Особенности и принцип работы lpt порта принтера

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Комсомольский-на-Амуре государственный технический университет»

Кафедра «Промышленная электроника»

Тестирование LPT-порта персонального компьютера

Методические указания к лабораторной работе по курсу

«Отладочные средства микропроцессорных систем» для студентов направления 210100 «Электроника и наноэлектроника»

Комсомольск-на-Амуре 2013

Тестирование LPT-порта персонального компьютера: Методические указания к лабоpатоpной работе по курсу "Отладочные средства микропроцессорных систем" для студентов направления 210100 «Электроника и наноэлектроника» / Сост. С.М. Копытов. - Комсомольск-на-Амуpе: Комсомольский-на-Амуpе гос. техн. ун-т, 2013. - 19 с.

Рассмотрены параллельный интерфейс Centronics, сигналы и программная поддержка LPT-порта персонального компьютера, приведены рекомендации по его тестированию.

Предлагаемые методические указания предназначены для студентов направления 210100.

Печатается по постановлению редакционно-издательского совета Комсомольского-на-Амуре государственного технического университета.

Согласовано с отделом стандартизации.

Рецензент В.А. Егоров

Цель работы: изучить основные возможности стандартного LPT-порта. Освоить принципы программно-управляемого обмена информацией через параллельный порт. Научиться проверять его работоспособность.

1 основные сведения

1.1 Описание параллельного интерфейса

Исторически параллельный интерфейс был введен в персональный компьютер (ПК) для подключения принтера (отсюда и аббревиатура LPT – Line Printer – построчный принтер). Однако впоследствии параллельный интерфейс стал использоваться для подключения других периферийных устройств (ПУ). Базовая разновидность порта позволяет передавать данные только в одном направлении (от ПК к ПУ), однако позднее был разработан ряд стандартов двунаправленной передачи данных.

В современных офисных компьютерах LPT-порт, как правило, не предусмотрен, однако, установив мультикарту расширения портов, такой порт можно получить в свое распоряжение.

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в адресном пространстве устройств ввода/вывода. Количество регистров зависит от типа порта, однако три из них стандартны и присутствуют всегда. Это регистр данных, регистр состояния и регистр управления. Адреса регистров отсчитываются от базового, стандартные значения которого 3BCh, 378h, 278h. Порт может использовать аппаратное прерывание (IRQ7 или IRQ9). Многие современные системы позволяют изменять режим работы порта, его адрес и IRQ из настроек базовой системы ввода-вывода (Base Input Output System – BIOS) Setup.

LPT порт имеет внешнюю 8-битную шину данных, 5-битную шину сигналов состояния и 4-х битную шину управляющих сигналов. Очевидно, что порт асимметричен  12 линий работают на вывод и только 5 на ввод.

При начальной загрузке BIOS пытается обнаружить параллельный порт, причем делает это примитивным и не всегда корректным образом  по возможным базовым адресам портов передается тестовый байт, состоящий из чередующегося набора нулей и единиц (55h или AAh), затем производится чтение по тому же адресу, и если прочитанный байт совпал с записанным, то считается, что по данному адресу найден LPT порт. Определить адрес порта LPT4 BIOS не может. Для работы с ПУ в BIOS предусмотрено прерывание INT 17h, предоставляющее возможность передавать данные (побайтно), инициализировать ПУ и получать информацию о его состоянии.

Понятие Centronics относится к набору сигналов, протоколу обмена и 36-контактному разъему, ранее устанавливаемому в принтерах. Назначение сигналов и контакты разъема ПУ, на который они выведены приведены в таблице 1.

Таблица 1 - Сигналы интерфейса Centronics

Направление

Назначение

Строб данных. Передается ЭВМ, данные фиксируются по низкому уровню сигнала.

Линии данных. D0 - младший бит.

Acknowledge – импульс подтверждения приема байта (запрос на прием следующего). Может использоваться для формирования прерывания.

Занят. Прием данных возможен только при низком уровне сигнала

"1" сигнализирует о конце бумаги

"1" сигнализирует о включении принтера (ГП – готовность приемника), обычно +5 В через резистор от источника питания ПУ)

Автоматический перевод строки. Если "0", то ПУ при получении символа CR (перевод каретки) выполняет функцию LF – перевод строки

Ошибка ПУ (off-line, нет бумаги, нет тонера, внутренняя ошибка)

Инициализация (переход к началу строки, сброс всех параметров на значения по умолчанию)

Выбор принтера. При "1" принтер не воспринимает остальные сигналы интерфейса

Общий провод

Примечание: столбец "T" – активный уровень сигнала: "1" – высокий активный уровень, "0" – низкий активный уровень. Столбец "Направление" – направление передачи по отношению к принтеру: I – Input (вход), O – Output (выход).

Сигнал Auto LF практически не применяется, но его неправильное значение приводит к тому, что принтер либо делает пропуски строк, либо печатает строки поверх друг друга, либо дублирует строки при печати в два прохода.

Отечественным аналогом интерфейса Centronics является ИРПР-М. Кроме него существует интерфейс ИРПР (устаревший), который отличается протоколом обмена, отсутствием сигнала "Error" и инверсией линий данных. Кроме того, ко всем входным линиям ИРПР подключены пары согласующих резисторов: 220 Ом к +5 В и 330 Ом к общему проводу. Это перегружает большинство интерфейсных адаптеров современных ПК.

Протокол обмена данными по интерфейсу Centronics приведен на рисунке 1.

Рисунок 1 - Протокол обмена данными по интерфейсу Centronics

Передача начинается с проверки источником сигнала Error. Если он установлен, то обмен не производится. Затем проверяется состояние сигнала Busy. Если он равен "0", то источник приступает к передаче байта данных. Для передачи байта источник выставляет на линии D0-D7 байт данных и выдает сигнал Strobe#. Приемник по сигналу Strobe# (здесь и далее по тексту значок "#" после названия сигнала является признаком того, что сигнал имеет низкий активный уровень) читает данные с шины данных и выставляет сигнал Busy на время его обработки. По окончании обработки приемник выдает сигнал ACK# и снимает сигнал Busy.

Если в течение длительного времени (6 – 12 сек) источник не получает ACK#, то он принимает решение об ошибке "тайм-аут" (time-out) устройства. Если после приема байта приемник по какой - либо причине не готов принимать данные, то он не снимает сигнал Busy. При программной реализации обмена по указанному протоколу желательно ограничить время ожидания снятия Busy (обычно 30 – 45 сек), иначе возможно зависание программы.

Стандартный параллельный порт называется SPP (Standard Parallel Port). SPP порт является однонаправленным, на его базе программно реализуется протокол обмена Centronics. Порт обеспечивает возможность генерации IRQ по импульсу ACK# на входе. Сигналы порта выводятся на стандартный разъем DB-25S (розетка), который размещен непосредственно на плате адаптера или соединяется с ним плоским шлейфом (в случае, если адаптер интегрирован с материнской платой).

Названия сигналов соответствуют названиям сигналов интерфейса Centronics (таблица 1), а изображение разъема интерфейсного адаптера со стороны компьютера приведено на рисунке 2.

Таблица 2 - Разъем и шлейф стандартного LPT порта

Провод шлейфа

10, 22, 14, 16, 18, 20, 22, 24, 26

Примечание. I/O – направление передачи: I – вход; O – выход; O(I) – выход, состояние которого может быть считано при определенных условиях, O/I – выходные линии, состояние которых читается при чтении из соответствующих регистров порта. * - Вход ACK# соединен с питанием +5 В через резистор 10 кОм. Это сделано для исключения ложных прерываний, т.к. прерывание генерируется по отрицательному перепаду сигнала на входе ACK#.

Рисунок 2 - Разъем интерфейсного адаптера Cetronics DB-25S

В качестве недостатков стандартного LPT порта (SPP) следует отметить невысокую скорость передачи данных (100 – 150 кБ/сек), загрузку процессора при передаче данных, невозможность двунаправленного побайтного обмена. Существует "радиолюбительская" методика двунаправленного обмена, которая состоит в том, что для ввода данных на линии D0-D7 выставляют "1", а в качестве передатчика используют микросхемы с открытым коллектором, которые при открытом транзисторе могут "подсаживать" напряжение логической единицы до уровня порядка 1.5 – 1.7 В. Ток ограничен на уровне 30 мА. Как очевидно из уровней сигналов, они не соответствуют уровням ТТЛ, поэтому многие порты не работают в таком режиме или работают нестабильно. Кроме того, такой способ может быть опасен для адаптера порта, который будет работать с предельными для него токами.

Стандарт IEEE 1284 , принятый в 1994 году, определяет термины SPP, ЕРР и ЕСР. Стандарт определяет 5 режимов обмена данными, метод согласования режима, физический и электрический интерфейсы. Согласно IEEE 1284, возможны следующие режимы обмена данными через параллельный порт:

Compatibility Mode – однонаправленный (вывод) по протоколу Centronics. Этот режим соответствует стандартному порту SPP;

Nibble Mode – ввод байта в два цикла (по 4 бита), используя для ввода линии состояния. Этот режим обмена может использоваться на любых адаптерах;

Byte Mode – ввод байта целиком, используя для приема линии данных. Этот режим работает только на портах, допускающих чтение выходных данных (Bi-Directional или PS/2 Type 1);

ЕРР (Enhanced Parallel Port) Mode – двунаправленный обмен данными, при котором управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту (чтения или записи в порт). Эффективен при работе с устройствами внешней памяти, адаптерами локальных сетей;

ЕСР (Extended Capability Port) Mode – двунаправленный обмен с возможностью аппаратного сжатия данных по методу RLE (Run Length Encoding), использования FIFO-буферов и DMA. Управляющие сигналы интерфейса генерируются аппаратно. Эффективен для принтеров и сканеров.

В современных машинах с LPT-портом на системной плате режим порта – SPP, ЕРР, ЕСР или их комбинация задается в BIOS Setup. Режим Compatibility Mode полностью соответствует SPP и часто установлен по умолчанию. Все остальные режимы расширяют функциональные возможности интерфейса и повышают его производительность. Кроме того, стандарт регламентирует способ согласования режима, доступного как ПК, так и периферийному устройству.

Физический и электрический интерфейс. Стандарт IEEE 1284 определяет физические характеристики приемников и передатчиков сигналов. Существенным является то, что при передаче используются уровни ТТЛ логики.

Стандарт IEEE 1284 определяет три типа используемых разъемов: А (DB-25S), B (Centronics-36), C (новый малогабаритный 36-контактный разъем). Интерфейсные кабели могут иметь от 18 до 25 проводников (в зависимости от числа проводников GND). Обычные кабели могут работать только на низких скоростях при длине не более 2 метров. Улучшенные экранированные кабели с сигнальными проводниками, перевитыми с общими проводами, могут иметь длину до 10 метров. Такие кабели маркируются как "IEEE Std 1284 - 1994 Compliant".

Работа с параллельным портом на низком уровне (т.е. на уровне прямого обращения к контроллеру порта) применяется при решении различного круга задач по обмену информацией с нестандартными устройствами, для написания драйверов принтеров и ряда других задач. Прямая работа с контроллером позволяет реализовать любой протокол обмена с устройством и использовать линии порта по своему усмотрению.

Контроллер порта расположен в адресном пространстве устройств ввода-вывода и обращение к нему производится посредством команд IN и OUT ассемблера. Информацию о портах LPT1 – LPT3 можно получить, прочитав переменные BIOS, приведенные в таблице 3.

Таблица 3 - Переменные BIOS для LPT портов

Имя порта

Адрес в BIOS

Тип переменной

Описание

Базовый адрес порта LPT1. Если переменная равна 0, то порт LPT1 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT2. Если переменная равна 0, то порт LPT2 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT3. Если переменная равна 0, то порт LPT3 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT4. Если переменная равна 0, то порт LPT4 не найден

Константа, задающая тайм-аут

BIOS ищет порты по адресам Base: 3BCh, 378h, 278h. Порт LPT4 BIOS найти не может:

378h - параллельный адаптер LPT1;

278h - параллельный адаптер LPT2;

3BCh - параллельный адаптер LPT3.

Стандартный порт имеет три 8-битных регистра, расположенных по соседним адресам, начиная с базового (Base) адреса. Перечень данных регистров приведен в таблице 4.

Таблица 4 - Регистры стандартного LPT порта

Регистр данных (DR). Записанные в этот регистр данные выводятся на выходные линии интерфейса D0D7. Результат чтения этого регистра зависит от схемотехники адаптера и соответствуют либо записанным ранее данным, либо сигналам на линиях D0D7, что не всегда одно и тоже. При стандартном включении справедлив первый вариант - читаемые данные равны ранее записанным.

Регистр состояния (SR) . Представляет собой 5-ти битный порт ввода, на который заведены сигналы состояния от внешнего устройства. Допускает только чтение. Назначение битов данного регистра приведены в таблице 5.

Таблица 5 - Биты регистра состояния SR

Название

Назначение

Инверсное отображение состояния линии Busy (11). При низком уровне на линии 11 (Busy) – бит равен "1" – ПУ готово к приему очередного байта

Отображение состояния линии ACK# (10).

"0" – подтверждение приема,

"1" – обычное состояние

Отображение состояния линии Paper End (12).

"0" – норма, "1" – в ПУ нет бумаги

Отображение состояния линии Select (13).

"0" - ПУ не выбрано, "1" - ПУ выбрано

(инверсн.)

Отображение состояния линии Error (15).

"0" – ошибка ПУ, "1" – обычное состояние

Флаг прерывания по ACK# (только PS/2).

Обнуляется, если ACK# вызвал аппаратное прерывание. "1" – после сброса или после чтения регистра состояния

Не используются (резерв)

Регистр управления (CR). Регистр управления представляет собой 4-х битный порт вывода, допускающий чтение и запись. Биты 0, 1, 3 инвертируются, т.е. "1" в данных битах регистра управления соответствует "0" на соответствующих линиях порта. Назначение битов регистра управления приведены в таблице 6. Бит 5 используется только двунаправленными портами.

Таблица 6 - Биты регистра управления CR

Название

Назначение

Бит управления направлением порта.

"1" – режим ввода, "0" – режим вывода

Бит управления генерацией прерывания по ACK# . "1" – разрешить прерывание по спаду ACK# (10)

Управление линией SLCT IN# (17).

"1" – работа принтера разрешена.

Управление линией INIT# (16). "1" – обычное состояние, "0" – аппаратный сброс ПУ

Управление линией Auto LF# (14). "1" – включить режим "Auto LF", "0" – обычное состояние

Управление линией Strobe# (1). "1" – стробирование данных, "0" – обычное состояние

Программирование интерфейса. Для разработки прикладных программ необходимо выбрать язык программирования. Если требуется несложная, быстрая и компактная программа, которая не содержит сложных вычислительных операций, то для ее написания лучше выбирать язык низкого уровня (язык ассемблера). Язык ассемблера относится к группе машинно-ориентированных языков, т.е. каждому семейству микропроцессоров соответствует свой язык.

Язык высокого уровня следует выбирать, если необходимо производить сложные вычисления, или в случае, если высокое быстродействие программы не требуется. Объектные коды, полученные в результате трансляции программ, написанных на языке высокого уровня, обычно занимают в памяти ЭВМ намного больше места и исполняются медленнее в сравнении с программами на ассемблере. Часто применяется подход, когда критичные к быстродействию части программы пишутся на ассемблере, а вычислительные процедуры – на языке высокого уровня, например, на Паскале или Си.

Рассмотрим работу с регистрами интерфейса CENTRONICS на языке PASCAL или ассемблере:

Х - число типа "byte" (0..255). Например, при посылке 170 10 = =10101010 2 на линии d0–d7 единичный сигнал будет присутствовать на выводах d1, d3, d5, d7 (обозначение выводов начинается с d0). Число 170 останется на выводах разъёма до тех пор, пока Вы не перешлёте туда же другое число (это может сделать и другая программа) или не выключите компьютер. Заметьте, что адрес порта в команде задан в шестнадцатиричном виде, а посылка - в десятичном. Если вместо Паскаль-команды

Port[$378]:=170;

Вы примените

где d – переменная, то переменная примет значение последнего посланного в порт байта или, при переходе в режим приёма, значение байта, поданного на порт внешним устройством.

Пример чтения статус-регистра на языке Pascal:

В переменной d после выполнения программы будет отображено состояние порта. Допустим, переменная вернула значение 126 10 . В двоичном виде оно выглядит как 01111110 2 . Младшие (правые) три бита (нулевой, первый и второй) не используются, и почти равны 1, 1 и 0. Третий бит – 1, значит на ERROR высокий уровень. Та же ситуация на SELECT, Paper End, ACK и BUSY (не забывайте, что сигнал BUSY является инвертированным).

Приведем пример фрагмента программы, которая считывает байт с линий данных D0-D7:

Port[$37A]:=32 ; значение 32 "включает" единицу в пятом

d:=Port[$378] ; бите, переводя порт в режим ввода

Как видно из приведенных примеров, программирование LPT-порта является весьма простой задачей, что позволяет в значительной степени облегчить работу разработчика программного обеспечения устройств с обсуждаемым интерфейсом.

1.2 Тестирование LPT-поpтa

Тестирование LPT-поpтa можно выполнить с помощью простой заглуш­ки, которую можно изготовить, воспользовавшись таблице 7.

Таблица 7 - Таблица цепей заглушки для тестирования LPT-поpтa

Направление

Направление

Весьма советуем с ним познакомиться. Там Вы найдете много новых друзей. Кроме того, это наиболее быстрый и действенный способ связаться с администраторами проекта. Продолжает работать раздел Обновления антивирусов - всегда актуальные бесплатные обновления для Dr Web и NOD. Не успели что-то прочитать? Полное содержание бегущей строки можно найти по этой ссылке .

Работа с LPT-портом в Win NT/2000/XP

LPT-порт (L ine P rinT er) - порт параллельного интерфейса, который изначально создавался для подключения принтера. BIOS обеспечивает поддержку LPT-порта, необходимую для организации вывода по интерфейсу Centronics. Адресное пространство порта занимает диапазон &H378-&H37F

LPT-порт имеет 12 выходных и 5 входных линий. Такое довольно большое количество линий делает возможным подключение к порту несложной аппаратуры, возможно даже не имеющей своего микроконтроллера. Поэтому этот порт, несмотря на исчезновение принтеров с LPT-интерфейсом, активно используется для подключения простых программаторов микросхем памяти, JTAG-интерфейсов для перепрошивки (замены программного обеспечения) спутниковых рессиверов, DVD-плееров и другой электронной техники. Популярен LPT-порт и у моддеров, поскольку позволяет подключить к компьютеру LCD-дисплеи без изготовления сложных плат-интерфейсов.

Windows 2000/XP не позволяет приложениям обращаться к портам ввода-вывода напрямую. Для этого нужно использовать драйвер, работающий в KERNEL-mode (в режиме ядра операционной системы).

Ограничение доступа к портам ввода-вывода для обычных прикладных программ (работающих в пользовательском режиме) позволяет сделать операционную систему более стабильной. Хотя с другой стороны никто не мешает программисту написать драйвер, обращающийся к портам.

Интересно, что для процессора Intel x86 можно написать драйвер, использующий один из двух принципиально разных подходов. Первый вариант - драйвер сам обращается к портам, а прикладная программа только указывает драйверу, что делать. Этот вариант в общем случае является стандартным и предпочтительным.

Для решения проблемы существуют четыре популярных варианта драйверов, позволяющих прикладной программе обращаться к портам ввода-вывода: драйвер DLPortIO , драйвер UserPort , драйвер GiveIO.sis , драйвер Port95nt .

Все четыре варианта практически равноценны.

Драйвер DLPortIO

DLportIO - драйвер доступа к портам из пакета DriverLINX от Scientific Software Tools, Inc. (http://www.sstnet.com) в сокращённом виде (без описания и лишней документации). Для нормальной работы программ обслуживания LCD-индикаторов можно порекомендовать именно этот вариант драйвера .

Собственно драйвер состоит из двух составляющих:
. DLPortIO.dll - Win32 DLL, обеспечивающая аппаратные функции ввода/вывода и
. DLPortIO.sys - драйвер для WinNT, работающий в режиме ядра ОС (не требуется для Win95/98)

В установочном пакете драйвера, помимо этих двух компонентов, есть ещё файл Install.exe, перемещающий два вышеназванных в папку драйверов Windows и регистрирующий их в системе.

Больше писать про этот драйвер и нечего. Настройка не требуется. Скачали, установили, пользуемся. Не забываем заглянуть в конец статьи и почитать обеспечения работоспособности LPT-порта.

Установка элементарная - запускаем файл Install.exe, устанавливаем. По окончанию установки заглядываем в папку C:\Windows\System32\drivers и проверяем наличие двух файлов драйвера (DLPortIO.sys и DLPortIO.dll). Если видим, что эти файлы так и не скопировались, берем их из установочного пакета и копируем вручную. Не переживайте, с компьютером ничего плохого не случится. Перегружаем компьютер и работаем с LPT-портом.

Если вдруг, в результате манипуляций с оборудованием, вы получите от драйвера сообщение такого плана: "dlportio.sys device driver not loaded. Port I/O will have no effect", не стоит паниковать. Исправляется эта проблема так:
. Запускаем regedit.
. Заходим в реестре в ветку HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ .
. В папке dlportio изменяем значение параметра Start на 1 .
. Перезагружаем компьютер.

Драйвер UserPort

Драйвер UserPort открывает доступ к портам в Win NT/2000/XP для программ. Этим вариантом драйвера LPT-порта чаще всего пользуются "технари", работающие с программаторами и JTAG"ами, поскольку драйвер имеет хоть какие-то конфигурирующие настройки. Для работы программ обслуживания LCD-индикаторов его так же можно использовать.

В архиве драйвера имеются три файла:
. UserPort.sys - драйвер для WinNT, работающий в режиме ядра ОС,
. UserPort.exe - программа для настройки драйвера и
. UserPort.pdf - файл описания.

Установка UserPort:
. 1. Распакуйте архив в отдельную папку.
. 2. Скопируйте файл UserPort.sys в C:\Windows\System32\drivers

Настройка UserPort:
. Запустите UserPort.exe.
. Перед нами появится панель с 2-мя окошками.

Левое окошко относится к работе программы в ДОС окне, правое на полном экране. По умолчанию в них прописаны номера портов LPT - все их можно удалить с помощью кнопки "Remove". В оба окна нужно вписать нужные номера портов, которые планируется использовать.

Для использования с драйвера с большинством программаторов, JTAG"ов и программ обслуживания дисплеев, добавьте в левую колонку следующие параметры:
378 , 379 и 37A для LPT1
278 , 279 и 27A для LPT2 (Если в BIOS"е переназначен адрес LPT-порта).

Поясню, что означают цифры. 0x378 - это адрес порта.
. Адрес 0x378 называется базовым и служит для записи и чтения данных в порт и из порта, по шине данных D0-D7 .
. Адрес 0x379 (базовый+1) предназначен для чтения битов состояния из устройства, подключеного к LPT-порту.
. Адрес 0x37A (базовый+2) служит для записи битов управления устройства, подключенного к LPT-порту.

Добавляем так:
0x378-0x378
0x37A-0x37A



Добавлять адреса порта в список нужно через окно ввода и с помощью кнопки "Add". Адрес 0x379 чаще всего не нужен и его можно не вписывать, поскольку он предназначен для чтения битов состояния из устройства, подключеного к LPT-порту, а большинство устройств (программаторы, JTAG"и и LCD-индикаторы тем более) сигналы состояния не формируют. При желании можно наоборот вписать весь диапазон адресов, отведённых системой под LPT-порт 0x378-0x37F .

Заходим в Панель Управления , Система , выбираем закладку Оборудование , Диспетчер устройств , заходим в Порты (COM и LPT) и смотрим свойства LPT порта, по которому вы хотите установить соединение. В Свойствах открываем закладку Ресурсы и смотрим значение параметра Диапазон ввода/вывода (I/O) . (Обычно в Windows XP оно равно 378 - 37F )

После формирования списка адресов, нужно нажать кнопку "Start", драйвер будет запущен и появится сообщение:



Затем нажать кнопку "Update", при этом драйвер будет зарегистрирован в системе, затем "Exit". Разумеется, кнопку "Stop", пока мы пользуемся драйвером, нажимать не нужно.

Если при нажатии кнопки "Update" система уходит в перезагрузку, нужно пробовать запускать регистрацию драйвера в системе с правами администратора или попытаться временно отключить файрволл или антивирус, которые могут блокировать вмешательство в системные процессы. Если что-то не получилось, читайте UserPort.pdf

Для проверки, появился ли доступ к портам, можно запустить программу "lpt-test.exe" .

После старта программы появится окно со следующим содержанием:



Отсутствие сообщения "Тестируется порт LPT (Адрес XXXh)" и последующих за ним строк говорит о том, что драйвер не работает.

Эта программа просто посылает в регистр данных Dx и регистр управления Ux порта LPT различные числа, а потом их же считывает. Регистр статуса Sx порта LPT только считывается. На экран выводится номер и адрес тестируемого порта LPT. Если порт исправный, то для регистров Dx и Ux не должно выдаваться никаких сообщений.



LPT-TEST v1.03 1995-2003 Copyright (C) С.Б.Алеманов. Москва "БИНАР".
Во время тестирования к портам не должно быть подключено периферийных устройств.
Dx - рег. данных (out), Ux - рег. управления (out), Sx - рег. статуса (inp).

Тестируется порт LPT1 (Адрес 378h)
2-й контакт (D0) - нет "1"
3-й контакт (D1) - нет "1"
4-й контакт (D2) - нет "1"
5-й контакт (D3) - нет "1"
6-й контакт (D4) - нет "1"
7-й контакт (D5) - нет "1"
8-й контакт (D6) - нет "1"
9-й контакт (D7) - нет "1"
1-й контакт (U0) - нет "1"
14-й контакт (U1) - нет "1"
17-й контакт (U3) - нет "1"
1-й контакт (U0) - нет "0"
14-й контакт (U1) - нет "0"
17-й контакт (U3) - нет "0"
15-й контакт (S3) - нет "0"


Если регистры Dx или Ux неисправны, то выводится сообщение "нет 0" или "нет 1" и указывается номер контакта на LPT-разъеме (сигналы на этом контакте можно посмотреть осциллографом). На входе регистра статуса Sx может быть как "0" так и "1", но обычно, когда к порту LPT ничего не подключено, на всех входах регистра статуса имеется "1". Появление же на входе регистра статуса "0" может являться признаком того, что вход пробит, если раньше там всегда была "1".
На некоторых машинах, если регистр данных или регистр управления неисправны, то доступ к LPT-порту вообще не появляется. Видимо, BIOS при включении компьютера тестирует порт LPT и, если он неисправный, то отключает его.

Если возникают проблемы, возможно, работе мешают какие-то драйвера, периодически посылая импульсы в порт LPT (это можно увидеть осциллографом). Например, можно в настройках принтера отключиться от порта LPT:
выключить LPT1: Порт принтера
включить FILE: Печатать в файл

После того, как все проблемы устранены и тест пройден, должен появиться доступ к портам и можно запускать программу, использующую LPT-порт. В противном случае устройство, подключеное к порту на такой машине работать не будет.

Драйвер GiveIO.sys

В далеком 1996 году американский программист Дейл Робертс, провел серию экспериментов, результатом которых стал драйвер GiveIO.sys . До сих пор этот драйвер остается одним из популярных инструментов, позволяющих прикладной программе обращаться к портам ввода-вывода.

Сам автор драйвера настоятельно рекомендует использовать этот драйвер только в отладочных целях. Окончательная версия прикладной программы должна вместо самостоятельного обращения к портам ввода-вывода, поручить это дело драйверу, написанному специально для этих целей. Драйвер должен вести себя "корректно", проверяя, не используется ли уже устройство каким-нибудь другим приложением.

Однако, если вы абсолютно уверены в том, что требуемые порты ввода-вывода никто кроме вас не использует (например, у вас нет принтера, подключенного к LPT), вы можете спокойно пользоваться драйвером GiveIO.sys.

Установка драйвера :

1. Скачайте архив, распакуйте и скопируйте файл GiveIO.sys в каталог C:\Windows\System32\Drivers (подразумевается, что ваша Windows установлена в каталог C:\Windows) .
. 2. Запустите файл install.reg. На экране появится следующее сообщение:


. 3. Отвечаем утвердительно. При этом появится сообщение об успешном внесении информации в реестр. При желании, можно убедиться в этом. Запускаем редактор реестра regedit.exe и в ветви HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\giveio проверяем наличие следующих записей:


. 4. Перегружаем компьютер и проверяем работу программ, пользующихся драйвером.

Драйвером GiveIO.sys народ активно пользуется, и, со временем, появились и другие варианты его установки .

Например - драйвер GiveIO.sys при наличии файла с "информацией об оборудовании" GiveIO.inf можно установить через апплет "Установка оборудования".




Драйвер GiveIO.sys мы покажем операционной системе, чтобы она поверила в существование оборудования "GiveIO".

Скачать комплект файлов для такого варианта установки драйвера GiveIO.sys (giveio_sys_v2.rar - 78kb). Архив содержит файлы GiveIO.sys и GiveIO.inf, а так же подробную инструкцию по установке с иллюстрациями.

Помимо вариантов "ручной" установки драйвера, написано несколько вариантов инсталлятора, выполняющего установку в автоматическом режиме.

Скачать комплект файлов для автоматической установки драйвера GiveIO.sys (giveio_sys_install.rar - 28kb). Архив содержит файлы GiveIO.sys и instdrv.exe, а так же файл remove-giveio.cmd, с помощью которого драйвер GiveIO.sys можно удалить из системы.

Драйвер Port95nt

Термин "драйвер Port95nt" здесь будет не совсем корректен. По сути, это тот же драйвер DLPortIO из пакета DriverLINX от Scientific Software Tools, Inc , только в полном варианте, с парой утилит управления портом, с описанием и множеством примеров для программистов. Рядовому пользователю никакой пользы от дополнительных компонентов нет, а компоненты драйвера DLPortIO.sys и DLPortIO.dll абсолютно такие же, как и в сокращённой версии.

Упомянул о Port95nt, как о драйвере, по двум причинам. Первая - для полноты перечня встречающихся в интернете упоминаний о драйверах LPT-порта.

Вторая причина - в некоторых случаях могут быть проблемы с установкой сокращённой версии DLPortIO под WinXP. Обычно, но нечасто, это происходит в урезанных "авторских" сборках WinXP. В таком случае можно взять полную версию инсталлятора (1.5МБ). Хотя, по моему мнению, быстрее получится вручную положить в нужную папку DLPortIO.sys и DLPortIO.dll, чем заморачиваться с подбором инсталлятора, который сможет это сделать за вас.

Дополнительные меры

Кроме установки одного из вышеназванных драйверов, для нормальной работы порта LPT под ОС WinXP необходимо сделать правку реестра с помощью REG-файла xp_stop_polling.reg (xp_stop_polling.rar - 0,48kb)

Под WinXP иногда нестабильно работают устройства, использующие LPT-порт. Причиной таких сбоев может быть работа подсистемы Plug-and-Play (PnP) в Windows, периодически опрашивающей LPT с целью обнаружения подключенных устройств. Такой опрос производится при загрузке системы, но оно может происходить и при работе. К сожалению, драйвер DLportIO.sys и другие варианты драйверов не блокируют доступ к LPT от других программ при работе с портом клиента данного драйвера и подсистема PnP уверена, что порт не занят, обращается к нему и нарушает работу внешних устройств. Для устранения проблемы и служит REG-файл xp_stop_polling.reg . Этот файл прописывает в реестре Windows ключ, запрещающий такой опрос (poll) во время работы системы.

Помимо установки драйвера и ограничения одновременного доступа к порту для программ, для обеспечения аппаратной совместимости и нормальной работы оборудования с LPT-портом, необходимо в BIOS выставить правильный адрес и режим работы порта ("Normal", SPP или ЕРР, но не ECP).

Конфигурированию через BIOS Setup подлежат следующие параметры:

Базовый адрес, который может иметь значение 378h, 278h и 3BCh. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логические имена LPT1, LPT2, LPT3. Адрес 3BCh имеет адаптер порта, расположенный на плате MDA или HGC (предшественники современных видеокарт). Большинство портов по умолчанию конфигурируются на адрес 378h и могут переключаться на 278h.

Используемая линия запроса прерывания, для LPT1 обычно используется IRQ7, для LPT2 - IRQ5. Во многих "настольных" применениях прерывания от принтера не используются, и этот дефицитный ресурс PC можно сэкономить. Однако при использовании скоростных режимов ЕСР (Fast Centronics) работа по прерываниям может заметно повысить производительность и снизить загрузку процессора.

В то же время, режим ЕСР нельзя использовать с устройствами, требующими жёстких таймингов (программаторами и JTAG-интерфейсами).

В завершение немного о терминологии :

. SPP (Standard Parallel Port - стандартный параллельный порт). Нередко, для упрощения понимания, в BIOS"е обозначается термином "Normal ".
. EPP (Enhanced Parallel Port - расширенный параллельный порт) - скоростной двунаправленный вариант интерфейса. Изменено назначение некоторых сигналов, введена возможность адресации нескольких логических устройств и 8-разрядного ввода данных, 16-байтовый аппаратный FIFO-буфер. Максимальная скорость обмена - до 2 Мб/с.
. ECP (Enhanced Capability Port - порт с расширенными возможностями) - интеллектуальный вариант EPP. Введена возможность разделения передаваемой информации на команды и данные, поддержка DMA и сжатия передаваемых данных методом RLE (Run-Length Encoding - кодирование повторяющихся серий).

Скачать распиновку порта принтера:

IEEE 1284 (порт принтера, параллельный порт, англ. Line Print Terminal, LPT) - международный стандарт параллельного интерфейса

В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP).

Название «LPT» образовано от наименования стандартного устройства принтера «LPT1» (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS. Интерфейс Centronics и стандарт IEEE 1284

Параллельный порт Centronics - порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован.

Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения.

Виды Разъёмов паралельного порта

Кабельный 36-контактный разъём Centronics для подключения внешнего устройства (IEEE 1284-B)

25-контактный разъём DB-25, используемый как LPT-порт на персональных компьютерах (IEEE 1284-A)

Порт на стороне управляющего устройства (компьютера) имеет 25-контактный 2-рядный разъём DB-25-female ("мама") (IEEE 1284-A). Не путать с аналогичным male-разъёмом ("папа"), который устанавливался на старых компьютерах и представляет собой 25-пиновый COM-порт.

На периферийных устройствах обычно используется 36-контактный микроразъем ленточного типа Centronics (IEEE 1284-B), поэтому кабели для подключения периферийных устройств к компьютеру по параллельному порту обычно выполняются с 25-контактным разъёмом DB-25-male на одной стороне и 36-контактным IEEE 1284-B на другой (AB-кабель). Изредка применяется AC-кабель с 36-контактным разъемом MiniCentronics (IEEE 1284-C) .

Существуют также CC-кабеля с разъёмами MiniCentronics на обоих концах, предназначенные для подключения приборов в стандарте IEEE 1284-II, который применяется редко.

Длина соединительного кабеля не должна превышать 3 метров. Конструкция кабеля: витые пары в общем экране, либо витые пары в индивидуальных экранах. Изредка используются ленточные кабели.

Для подключения сканера, и некоторых других устройств используется кабель, у которого вместо разъема (IEEE 1284-B) установлен разъем DB-25-male. Обычно сканер оснащается вторым интерфейсом с разъемом DB-25-female (IEEE 1284-A) для подключения принтера (поскольку обычно компьютер оснащается только одним интерфейсом IEEE 1284).

Схемотехника сканера построена таким образом, чтобы при работе с принтером сканер прозрачно передавал данные с одного интерфейса на другой. Физический интерфейс

Интерфейс разъема

Базовый интерфейс Centronics является однонаправленным параллельным интерфейсом, содержит характерные для такого интерфейса сигнальные линии (8 для передачи данных, строб, линии состояния устройства).

Данные передаются в одну сторону: от компьютера к внешнему устройству. Но полностью однонаправленным его назвать нельзя. Так, 4 обратные линии используются для контроля за состоянием устройства. Centronics позволяет подключать одно устройство, поэтому для совместного очерёдного использования нескольких устройств требуется дополнительно применять селектор.

Скорость передачи данных может варьироваться и достигать 1,2 Мбит/с.

Стандартные шнуры провода кабеля Centronics IEEE 1284 Printer lpt:

Упрощённая таблица - схема сигналов интерфейса Centronics LPT - разъема

Контакты
DB-25 IEEE 1284-A
Контакты
Centronics IEEE 1284-B
Обозначение Примечание Функция
1 1 Strobe Маркер цикла передачи (выход) Управление Computer
2 2 Data Bit 1 Сигнал 1 (выход) Данные Computer
3 3 Data Bit 2 Сигнал 2 (выход) Данные Computer
4 4 Data Bit 3 Сигнал 3 (выход) Данные Computer
5 5 Data Bit 4 Сигнал 4 (выход) Данные Computer
6 6 Data Bit 5 Сигнал 5 (выход) Данные Computer
7 7 Data Bit 6 Сигнал 6 (выход) Данные Computer
8 8 Data Bit 7 Сигнал 7 (выход) Данные Computer
9 9 Data Bit 8 Сигнал 8 (выход) Данные Computer
10 10 Acknowledge Готовность принять (вход) Состояние Printer
11 11 Busy Занят (вход) Состояние Printer
12 12 Paper End Нет бумаги (вход) Состояние Printer
13 13 Select Выбор (вход) Состояние Printer
14 14 Auto Line Feed Автоподача (выход) Управление Computer
15 32 Error Ошибка (вход) Состояние Printer
16 31 Init Инициализация (выход) Initialize Printer (prime-low) Управление Computer
17 36 Select In Управление печатью (выход) Select Input Управление Computer
18-25 16-17, 19-30 GND Общий Земля

Распайку порта Centronics IEEE 1284 Printer Cable lpt - com9 можно и в виде картинки-изображения

Д. ЗАХАРОВ, г. Прокопьевск Кемеровской обл.

Овладев управлением интерфейсными портами компьютера, радиолюбитель может подключать к ним различные сигнальные и исполнительные устройства и датчики, превращая компьютер в центр управления бытовой электроникой, системой охраны квартиры или в измерительный прибор. Наиболее привлекателен для начинающего параллельный порт LPT, исходно предназначенный для подключения к компьютеру принтера. Отсюда происходит и аббревиатура LPT - Line Printer Terminal (первые принтеры печатали информацию "line by line" - построчно). Позже область применения этого порта значительно расширилась, к нему стали подключать самые разные периферийные устройства. К сожалению, сегодня его (как, впрочем, и другие порты компьютера) постепенно вытесняет быстродействующая универсальная последовательная шина USB.

Разъем порта LPT на системном блоке компьютера - 25-контактная розетка DB-25F. На ее контакты можно подавать и снимать с них логические сигналы уровней, характерных для микросхем структуры ТТЛ. Логически низким считается напряжение 0...0,8 В, высоким - 2,4...5 В. Соединять выходные контакты разъема с общим проводом или с источником напряжения, не превышающего +5 В, рекомендуется только через резисторы сопротивлением не менее 300 Ом. Не допускается подавать как на входы, так и на выходы порта отрицательное напряжение или положительное более 5 В. Подключать к порту и отключать что-либо от него можно только при полностью отключенном от сети 220 В компьютере (сетевая вилка вынута из розетки). Если подключаемое устройство имеет сетевое питание, оно тоже должно быть физически отсоединено от сети.

Несоблюдение этих требований может иметь тяжелые последствия. Если расположенная внутри компьютера микросхема контроллера параллельного порта выйдет из строя, потребуется ремонт или замена материнской платы.

При включении компьютера его параллельный порт работает в режиме Centronics - простейшем и традиционном для этого порта с момента его появления в компьютерах. Иногда этот режим называют Simple Parallel Port (SPP). Более сложные режимы ЕРР и ЕСР используются, как правило, для скоростного обмена информацией с лазерными принтерами и сканерами. Мы их рассматривать не будем, потому что программирование работы с портом в таких режимах доступно лишь опытным программистам.

С точки зрения программы порт LPT в режиме Centronics представляет собой три восьмиразрядных регистра в пространстве ввода-вывода микропроцессора: регистр данных DR по адресу &Н378, регистр состояния принтера SR по адресу &Н379 и регистр управления принтером CR по адресу &Н37А. Указанные адреса относятся к порту LPT1, обычно единственному в компьютере. Если в нем имеются другие параллельные порты, им также отводят по три регистра с последовательными адресами. Например, регистры порта LPT2 обычно имеют адреса &Н278-&Н27А.

Входы и выходы регистров порта (правда, не все) соединены с контактами интерфейсного разъема, как показано на рис. 1.

Поэтому, записывая в эти регистры определенные коды, можно устанавливать соответствующие логические уровни напряжения на выходных контактах разъема, а читая коды из регистров, определять уровни поданных на входы внешних сигналов.

Работать с портом LPT можно практически в любой среде программирования и операционной системе. Наиболее доступными считаются среды Visual Basic и Delphi, причем во всем, что требуется для программирования порта, они весьма схожи. Нужно сказать, что современные многозадачные операционные системы (в том числе семейства Windows) не допускают прямых обращений из прикладных программ к портам компьютера. Это сделано для того, чтобы избежать конфликтов между одновременно выполняемыми программами, если они случайно обратятся к одному и тому же порту в один и тот же момент времени. Связь с портами возможна лишь через специальные программы-драйверы, автоматически выполняющие все, что необходимо для разрешения конфликтов. Программисту остается лишь написать несколько управляющих команд.

Мы будем использовать одну из самых популярных библиотек таких программ - Inpout32.dll второй версии, которую легко найти в Интернете. Она применима в различных средах программирования и операционных системах. Работая в Windows 98, файл lnpout32.dll необходимо скопировать в папку C:\Windows\system\, а в Windows ХР - в папку C:\Windows\system32\. Во многих случаях достаточно просто поместить этот файл в папку исполняемой программы. Для программирования в DOS дополнительные драйверы не нужны, достаточно предусмотренных в используемом языке программирования обычных команд ввода-вывода в порт.

Дальнейшее изложение относится к работе с параллельным портом в системе программирования Visual Basic 6.0 под управлением Windows ХР. Для ее освоения разработана простая программа. Ее проект, в том числе исполняемый фаил test.exe и файл главной (и единственной) формы Form1.frm приложены к статье. При запуске этой программы на экране монитора появится окно, показанное на рис. 2.


Нажимая в нем на экранные кнопки и вводя числа в соответствующие поля, можно устанавливать уровни напряжения на выходах порта и считывать состояние его входов (оно будет отображено числом в соответствующем поле). Библиотеку для работы с портом LPT "подключает" к программе фрагмент файла Form1.frm, показанный в таблице.


Прежде всего, разберем работу с регистром управления CR (напомним, его адрес - &Н37А). В рассматриваемом случае ее выполняет подпрограмма

Private Sub Command4_click()
out &H37A, Text2.Text
End Sub

При нажатии на экранную кнопку Command4 ("Отправить") она записывает в регистр по адресу &Н37А двоичный код, соответствующий десятичному числу, введенному в поле над этой кнопкой.

Для наглядности соберем и подключим к разъему LPT светодиодный узел по схеме, изображенной на рис. 3.


Введем в нужное поле число 4 (двоичное 00000100) и нажмем на кнопку "Отправить". После этого все четыре светодиода окажутся включенными. Дело в том, что разряды CR, CR и CR соединены с контактами разъема через инверторы, поэтому при записи 0 в эти разряды уровни на соответствующих им контактах стали высокими. Чтобы включить только светодиод HL3, нужно ввести число 15 (двоичное 00001111), а при вводе числа 11 (двоичное 0001011) все светодиоды будут выключены. Старшие разряды регистра управления (CR-CR) с контактами разъема не соединены, поэтому их состояние в данном случае никакого значения не имеет.

Чтобы изучить работу с регистром состояния SR, подключим к разъему порта узел, схема которого изображена на рис. 4.


При разомкнутых выключателях SA1-SA5 через резисторы R1-R5 на контакты разъема поступает напряжение высокого логического уровня. Его источником могут быть любой сетевой адаптер с выходным напряжением 5 В, батарея из трех гальванических элементов и даже один из выходов порта LPT, на котором описанным ранее способом установлен нужный уровень напряжения. Во многих компьютерах резисторы, по назначению аналогичные R1- R5, уже имеются, в установке внешних резисторов в таких случаях нет необходимости.

При нажатии на экранную кнопку "Принять" будет выполнена подпрограмма

Private Sub Command5_c1ick()
Text3.Text = Inp(&H379)
End Sub

Она выведет в поле над кнопкой число, отображающее содержимое регистра SR. Если все выключатели (рис. 4) разомкнуты, это будет 126 (двоичное 01111110), а если они замкнуты - 134 (10000110). Значения разрядов SR- SR соответствуют уровням, поданным на соответствующие контакты разъема, а значение разряда SR инверсно уровню на контакте 11. Так как младшие разряды SR-SR на разъем не выведены, их значения не зависят от поданных на его контакты сигналов.

Главный регистр порта - регистр данных DR по адресу &Н378. Именно через него печатаемая информация побайтно передается на принтер. Все восемь разрядов регистра соединены с контактами разъема, причем без инверторов. Эти восемь цепей часто объединяют названием "шина данных". В исходном состоянии она работает только на вывод. Однако почти во всех современных компьютерах имеется возможность переключить ее на параллельный ввод восьмиразрядных двоичных кодов. Для этого достаточно записать единицу в разряд CR регистра управления.

К сожалению, в режиме Centronics никакие сигналы о том, в каком направлении работает шина данных порта LPT, на его разъем не выводятся. Поэтому необходимо соблюдать особую осторожность и подавать на эту шину внешние сигналы, только удостоверившись, что ее программное переключение "на прием" выполнено. Иначе могут быть повреждены интерфейсные микросхемы как самого компьютера, так и подключенного к порту источника сигналов. Этот недостаток устранен в режимах ЕРР и ЕСР, где предусмотрен полный набор сигналов управления направлением передачи информации по шине данных параллельного порта.

В рассматриваемой тестовой программе с регистром данных работает подпрограмма

Private Sub Command3_Click()
Out &H378, Text1.Text
Text1.Text = Inp(&H378)
End Sub

При нажатии на экранную кнопку "OK" она записывает в регистр данных число из поля, находящегося над кнопкой, а затем читает содержимое регистра и отображает его в том же поле. Естественно, если регистр работает как выходной (на экране отмечен пункт "Передача"), число в поле остается прежним. Чтобы убедиться, что логические уровни на контактах 2-9 разъема порта в этом случае соответствуют введенному в поле вручную и записанному в регистр данных числу, подключите к разъему узел, аналогичный тому, схема которого показана на рис. 3, но с увеличенным до восьми числом светодиодов и резисторов.

Операцию переключения шины данных на ввод выполняет подпрограмма

Private Sub Option1_Click()
Out &H37A, 32
End Sub

Ее вызов происходит при нажатии на экранную кнопку с зависимой фиксацией "Прием". Кнопкой "Передача" вызывают аналогичную подпрограмму, отличающуюся лишь тем, что она записывает в регистр управления не 32 (двоичное 00100000), а ноль, возвращая таким образом шину данных в режим вывода.

Когда шина данных переведена в режим ввода, процедура Out в рассмотренной ранее подпрограмме, вызываемой при нажатии на кнопку "ОК", фактически не работает. Однако функция Inp возвращает значение, соответствующее уровням на выводах 2-9, установленных подключенными к ним внешними цепями. В виде десятичного числа оно появляется в поле над кнопкой "ОК". Задавать логические уровни на линиях шины данных можно с помощью узла, подобного использовавшемуся для работы с регистром состояния (рис. 4).

Чтобы не усложнять программу, отображение в поле ввода над кнопкой "Отправить" изменений состояния регистра управления с помощью кнопок "Прием" и "Передача" не предусмотрено.

Освоив приведенные в статье примеры, мы научились выводить через порт из компьютера 12 и выводить в него 5 логических сигналов либо (в другом режиме) выводить 4 и вводить 13 таких сигналов. Теперь можно разрабатывать гораздо более сложные программы и устройства, подключаемые через порт LPT к компьютеру.

От редакции. Упомянутые в статье и другие необходимые для работы с тестовой программой файлы находятся на нашем FTP-сервере по адресу ftp://ftp.radio.ru/pub/2007/09/testlpt.zip

Радио 2007 №9

Интерфейс LPT

Интерфейс LPT также часто называют параллельным (имеется ввиду параллельный порт). Из его названия следует, что обмн данными происходит в этом интерфейсе параллельно Это означает, что биты передаются не один за другим, как это делается в последовательных интерфейсах, а несколько бит передаются одновременно (паралельно), или, точнее, рядом, друг возле друга. То число бит, которое может быть передано за один такт, определяет разрядность интерфейса. Интерфейс LPT является 8-разрядным. Существует также множество других паралельных интерфейсов (например, SCSI, PCI и др.), поэтому название "параллельный" здесь не совсем корректно и оно вовсе не означает, что LPT "параллельнее" остальных - просто исторически сложилось такое название, и нет особых причин его менять.

Сегодня параллельный порт есть в каждом компьютере. Первоначально он предназначался исключительно для подключения принтера (LPT означает Line PrinTer), но впоследствии стали появляться и другие устройства: сканеры, мобильные дисководы, цифровые фотоаппараты, так что сейчас работа параллельного интерфейса не ограничивается только принтером, хотя в большинстве случаев это именно так и есть. LPT также часто называют Centronics в честь соответствующей фирмы, ставшей основным разработчиком параллельного порта. Соответственно и кабель для подключения принтера к РС тоже называется Centronics. Но это тоже не совсем правильно, так как разъем, непосредственно подключаемый к компьютеру, представленный в виде 25-контактной вилки (рисунок, верхняя часть), называют Amphenolstakcer, а собственно разъем Centronics находится на другом конце кабеля, идущего к устройству (нижняя часть рисунка), он тоже представлен в виде вилки, но имеет 36 контактов.

Передача данных по кабелю может вестись только в одном направении. Но некоторые устройства (современные принтеры, дисководы ZIP и т. д.) позволяют осуществлять и обратную связь. Для это го нужен другой кабель, называемый Bitronics. Внешне он (и его разъемы) ничем не отличается от кабеля Centronics, но там нужен еще и улучшенный параллельный порт (EPP/ECP), о котором речь пойдет дальше. Назначение контактов кабеля Centronics вы можете посмотреть в таблице.

25-контактный разъем 36-контактный разъем Обозначение сигнала Вход/выход Назначение
1 1 STROBE Выход Готовность данных
2 2 D0 (Data0) Выход 1 бит данных
3 3 D1 (Data1) Выход 2 бит данных
4 4 D2 (Data2) Выход 3 бит данных
5 5 D3 (Data3) Выход 4 бит данных
6 6 D4 (Data4) Выход 5 бит данных
7 7 D5 (Data5) Выход 6 бит данных
8 8 D6 (Data6) Выход 7 бит данных
9 9 D7 (Data7) Выход 8 бит данных
10 10 ACK (acknoledge) Вход Подтверждение приема данных
11 11 BUSY Вход Принтер не готов к приему (занят)
12 12 PE (Paper End) Вход Конец бумаги
13 13 SLCT (Select) Вход Контроль состояния принтера
14 14 AF (Auto Feed) Выход Автоматический первод строки (LF) после перевода каретки (CR)
15 32 ERROR Вход Ошибка
16 31 INIT (Initialize Printer) Выход Инициализация принтера
17 36 SLCT IN (Select In) Выход Принтер в состоянии On-Line
18 33 GND (Ground) - Корпус
19 19 GND (Ground) - Корпус
20 20 GND (Ground) - Корпус
21 21 GND (Ground) - Корпус
22 22 GND (Ground) - Корпус
23 23 GND (Ground) - Корпус
24 24 GND (Ground) - Корпус
25 25 GND (Ground) - Корпус
- 15 GND/NC (Ground/No Connect) - Корпус/свободный
- 16 GND/NC (Ground/No Connect) - Корпус/свободный
- 17 GND (Ground) - Корпус для монтажной платы принтера
- 18 +5 V DC (External +5 V) Вход +5 V
- 26 GND (Ground) - Корпус
- 27 GND (Ground) - Корпус
- 28 GND (Ground) - Корпус
- 29 GND (Ground) - Корпус
- 30 GND (Ground) - Корпус
- 34 NC (No Connect) - Корпус
- 35 +5 V DC/NC (External +5 V/No Connect) - +5 V/свободный

BIOS компьютера подерживает до трех параллельных портов (которые на практике редко кому требуются). Микросхема одного порта уже встроена в чипсет на материнской плате, другие могут находиться на картах расширения. Раньше такие карты широко использовались, потому что чипсет не имел соответствующих контролеров, но сейчас они вымерли и давно не производятся. Но если есть желание, можно покопаться на рынке в компьютерном хламе и найти такую карточку (на ней также есть два последовательных порта и, как правило, игровой порт и IDE-контроллер) и поставить ее в свой компьютер (правда, здесь может возникнуть проблема, куда ее вставлять, потому что они делались для шины ISA, а теперь хорошую материнскую плату со слотами ISA тяжеловато найти). При загрузке система анализирует наличие параллельных портов по трем базовым адресам: 03BCh, 0378h и затем 0278h. Первому найденному порту присваевается имя LPT1, второму LPT2 и третьему LPT3. LPT1 еще иногда называют PRN (сокращение от printer), потому что к нему, как правило, подключается принтер.

Как вы, наверное, догадались, название "LPT" тоже не совсем правильно. LPT - это название стандартного параллельного порта, самого первого, который сейчас уже вряд ли можно найти даже на рынке. Есть еще паралельные порты, называемые соответственно EPP и ECP. Но обо всем по порядку.

Стандартный парвллельный порт (LPT)

Стандартный параллельный порт, которым обладали самые первые персональные компьютеры, им оснащенные, был предназначен только для односторонней передачи данных от PC к принтеру. Он обеспечивает пропускную способность от 120 до 200 Kb/s. Как уже было сказано, он устарел.

Порт EPP

Фирмы Intel, Xircon, Zenith и ряд других совместно разработали спецификацию улучшенного параллельного порта, назвав ее EPP (Enhanced Parralel Port ).

Порт EPP является дуплексным, то есть обеспечивает передачу восьми битов данных в двух направлениям. Он поддерживает режим, при котором порт, за счет использования DMA, может пересылать информацию из RAM на устройство и обратно минуя процессор, что снижает нагрузку на последний.

EPP принимает и передает данные в несколько раз быстрее, чем стандартный LPT. Этому также способствует буфер, сохраняющий данные до того, как устройство будет способно их принять. Он позволяет подключать устройства количеством до 64 в цепочку, подобно SCSI. Для этого некоторые устройства (например, ZIP-дисковолы) имеют два разъема - один на вход, другой на выход для следующего устройства.

Порт EPP полностью совместим со стандартным портом. Для использования его спецфических функций нужна только BIOS, их поддерживающая. Максимальная скорость передачи может достигать 2 Mbps.

Порт ECP

Дальнейшим развитием параллельного порта явился порт ECP (Extended Capability Port ). Скорость передачи данных по сравнению с EPP немного возрасла, в ECP, также как и в EPP, используется метод DMА. Он позволяет создавать цепочку из 128 устройств.

Одной из самых важных функций, рализованных в ECP, является сжатие данных. Это позволяет еще больше повысить реальную скорость передачи. Сжатие возмодно как программно, путем применения драйвера, так и аппаратно самой схемой порта. Для сжатия используется метод RLE (Run Length Encoding ), при которм последовательность из повторяющихся символов передается двумя байтами: первый определяет повторяющийся байт, а второй - число повторений. Данная функция, однако, не является обязательной. Она работает только в том случае, когда и устройство поддерживает ее. Если таковой поддержки нет, то порт обменивается данными с устройством без сжатия.

Режимы параллельного порта (AT, EPP, ECP) можно выставить в CMOS Setup. Если вс работает нормально, то в любом случае ставьте EPP/ECP. Если порт поддерживает эти режимы (а это любой современный параллельный порт), то эта опция, как правило, уже установлена как оптимальное значение.

Стандарт IEEE 1284

Стандарты портов ECP и EPP были включены в стандарт Американского института инженеров по электротехнике и электронике IEEE 1284 (не путать с IEEE 1394). Большинство современных лазерных принтеров используют этот стандарт.

Стандарт IEEE 1284 определяет четыре режима работы: полубайтовый, байтовый, EPP и ECP, то есть поддерживает все ранее существовавшие стандарты параллельного порта. Все эти режимы также поддерживают двунаправленную передачу. Дополнительно к этим уже рассмотрененным функциям стандарт IEEE 1284 позволяет принтеру послать сигнал при аварии. Всякий раз при возникновении ошибки параллельный порт посылает сигнал прерывания (IRQ). (15-й контакт обычного паралельного порта не использовался для прерывания процессора, и ошибка могла быть обнаружена только если программа (драйвер) предусматривала контроль этой линии.)

Как уже упоминалось, к параллельному порту могут подключаться не только принтеры, но и другие устройства. Существуют даже конвертеры (правда, вряд ли они кем-либо используются) LPT to IDE, которые позволяют подключить к параллельному порту жесткий диск. Однако это, по-моему, уже извращение. Возможностей параллельного порта еле-еле хватает для принтеров, да и то лазерные принтеры заметно тормозят, а печать сложных графических изображений на них (да и на струйных, впрочем, тоже, хотя и в гораздо меньшей степени) будет идти с очень капитальными замедлениями. Например, картинка размером с лист A4 и разрешением порядка 600 точек на дюйм может иметь размеры не в одну сотню мегабайт (правда, лазерный принтер тогда должен иметь не меньшее количество оперативной памяти), и можно представить, сколько будет продолжаься ее передача по параллельному порту со средней скоростью 0.8-1.2 Mb/s. А что уж там говорить о мобильных дисководах, сканерах? А в случае с жестким диском прокачка нескольких гигабайт через параллельный порт может вдохновить разве что лишь самого отчаянного последователя господина Мазоха, да и то, наверное, ему надоест ждать. Так то подключать к LPT что-нибудь кроме принтера или переносного дисковода типа ZIP, когда требуется перенести не слишком большое количество данных на другой компьютер, я бы, честно говоря, не посоветовал бы. Лазерные принтеры в связи тем, что они формируют перед печатью страницу целиком, тоже очень желательно подсоединить к чему-то другому, например, к USB (если принтер не имеет возможности работы через USB, то можно воспользоваться переходником USB to LPT). А для сканеров и дисков существуют SCSI и Mobile Rack. Естественно, все это стоит денег, но тогда же зачем, простите, если нет денег, из всякого отстоя город городить. Да к тому же сейчас все РС имеют USB-разъемы, а периферии с соответствующим интерфейсом по вполне приемлимой цене в магазинах тоже хватает. Конечно, я не хочу сказать, что USB намного быстрее, чем LPT (для тех же сканеров, если вы не хотите наслаждаться притормаживаниями, нужен SCSI а не USB), но все же пропускная способность шины USB немного (на 30-35%) выше, чем пропускная способность параллельного порта. Следует еще отметить, что параллельный интерфейс уже устарел как таковой, и производители периферии давно начали потихоньку сворачивать ее выпуск в LPT-варианте, переходя на USB. Поэтому, когда вы идете в магазин за принтером (или за сканером, но не хотите платить за сканер со SCSI-контроллером), то подумайте, а стоит ли покупать антиквариат с целью выгодно продать его лет этак через 200, может все-таки лучше обзавестись чем-нибудь посовременнее?