погрешности задания каждого разряда, а, следовательно, и поправочное (компенсирующее) значение для каждого значения входного кода. Такие методы получили в настоящее время наибольшее распространение и применяются при построении микропроцессорных управляющих систем.

Определенные тем или иным способом величины поправок хранятся, как правило, в цифровой форме. Коррекция же погрешностей с учетом этих поправок может проводиться как в аналоговой, так и цифровой форме.

При цифровой коррекции поправки добавляются с учетом их знака к входному коду ЦАП. В результате на вход ЦАП поступает код, при котором на его выходе формируется требуемое значение напряжения или тока. Наиболее простая реализация такого способа коррекции состоит из корректируемого ЦАП, на входе которого установлено цифровое ЗУ (рис.17.а). Входной код играет роль адресного. В ЗУ по соответствующим адресам занесены, заранее рассчитанные с учетом поправок, значения кодов, подаваемые на корректируемый ЦАП.

Рис. Цифровая (а) и аналоговая (б) коррекция погрешностей ЦАП

При аналоговой коррекции (рис.17.б) кроме основного ЦАП используется еще один дополнительный ЦАП. Диапазон его выходного сигнала соответствует максимальной величине погрешности корректируемого ЦАП. Входной код одновременно поступает на входы корректируемого ЦАП и на адресные входы ЗУ поправок. Из ЗУ поправок выбирается соответствующая данному значению входного кода поправка. Код поправки преобразуется в пропорциональный ему сигнал, который суммируется с выходным сигналом корректируемого ЦАП. Ввиду малости требуемого диапазона выходного сигнала дополнительного ЦАП по сравнению с диапазоном выходного сигнала корректируемого ЦАП собственными погрешностями первого пренебрегают.

В ряде случаев возникает необходимость проведения коррекции динамики работы ЦАП.

Переходная характеристика ЦАП при смене различных кодовых комбинаций будет различной, иными словами – различным будет время установления выходного сигнала. Поэтому при использовании ЦАП необходимо учитывать максимальное время установления. Однако в ряде случаев удается корректировать поведение передаточной характеристики.

Зададимся временем преобразования меньшим максимального времени установления. Если удастся идентифицировать динамические параметры ЦАП можно рассчитать такие поправки к входному коду ЦАП, при которых выходное значение за это заданное время будет достигать необходимого значения. В этот момент необходимо фиксировать результат преобразования последующих за ЦАП узлов системы, так как после этого момента выходной сигнал ЦАП будет продолжать изменяться, причем выходить на уровень соответствующий не входному коду, а его скорректированного значения.

Аналого – цифровые преобразователи (АЦП) это устройства, принимающие аналоговые сигналы и вырабатывающие на выходе цифровые сигналы, пригодные для работы ЭВМ и других цифровых устройств. Характеристика преобразования отражает зависимость выходного цифрового кода от входного постоянного напряжения. Характеристика преобразования может быть задана графически, таблично или аналитически.

СТАТИЧЕСКИЕ ПАРАМЕТРЫ

Напряжение межкодового перехода – точка, в которой равновероятны обе из соседних кодовых комбинаций.

Шаг квантования – разность соседних значений напряжений межкодового перехода.

Напряжение смещения нуля – параллельный сдвиг характеристики преобразования относительно оси абсцисс.

Отклонение коэффициента преобразования – погрешность в конце характеристики преобразования.

Нелинейность АЦП – Отклонение действительного значения входного напряжения в данной точке от действительного значения, определяемого по линеаризованной характеристике преобразования в той же точке. Выражается в числе шагов квантования или по отношению к максимальному входному напряжению в процентах.

Дифференциальная нелинейность – отклонение действительных шагов квантования от их среднего значения.

ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ АЦП.

1. Частота дискретизации – частота, с которой происходит образование выборочных значений сигнала, измеряется числом выборок в секунду, или в герцах.

2. Время преобразования – время от импульса запуска АЦП или от времени изменения аналогового входного сигнала до появления устойчивого кода на выходе. Для одних АЦП эта величина зависит от входного сигнала, для других является постоянной. При работе без УВХ эта величина является апертурным временем.

3. Частотная погрешность коэффициента передачи - погрешность образования выборочных значений при работе с изменяющимися сигналами. Определяется для синусоидального входного сигнала. (Для АЦП К1107 ПВ2 8 разр., 80 МГц: П = 7 МГц по уровню 0.99).

4. Апертурное время – время, в течение которого сохраняется неопределенность между значением выборки и временем, к которому она относится. Состоит из апертурного сдвига и апертурной неопределенности.

В зависимости от того, как развертывается процесс преобразования во времени, АЦП делятся на:

1. Последовательные

2. Параллельные

3. Последовательно – параллельные.

ПОСЛЕДОВАТЕЛЬНЫЕ АЦП

АЦП со ступенчатым пилообразным напряжением.

На вход преобразователя поступает положительное напряжение. Счетчик предварительно установлен в нуль, поэтому на выходе ЦАП напряжение тоже равно 0. При этом на выходе компаратора установлена лог.1. На вход схемы 3И-НЕ поступают импульсы от генератора тактовых импульсов. Однако, так как в триггер R-S записан лог.0, то импульсы на вход счетчика не проходят.

После импульса запуска R-S триггер переходит в состояние с лог.1 на выходе и на вход счетчика начинают поступать тактовые импульсы. Число, записанное в счетчик начинает увеличиваться и соответственно увеличивается напряжение на выходе ЦАП. В некоторый момент оно сравнивается с входным напряжение на входе преобразователя, компаратор переключается в лог.0. и импульсы перестают поступать на вход счетчика. Этот сигнал от компаратора поступает также на вход RS триггера, переключая его в состояние лог.0 на выходе, что окончательно останавливает процесс преобразования. Полученный код на выходе соответствует напряжению на выходе ЦАП младшего разряда, или входному аналоговому сигналу с точностью до единицы. Далее процесс может быть повторен.

Минимальный период тактовых импульсов можно найти из условия:

Тмин ≥ tкомп. + tцифр. + tцап + tRC, где:

tкомп – задержка срабатывания компаратора,

tцифр. – задержка счетчика,

tцап – время установления ЦАП,

t RC – задержка RC – цепочки.

Пример. Рассчитаем время преобразования АЦП с числом разрядов 10.

Используемые элементы:

ЦАП – К572 ПА1: число разрядов N = 10, время установления выходного напряжения tцап = 5 ∙ 10 -6 сек. При Vоп = 10В шаг квантования

ЕМР = 10/(2 10 –1) = 10 мВ.

КОМПАРАТОР – 521 СА3 - при dV = 3 мВ tкомп = 100 нсек.

Постоянную времени RC выберем равной 0.5 ∙ 10 -6 сек.

tцифр = 0.05 ∙ 10 -6 сек,

Тмин ≥ 0.1 + 0.05 + 5. 0 + 0.5 = 5.65 мксек.

Время измерения максимального входного сигнала:

(2 10 – 1) ∙ 5,65 ∙ 10 – 6 сек = 6мсек, частота дискретизации равна 160 Гц.

Апертурное время – 6 мсек.

АЦП этого типа применяются с УВХ, или для преобразования медленно меняющихся сигналов. Погрешность АЦП определяется точностными параметрами применяемого ЦАП.

Разновидность АЦП этого типа – следящие АЦП производят преобразование непрерывно. Они используют реверсивный счетчик, а компаратор определяет направление счета. При Vвх < Vцап счетчик считает вверх, в при Vвх > Vцап счетчик считает вниз. Таким образом напряжение Vцап постоянно стремится быть равным Vвх. Максимальная скорость отслеживания входного сигнала равна: dVвх./dt < ЕМР/ Тмин.


АЦП последовательных приближений.

Процедура определения выходного кода определяется регистром последовательных приближений. В начале в регистр во все разряды записаны лог.0. Напряжение на выходе ЦАП при этом равно нулю. Далее в старший разряд регистра записывается лог.1. Если выходное напряжение ЦАП при этом все еще меньше входного напряжения (на выходе компаратора установлена лог.1, то далее значение лог. уровня в этом разряде сохраняется. Если же напряжение на выходе ЦАП больше Vвх., то данный разряд обнуляется и далее записывается лог.1 в следующий разряд. Таким образом определяются значения всех разрядов, включая младший. После этого выдается сигнал готовности и цикл измерения может быть повторен.

Данный тип ЦАП имеет преимущество в быстродействии по сравнению с предыдущим ЦАП, поэтому он используется наиболее широко. Время преобразования у него равно Тмин ∙ N.

Тмин – минимальное значение периода повторения тактовых импульсов определяется аналогично предыдущему ЦАП, N – число разрядов.

Пример: у интегрального АЦП 1108 ПВ2 на кристалле расположены все элементы: ЦАП, источник опорного напряжения, регистр последовательного приближения, генератор тактовых импульсов, компаратор. N = 12, минимальное время преобразования - 2 мксек.

ЦАП с время – импульсным преобразованием (способ линейного кодирования).

В АЦП этого типа используется преобразование измеряемого напряжения в пропорциональный ему временной интервал, которых заполняется импульсами эталонной частоты. Этот временной интервал формируется генератором пилообразного напряжения (ГПН) и компаратором. Число импульсов считается счетчиком который и определяет выходной код АЦП.

Быстродействие такой схемы выше, чем у ЦАП со ступенчатым пилообразным напряжением, так как у него нет ЦАП и определяется быстродействием компаратора, счетчика. Время выключения компаратора выбирается при условии того перевозбуждения, которое обеспечивает необходимую погрешность сравнения входного сигнала и пилообразного напряжения.

Для уменьшения погрешностей генератор эталонной частоты и ГПН должны быть взаимно стабильными.

Описан АЦП: N = 10, f этал = 100 МГц, t преобр. = 10 мксек.

АЦП с двухтактным интегрированием.

Недостатком рассмотренных выше последовательных АЦП является их относительно низкая помехоустойчивость, что ограничивает их разрешающую способность. Повышение числа разрядов связано с использованием ЦАП повышенной точности, что удорожает производство таких АЦП.

Принцип двойного интегрирования в АЦП позволяет в значительной степени освободиться от этих недостатков. Полный цикл его работы состоит из двух тактов. В первом с помощью аналогового интегратора интегрируется входное напряжение за фиксированный интервал времени Т0. Этот интервал времени формируется счетчиком, на вход которого поступают импульсы от генератора с частотой fсч.

Интервал Т0 равен:

Т0 = Nmax ∙ tсч

Здесь tсч = 1/fсч - период частоты тактового генератора, Nmax - максимальная емкость счетчика, определяющая разрешающую способность АЦП.

Заряд на конденсаторе С после этого будет равен:

Во втором такте происходит разряд конденсатора от источника опорного напряжения Vопорн. Полярность опорного напряжения противоположна полярности входного сигнала, поэтому напряжение на конденсаторе С начинает уменьшаться. Счетчик в это время считает импульсы генератора тактовой частоты fсч, начиная от нулевого состояния. В момент времени, когда компаратор проходит через нуль, счет прекращается и число записывается в выходной регистр. Заряд q2, разрядивший конденсатор равен.

Рассмотрим основные электрические характеристики ЦАП и АЦП. Они подразделяются на статические, кото­рые задают конечную точность преобразования, и дина­мические, характеризующие быстродействие данного клас­са устройств. Статические характеристики преобразовате­лей определяются видом характеристики преобразования, которая устанавливает соответствие между значениями аналоговой величины и цифрового кода. Рассмотрим их подробнее.

Число разрядов (b)- число разрядов кода, отобража­ющего исходную аналоговую величину, которое может формироваться на выходе АЦП или подаваться на вход ЦАП. При использовании двоичного кода под bпонимают двоичный логарифм от максимального числа кодовых ком­бинаций (уровней квантования) на выходе АЦП или вхо­де ЦАП.

Абсолютная разрешающая способность - средние зна­чения минимального изменения сигнала на выходе ЦАП (α), или минимального изменения входного сигнала АЦП (m), обусловленные увеличением или уменьшением его кода на единицу.

Значение абсолютной разрешающей способности явля­ется мерой измерения всех основных статических харак­теристик данного класса устройств и часто обозначается как ЕМР (единица младшего разряда), или просто МР (младший разряд).

Абсолютная погрешность преобразования в конечной точке шкалы (δF s)- отклонение реальных максимальных значений входного для АЦП (U IRN)и выходного для ЦАП (U ORN)аналоговых сигналов от значений, соответствующих конечной точке идеальной характеристики преобразования (U IRNmax и U ORNmax). Применительно к АЦП наличие δF s означа­ет, что максимальный выходной код будет сформирован на выходе устройства при входном сигнале (U вх = U IRNmax – F S).По аналогии для ЦАП можно сказать, что при подаче на вход максимального кода его выходное напряжение будет отли­чаться от U ORNmax на величину F S . Обычно δF s измеряется в ЕМР. В технической литературе δF s иногда называют муль­типликативной погрешностью.

Напряжение смещения нуля U 0 - для АЦП - это на­пряжение (U вх0),которое необходимо приложить к его входу для получена нулевого выходного кода. Для ЦАП - это напряжение, присутствующее на его выходе (U вых0) при подаче на вход нулевого кода. Величина U 0 обычно выра­жается в ЕМР.

Нелинейность (δL) - отклонение действительной ха­рактеристики преобразования от оговоренной линейной. Т.е. это разность реального напряжения, соответствую­щего выбранному значению кода, и напряжения, которое должно соответствовать этому коду в случае идеальной характеристики преобразования устройства. Для ЦАП это напряжение измеряется относительно центров ступеней указанных характеристик. В качестве оговоренной линей­ной характеристики используют либо прямую, проведен­ную через точки 0, U max , либо прямую, обеспечивающую минимизацию δL, например, среднеквадратическое откло­нение всех точек которой от реальной характеристики минимально. Величину δL измеряют в ЕМР (δL = δ’L/h) или процентах (L = 100 · ‘L Д max), где δ’L - абсолютное значение нелинейности. В справочной литературе обычно задается максимально возможная величина δL.



Дифференциальная нелинейность (δL Д).Это отклоне­ние действительного шага квантования δ’L Д от его сред­него значения (h). Величина δ’L Д измеряется либо в ЕМР [δL Д =(δ’L Д -h)/h],либо в процентах δL Д = (δ’L Д - h) ·100/U max .

Величина дифференциальной нелинейности однознач­но связана с понятием монотонности характеристик ЦАП и АЦП. Если |δL Д | > 1ЕМР, то приращение выходного сиг­нала в данной точке характеристики может быть как по­ложительным, так и отрицательным. В последнем слу­чае характеристика преобразования перестает быть мо­нотонной.

Рисунок 7.5. Динамические характеристики АЦП и ЦАП

Динамические свойства ЦАП и АЦП обычно характе­ризуют следующими параметрами (рис. 7.5):

1) максимальная частота преобразования (f sma х)- наибольшая частота дискретизации, при которой задан­ные параметры соответствуют установленным нормам;

2) время установления выходного сигнала (t уст)- интервал от момента заданного изменения кода на входе ЦАП до момента, при котором выходной ана­логовый сигнал окончательно войдет в зону заданной ширины, симметрично расположенную относительно установившегося значения (рис. 206). Обычно ширина этой зоны задается равной 1ЕМР. Отсчет времени t уст ведется от момента достижения входным сигналом значения половины логического перепа­да.



|U вых – U пш | =d/2

3) СКОРОСТЬ НАРАСТАНИЯ – максимальная скорость изменения U вых (t) во время переходного процесса. Определяется как отношение приращения ΔU вых ко времени t, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.