Особенности построения сети цифрового телевидения. Радио и телевидение

Дециметровая терапия (ДМВ-терапия) – это метод физиотерапии, который сформирован на применении электромагнитных волн сверхвысокой частоты и мощности. Ток проходит в глубокие слои тканей, воздействуя на физиологические механизмы, которые происходят в организме человека. Существует второй вид терапии с применением сверхвысокочастотной энергии – сантиметроволновая (СВЧ) терапия с длиной волны от 1 до 10 см. Благодаря своим свойствам, методы приобрели широкое применение в комплексном лечении многих заболеваний.

В ДМВ-терапии применяется электромагнитное поле частотой 461,5 МГц и 915 МГц с интенсивностью до 60 Вт. Энергия дециметроволновых волн поглощается тканью, содержащей большое количество жидкости, но 35-63% ее отражается и рассеивается во внешней среде. Длина волны составляет от 10 см до 1 метра, а глубина действия 5-13 см. Использование специальных аппаратов-излучателей позволяет достичь локального воздействия в области необходимого участка тела.

Характеристики дециметровых волн и их свойства

Механизм действия волн заключается в резорбции энергии органами и превращением ее в тепло, что приводит к активации метаболизма и кровообращения, уменьшению проницаемости сосудистой стенки, усилению выработки гормонов и витаминов. Данный физиотерапевтический метод оказывает общее и местное действие. При локальном воздействии активируются обменные процессы, благодаря чему температура возрастает на 3-5°С местно и во всем теле. Кровообращение в подкожно-жировом слое развито недостаточно, из-за чего возможно его перегревание. Стоит строго соблюдать время проведения процедуры, для получения лечебного эффекта оно должно составлять от 3 до 30 минут.

Направленное излучение расширяет капилляры, улучшая локальное и общее кровообращение. Понижение сосудистой проницаемости ведет к уменьшению отека в очаге воспаления, а улучшение оттока лимфатической жидкости уменьшает лимфостаз.

ДМВ-терапия активирует обменные процессы, благоприятно влияет на питание клеток и возобновляет утраченную функцию.

Общий эффект от данной физиопроцедуры заключается в стимуляции эндокринной системы. Увеличивается продукция гормонов гипоталамо-гипофизарной системы и щитовидной железы, активируется клеточный и гуморальный иммунитет. Благоприятно волны действуют на головной мозг, улучшают кровообращение и нервную проводимость. Уменьшается спазм сосудов и снижается артериальное давление, усиливается микроциркуляция. Увеличиваются сердечные толчки, позволяя в полной мере обеспечить все органы и ткани кислородом.

Дециметровая терапия обладает бронхолитическим эффектом, снимает спазм, уменьшает приступы кашля и улучшает выделение мокроты при бронхообструкции. Воздействуя на органы желудочно-кишечного тракта, усиливает продукцию ферментов, улучшающих пищеварение, снимает спазм и снижает перистальтику кишечника, купируя боль. ДМВ-терапия увеличивает функциональную способность почек, снимает воспаление даже при наличии урогенитальной инфекции.

Показания и ограничения к использованию ДМВ-терапии

Применение дециметровой терапии целесообразно при таких заболеваниях:

  • Патологические процессы костно-суставного аппарата: остеохондроз, деформирующий остеоартроз суставов, артрит, сколиоз, эпикондилит, травмы костей.
  • Воспалительные заболевания нижних дыхательных путей: бронхиальная астма, пневмония, обструктивный бронхит, дыхательная недостаточность.
  • Патологические процессы центральной и периферической нервной системы: корешковый синдром при остеохондрозе позвоночника, вегетососудистая дистония, радикулопатия, болезнь Паркинсона, неврит, дизартрия.
  • Заболевания сердца и сосудов: артериальная гипертензия 1 ст., инфаркт миокарда в анамнезе (не ранее, чем через 1 месяц), атеросклероз, облитерирующий эндартериит.
  • Заболевания органов пищеварения: хронический гастрит и язва желудка, печеночная недостаточность 1 степени, дискинезия желчных путей, калькулезный холецистит, ферментопатия, синдром раздраженного кишечника.
  • Воспалительные процессы мочевыделительной системы: почечная колика, цистит, почечная недостаточность 1 степени, мочекаменная болезнь, гломерулонефрит.
  • Заболевания соединительной ткани: ревматоидный артрит, болезнь Рейно, ревматизм 2 ст. активности.
  • Болезни половой сферы: климактерический синдром, простатит, воспаление предстательной железы, аднексит.
  • Воспалительные заболевания ЛОР-органов: острый и хронический ринит, синусит, гайморит, отит, тонзиллит, аденоидит.
  • Патологические процессы кожных покровов: фурункул, карбункул, инфильтрат после операции.
  • Воспалительные заболевания челюстно-лицевой области: пародонтит, остеомиелит, периостит.

Противопоказания к применению дециметровой терапии:

  • Гиперфункция щитовидной железы (гипертиреоз) с повышением уровня гормонов.
  • Эпилепсия.
  • Сужение сфинктера (привратника) желудка вследствие дефектов (язв) слизистой.
  • Наличие любой металлоконструкции в теле пациента, кардиостимулятора.
  • Аутоиммунные заболевания.
  • Болезни крови с нарушением ее свертываемости.
  • Онкологические заболевания или предрасположенность к ним.
  • Гнойные и воспалительные заболевания в острой стадии.
  • Сердечно-сосудистые заболевания в стадии декомпенсации: стенокардия покоя, ишемическая болезнь сердца 2-3 степени, артериальное давление более 150/90 мм рт. ст.
  • Дерматит, экзема, повреждения кожи.
  • Активная стадия туберкулеза.
  • Истощение (кахексия) тяжелой степени.
  • Индивидуальная непереносимость.
  • Беременность.
  • Детский возраст до 2 лет.

Методика проведения дециметровой терапии

При выполнении ДМВ-терапии используют специальные аппараты: «ДМВ-02 «Солнышко», ДМВ-01-1 «Солнышко», «ДМВ-15», «ДМВ-20», «Волна-2», «Ромашка». В зарубежных клиниках используют Radiotherm, ThermaSpec 600. Действие отечественных и импортных аппаратов одинаковое, различие составляют технические характеристики: максимальная и минимальная исходящая сила, количество и размер излучателей. На основании этих данных физиотерапевт выбирает необходимый прибор, подходящий для лечения заболевания, определяет интенсивность воздействия, длительность сеанса и курс лечения.

Перед проведением физиолечения определяется место воздействия и форма излучателя. Выбирается метод осуществления физиопроцедуры: контактный или дистанционный (расстояние между излучателем и кожей составляет 3-4 см). Контактный способ возможен с помощью портативного аппарата «Ромашка», а дистанционный с применением стационарного прибора «Волна-2». Мощность излучения определяется по ощущениям пациента, и составляет от 30 до 60 и более Вт в стационарных приборах, и 4-10 Вт в передвижных аппаратах. Длительность процедуры определяется количеством полей и не превышает 60 минут.

Сеансы проводятся каждый день или раз в два дня, лечение включает 8-15 сеансов.

При использовании контактного метода на необходимый участок направляется излучатель, его диаметр зависит от объема патологического очага. На приборе выставляют необходимую мощность, основываясь на ощущениях больного, до чувства слабого или умеренного тепла (5-8 Вт). В течение последующих процедур можно пробовать постепенно увеличивать интенсивность.

При дистанционном способе излучатель необходимой формы и размера направляется на область проекции пораженного органа. Промежуток между аппаратом и кожей составляет 3-4 см. Интенсивность увеличивают до чувства легкого тепла (30-60 Вт). Применение дециметровой терапии возможно дома, при использовании переносного прибора: ДМВ «Солнышко», «Ромашка». Эффект наступает после 3-4 сеансов, но для полного выздоровления необходимо пройти весь курс.

Cтраница 1


Дециметровые волны в меньшей степени, чем метровые, подвержены явлению дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородно-стях тропосферы.  

Дециметровые волны в меньшей степени, чем метровые, подвержены дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородностях тропосферы. Это позволяет осуществить многоканальную телефонную связь или трансляцию телевизионной передачи с помощью радиорелейных линий на расстояниях, превышающих сотни и даже тысячи километров.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 Мщ.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 МГц.  


Дециметровые волны используются в зоне прямой видимости.  

Дециметровые волны - радио волны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны - радиоволны длимой от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны распространяются только в пределах прямой видимости и избирательно поглощаются атмосферой, интенсивно отражаются от подвижных и неподвижных объектов. Антенны малогабаритны и обладают острой направленностью излучения. Дециметровые волны используются в радиорелейных и спутниковых системах связи, высокоточных наземных системах радиолокации и радиоуправления.  

Дециметровые волны позволяют получать с помощью спутниковых РНС очень высокую точность местоопределения в рабочей области системы, которая для глобальных СРНС охватывает все околоземное пространство.  


Мертвые и дециметровые волны распространяются в пределах прямой видимости. Эти волны не отражаются от ионосферы, а поверхностная волна очень быстро затухает. Для увеличения дальности радиосвязи на этих волнах применяются направленные антенны, излучающие электроэнергию узким пучком.  

Однако дециметровые волны не могут быть приняты существующими телевизионными приемниками непосредственно, и работа в этом диапазоне потребует использования конверторов-преобразователей частоты.  

Для телевизионного вещания используются метровые и дециметровые волны. Для черно-белого телевидения в СССР отведено двенадцать каналов.  

Сначала в радиолокации использовались метровые и дециметровые волны, а затем стали переходить к сантиметровым волнам, которым соответствует спектр частот от 30 тыс. до 3 тыс. мггц. Малая длина этих волн, являющихся частью диапазона ультракоротких волн, позволила создать сравнительно небольшие по размерам радиолокационные антенны, имеющие ширину диаграммы направленности в несколько градусов и даже долей градуса.  

В настоящее время почти всё телевизионное вещание перешло на трансляцию в дециметровом диапазоне. Это обусловлено тем, что волны этого диапазона малочувствительны к влиянию внешних помех и оборудование, применяемое для обеспечения трансляции в этом диапазоне, обладает невысокой стоимостью . В качестве диапазона для использования цифрового телевидения Т2 был выбран именно он.

Дециметровые волны (ДМВ) располагаются в диапазоне радиоволн, имеющих длину волны от одного метра до 10 см, и лежат в частотах от 300 МГц до 3 ГГц. Для приёма ДМВ применяются широкополосные антенны направленного действия они могут осуществлять приём телетрансляций на удалении 60-70 км от телецентра.

Особенности приёма ДМВ

Необходимо понимать, что чёткого различия между профессиональными и домашними антеннами не существует. Профессиональные антенны для телевизионного режима имеют узкую диаграмму направленности, а значит и больший коэффициент усиления. Благодаря этому они имеют более усложнённую , с множеством элементов конструкцию, чем домашние.

Перечислим основные части, из которых состоит антенна:

  • фидер;
  • рефлектор;
  • вибратор;
  • директор.

В первую очередь на качество приёма оказывает влияние рельеф местности . Различные барьеры, возникающие на пути прохождения сигнала, ослабляют его уровень или не дают его распространению. В зоне отсутствия прямой видимости антенны нередко настраивают на отражённый сигнал и из-за этого приходится применять различного вида активные усилители и согласователи.

В близости от передатчика антенна может ставиться внутри помещения или снаружи. В отдалении, конечно, нужно ставить снаружи: на стену, балкон, крышу, мачту. Обычно в удалении от ретранслятора антенна размещается на высоте 8-15 м на мачте.

Симметрирование антенн

Симметрирующие устройства устраняют попадание токов радиочастоты на внешнюю площадь наружного проводника (оплётки) коаксиального провода. Подключать без такого устройства нельзя, так как это приводит к искривлению диаграммы направленности антенны и уменьшению помехоустойчивости приёма. Когда входное сопротивление антенны отличается от волнового сопротивления провода, то такое устройство применяется и как согласующее.

Согласующее устройство для антенны своими руками выполнить несложно. Обычно применяют четвертьволновой мостик или волновое U-колено. Мостик представляет собой двухпроводную короткозамкнутую линию с величиной длины Lcp/4, подключённую к зажимам вибратора. Мостик состоит из двух трубок, изолятора и короткозамкнутого шунта. Через одну из трубок (например, левую) пропускается кабель. Внешний проводник (оплётка) подключается к левой трубке вибратора и левой трубке мостика, центральный контакт - к правой трубке вибратора .

Волновое колено выполняется из кабеля и состоит из двух отрезков с волновым сопротивлением 75 Ом, соответственно длиной Lc/4 и Lc/3, где Lc средняя длина волны в кабеле. Выдерживать определённое расстояние между кабелями не нужно. Рабочая полоса частот составляет 12- 15 процентов.

И также может использоваться проволочный трансформатор . Он трансформирует входной импеданс антенны в импеданс равный 73 Ом. Две пары катушек трансформатора намотаны поочерёдно на двух каркасах диаметром 5- 7 мм. Намотка непрерывная, в два провода. Промежуток между каркасами 15-20 мм. Монтаж выполняется на металлической плате, к концам которой припаиваются оплётка фидера и концы обмоток.

Проволочная антенна

Самую простую конструкцию можно выполнить из куска медной проволоки . Такая антенна представляет собой петлевую рамку, которая состоит из двух разделённых зазором проводников. В случае использования мачты, крепление осуществляется с помощью изоляционной пластины, например, гетинакс, покрытый лаком или текстолит. Место подключения кабеля при использовании на улице следует закрыть от прямого попадания атмосферных осадков.

Основная операция будет заключаться в расчёте длины петли. Для этого необходимо знать частоту передачи эфирного сигнала. Длина волны, соответствующая несущей частоте изображения f, вычисляется по формуле L = 300/f. Например, для частоты 600 МГц это значение будет L = 300/600= 0,5 м. То есть длина петли составит 50 см.

Алюминиевый диск

Для изготовления нам понадобится:

  • алюминиевый диск толщиной 1 мм;
  • печатная плата из стеклотекстолита толщиной 1 мм;
  • согласующий трансформатор;
  • кабель с волновым сопротивлением 75 Ом.

В алюминиевом диске диаметром 356 мм, с отверстием посередине с диаметром 170 мм, делается пропил 10 мм. Вместо выпиленного куска устанавливается печатная плата, к которой припаивается согласующий трансформатор. Вместо него можно установить усилительное устройство, взятое из комплекта, идущего с польской антенной.

Волновой канал

Несложная по конструкции высокоэффективная антенна направленного действия, которая может быть использована практически во всём диапазоне телевизионного вещания. Антенна представляет собой активный полуволновой вибратор (обычно петлевой), рефлектор из нескольких директоров, укреплённых на основании стрелы, зафиксированные скобами или сваркой. Вибратор со стрелой закрепляется на мачте. Соединение кабеля и симметрирующе-согласующего U образного колена к активному вибратору производится с помощью специальной коробки.

Полуволновое колено выполняется из отрезков коаксиального кабеля длиной равной средней длины волны поделённой на два. U-колено является сразу как симметрирующим устройством, так и трансформатором сопротивлений: оно изменяет входное сопротивление петлевого вибратора 292 Ом до 73 Ом, что даёт возможность обеспечить согласование вибратора с фидером. Оплётки кабеля колена нужно спаять между собой, а также с оплёткой фидера. Длина отрезка используемого провода примерно будет около 185 мм.

Расчёт

ДМВ антенны вибраторы изготавливаются из трубок диаметром от 14 до 25 мм, несущую стрелу 18-35 мм. Мачта может быть изготовлена из трубок диаметром 40-50 мм, со стенкой 3-4 мм или деревянного бруса 60×60 мм.

Расстояние между элементами устройства можно рассчитать в специально созданных для этого программах: Antwu 15, 4K6D и т. п. Эти утилиты русифицированные , разобраться будет нетрудно.

Зигзагообразное устройство

Несложная в изготовлении антенна широкого диапазона. Работает в двукратной полосе частот. Конструкция представляет собой две вертикальные рейки, закреплённые на диэлектрической стойке. На верхнем и нижнем конце стойки крепят стальные планки. Планки такого же вида, но через изоляционные шайбы, закрепляют на концах реек. На стойке между рейками располагают непроводящую пластину, на которой установлены две пластины из проводника .

Кабель диаметром 3-4 мм соединяют со стальными планками. Его также подпаивают к нижней планке. Провод прокладывают параллельно стороне внутреннего кабеля нижней рамки и припаивают к планкам (оплётку - слева, центральный проводник справа).

Для упрощения конструкции можно использовать только один ромб, зигзаг. Размер такого ромба составит 340×340 мм. Расстояние между двумя металлическими планками в центре ромба берут около 10 мм. В качестве материала применяют алюминиевые, медные или латунные трубки, или полоски шириной 6-10 мм.

Усилитель

Для улучшения приёма телевизионного эфира часто применяют антенну с активным усилителем сигнала. Обычно такой усилитель не нуждается в настройке и выполняется на малошумящих транзисторах с усилением около 20 дБ.

Для того чтоб изготовить усилитель ТВ сигнала своими руками, понадобится печатная плата и следующий перечень радиоэлементов:

  1. Резисторы: R1, R5-220 Ом; R2, R6-8,2 кОм; R3-3,3 кОм; R4, R8-22 Ом; R7- 1,5 кОм.
  2. Конденсаторы: C1-0,01 мкФ; C2, C4, C6-220 пФ; C3, C5-100 нФ.
  3. Транзисторы: VT1, VT2 S790T.

Схема антенного усилителя для телевизора своими руками будет выглядеть так:

https://masterkit.ru/images/magazines/3_SH3 04 .gif

Усилитель выполнен на транзисторах S790T по схеме с общим эмиттером и имеет две корректирующие цепочки R1, C3 и R5, C5. Устройство собирается на двух усилительных каскадах. Центральная жила входного кабеля подпаивается на вход конденсатора C2, а оплётка экрана на общую землю. Усиленный сигнал снимается с выхода конденсатора C6.

Усилитель для антенны распаивают на отдельной независимой плате, радиоэлементы на ней устанавливаются навесным способом. Крепят плату посередине антенны, такое расположение позволяет эффективно принимать сигнал.

Рамочная антенна

Самодельное устройство будет состоять из следующих элементов:

  • алюминиевые полосы размером 320 мм;
  • мачта;
  • рефлектор;
  • усилительное устройство;
  • кабель.

Вначале собирается рамка из четырёх полос. Крепление между собой осуществляется с помощью винтов. В середину рамки устанавливается крестовина. От центра каждая часть крестовины укорачивается на 5 мм. Ближайшие друг к другу части обрезанных пластин соединяются проводником, образовывая два внутренних, разделённых квадрата. К этим пластинам припаивается кабель, к одной центральная жила, к другой оплётка. Далее антенна устанавливается на мачте, и крепится усилитель.

Логопериодическая

Такая антенна выделяется хорошим согласованием с коаксиальным кабелем и узкой диаграммой направленности, что позволяет принимать телевизионный сигнал на значительном удалении.

Антенна состоит из двухпроводной симметрично распределённой линии, образованной из одинаковых трубок, лежащих параллельно друг другу. На эти трубки устанавливаются полувибраторы в количестве семи штук, при этом направление их чередуется на противоположное относительно предыдущего.

Кабель с волновым сопротивлением 75 Ом прокладывается в одну из линий, концы труб в месте входа фидера соединяются пластинкой из проводника. Экран кабеля распаивается при его выходе из линии, а центральная жила припаивается к лепестку, установленном на заглушке другой трубы. Расстояние между вибраторами выбирают от начала 80, 94,77, 63, 52, 43, 35 мм, а их размер соответственно 160, 131, 107, 88, 72, 60, 49 мм.

Польская

Если выполнить самостоятельно усилитель нет возможности или желания, можно приобрести готовый. Особой популярностью пользуются те, что стоят в так называемых польских антеннах, например, фирмы Sowar. Польская антенна работает в широкополосном диапазоне, т. е. может принимать дециметровый и метровый сигнал. Однако, в том виде в котором она есть, она не очень приспособлена для приёма цифрового телевидения DVB-T, поэтому для её использования рекомендуется выполнить доработки.

Всё дело в том, что входное сопротивление усилителя выше сопротивления антенны. Для начала убираем длинные метровые активные вибраторы или укорачиваем их до размеров дециметровых, затем удаляем полотно рефлектора от активных вибраторов. Таким образом, изменяется сопротивление антенны. Из усилителя желательно выпаять и узел согласования, кольцо из феррита. Это поможет расширить диапазон, увеличит сопротивление, изменит частотную характеристику.

Баночная

Эта оригинальная антенна, которую просто сделать самостоятельно, не уступит по параметрам логопериодической антенне. Собирается из двух консервных банок. Банки берутся размерами 75×95 мм. С помощью двух полосок стеклотекстолита банки соединяются путём пайки. Одна полоска сплошная, а на второй делается разрыв в который подпаивается кабель. Принцип работы её основан на свойстве симметричного широкополосного вибратора, за счёт чего она обладает большим коэффициентом усиления.

Рассмотренные виды антенн без проблем можно подключать к всевозможным приставкам для приёма цифрового телевидения и даже фм диапазона.

Распространение сантиметровых, дециметровых и метровых радиоволн

Радиоволны длиной короче 10 м называются ультракороткими. Эти волны охватывают очень широкий диапазон частот. Ширина диапазона частот только сантиметровых волна составляет 27000 МГц, что в тысячу раз превышает ширину диапазона частот декаметровых волн (см. табл. 1.1). Поэтому на УКВ возможна передача намного больших потоков информации, чем на более длинных волнах. Только на УКВ возможно телевидение и высококачественное радиовещание с использованием частотной модуляции (ЧМ).

Земная волна на УКВ обеспечивает связь практически только в пределах прямой видимости (рис.1.7). За ее пределами в естественных условиях УКВ могут устойчиво распространяться только за счет рассеяния в ионосфере и в тропосфере. Однако для обеспечения связи за счет рассеяния требуются очень мощные радиопередатчики с сложные антенные сооружения.

Для увеличения расстояния прямой видимости антенны радиотелевизионных передающих станций и станций звукового ЧМ вещания устанавливают на высоких башнях. Для передачи радиосигналов на большие расстояния в диапазоне УКВ используют наземные радиорелейные линии и ретрансляторы, расположенные на искусственных спутниках Земли.

Предельное расстояние прямой видимости между антеннами получается тогда, когда луч, соединяющий антенны, касается земной поверхности. Эмпирически установлено, что в километрах определяется выражением

где и – соответственно высоты передающей и приемной антенн, м. Напряженность поля при связи в пределах прямой видимости можно определить по формуле акад. Б.А. Введенского:

,

где – действующее (эффективное) значение напряженности поля, мВ/м; - мощность радиопередатчика, кВт; – расстояние между приемной и передающей антеннами, км ( ; – длина волны электромагнитных колебаний, м; – коэффициент направленного действия антенны.

Рис. 1.7. Распространение радиоволн в пределах прямой видимости

Рассмотрим влияние тропосферы на распространение УКВ. Коэффициент преломления воздуха n очень мало отличается от единицы. У поверхности Земли в среднем = 1,003. На практике преломляющие свойства воздуха оценивают индексом преломления

пользоваться которым удобнее, чем . Индекс преломления зависит от влажности, давления и температуры воздуха: с увеличением давления и влажности увеличивается, а при повышении температуры = уменьшается. Параметры воздуха зависят от высоты и от метеорологических условий. Зависимость от высоты оценивают градиентом индекса преломления

Зависимость коэффициента преломления от высоты приводит к искривлению траектории радиоволн в тропосфере, которое называется тропосферной рефракцией. Такое искривление характеризуют радиусом кривизны луча

Радиус привязки положителен, так как . При этом фазовая скорость волны с высотой возрастает, верхняя граница фронта распространяется быстрее нижней и луч искривляется в сторону поверхности Земли. Такая рефракция называется положительной . Тропосферная рефракция изменяет расстояние прямой видимости, оно несколько увеличивается. С учетом рефракции значение постоянного коэффициента в формуле (1.2) должно быть увеличено до значения, равного 4,52.

Если при положительной рефракции радиус кривизны траектории ( - радиус Земли), то возникает критическая рефракция (рис. 1.8, а). При наступает сверхрефракция (рис.1.8,б). В этих случаях электромагнитная волна может распространяться далеко за пределы прямой видимости. Сверхрефракция возникает при выполнении условия 1/м. При этом индекс преломления должен очень быстро уменьшаться с высотой, что бывает в том случае, когда температура воздуха с высотой не падает, как обычно, а возрастает. Такие условия называют температурной инверсией. Область тропосферы, в которой возникает свехрефракция, называют тропосферным волноводом. Наиболее часто тропосферные волноводы возникают в приморских районах, когда существует большая разница температур воздуха над сушей и над морем. В этих случаях ветер может переместить теплый воздух, который расположится над холодным, и возникнет температурная инверсия. Поскольку тропосферные волноводы возникают нерегулярно, их нельзя использовать для построения радиолиний. Возможность возникновения тропосферных волноводов необходимо учитывать при распределении частот на радиолиниях, чтобы избежать взаимных помех.


Рис. 1.8. Траектории распространения радиоволн в тропосфере:

а - при критической рефракции; б - при сверхрефракции

Другим механизмом сверхдальнего распространения УКВ является тропосферное рассеяние. Тропосферные неоднородности, вызывающие рассеяние, представляют собой области, в которых давление, влажность и температура воздуха отличаются от средних значений, наблюдаемых в окружающей среде. Примером неоднородностей являются облака. Неоднородности возникают и при отсутствии облачности за счет завихрений, образующихся при перемещении воздушных масс. Эти вихри присутствуют при любых метеорологических условиях. Наиболее интенсивно неоднородности образуются на высотах 1…2 км. Каждая неоднородность отличается своей диэлектрической проницаемостью от окружающей среды. Это отличие невелико (не более 20%), поэтому радиоволна, падающая на неоднородность, в основном, проходит сквозь нее. Однако часть энергии радиоволны при этом рассеивается в разные стороны. Зеркальное отражение неоднородность не вызывает, так как не имеет четкой границы.

Поле в точке приема образуется за счет сложения (интерференции) множества волн, рассеянных отдельными неоднородностями в некотором объеме тропосферы. Сдвиги фаз между интерферирующими волнами постоянно хаотически изменяются. В результате значение суммарной напряженности изменяется по случайному закону. Эти флуктуации поля называются интерферирующими замираниями. Сдвиги фаз между интерферирующими волнами зависят от частоты. При широком спектре частот сигнала сдвиги фаз для отдельных составляющих спектра оказываются различными: одни составляющие в данный момент могут иметь максимальный уровень, другие - минимальный. Если отдельные участки спектра замирают неодновременно, замирания называют селективными. Селективные замирания не позволяют передавать по тропосферным линиям широкополосные сигналы, например, телевизионные.

Замирания сигнала при тропосферном рассеянии можно разделить на быстрые и медленные Интерференционные замирания являются быстрыми. Период замираний составляем секунды и их десятые доли. Чем короче длина волны, тем сильнее изменяется сдвиг фаз между интерферирующими волнами при движении рассеивающих неоднородностей, тем меньше период замираний. Медленные замирания с периодом в несколько часов связаны с изменениями метеорологических условий, от которых зависят параметры неоднородностей и условия рефракции радиоволн.



Для повышения устойчивости связи на линиях тропосферного рассеяния применяют разнесенный прием. В этом случае формируют несколько сигналов, несущих одно и то же сообщение, но замирающих независимо друг от друга. Используют разнесение по частоте и пространственное разнесение. При этом увеличивают коэффициент направленного действия и площадь антенн. На тропосферных радиолиниях обычно применяют зеркальные антенны, имеющие площадь 400…900 .

Большое ослабление поля при связи за счет тропосферного рассеяния заставляет принять радиопередатчики большой мощности – до нескольких десятков киловатт (на УКВ радиорелейных линиях прямой видимости мощность радиопередатчиков обычно не превышает 10 ВТ). Расстояние между соседними станциями тропосферного рассеяния составляет 300…600 км. Применение радиолиний тропосферного рассеяния целесообразно в малонаселенных районах, где не имеет смысла часто располагать ретрансляционные станции или прокладывать кабель.

Сверхдальнее распространение метровых волн возможно и за счет влияния ионосферы. Это объясняется возникновением на высоте регулярного слоя E спорадического слоя E s с повышенной электронной концентрацией, обусловленного сгоранием метеоров на высотах 80... 120 км. Протяженные области с повышенной электронной концентрацией, способные рассеивать метровые волны, существуют в течение долей секунды, а иногда и в течение минуты. Регулярную связь путем отражений от E s слоя организовать невозможно.

Регулярное сверхдальнее распространение метровых волн происходит за счет рассеяния на неоднородностях электронной кон­центрации, существующих в слое D и в нижних областях слоя Е . Механизм этого распространения подобен тому, который наблюдается при рассеянии в тропосфере. Большая высота области, в которой происходит ионосферное рассеяние, обеспечивает связь одним скачком на расстояниях до 2000 км. Регулярную связь путем отражений от E s слоя организовать невозможно.

Сверхдальнее распространение метровых волн происходит также за счет отражения от ионизированных метеорных следов. В атмосферу Земли ежегодно с космическими скоростями вторгаются десятки миллиардов метеоров, образующих ионизированные столбы воздуха - метеорные следы. Некоторые из этих следов вызывают зеркальное отражение метровых волн, другие обеспечивают их интенсивное рассеяние. Вследствие движения ионизированного газа метеорные следы обычно расплываются в течение нескольких секунд. В среднем сильное отражение радиоволн от метеорного следа длится 0,2...0,4 с и повторяется несколько раз в минуту. Из-за вращения Земли вокруг своей оси условия попадания метеоров в атмосферу зависят от времени суток. Максимальное их число наблюдается утром, минимальное - вечером.

Метеорная связь прерывиста, так как уровень сигнала, достаточный для передачи информации, существует только во время появления на трассе метеорного следа. Для передачи информации по метеорной линии связи информацию на передающем конце накапливают в промежутках между метеорными вспышками, а во время вспышки быстро передают по радиолинии. В среднем передается несколько килобит в секунду при мощности передатчика около 1 кВт. Дальность метеорной связи составляет около 2000 км. Организация связи за счет ионосферного рассеяния и отражения от метеоров целесообразна в полярных районах, где ионосферные бури часто нарушают распространение гектометровых волн, а прокладка проводных линий и организация тропосферной связи из-за малой плотности населения экономически нецелесообразны.

Если вы хотите принимать цифровой сигнал за пределами города, вам будет полезно знать информацию о структуре цифровой сети РТРС. Прежде всего надо понимать, что количество цифровых передатчиков, транслирующих телевидение в формате DVB-T2, значительно больше, чем классических аналоговых. Ранее жители районов, удаленных от больших городов, направляли свои антенны в сторону крупных населенных пунктов, в которых находились передающие телебашни. Теперь же телевизионный ретранслятор может находиться гораздо ближе к телезрителю, чем ранее.

Метровый и дециметровый диапазоны

На первом рисунке изображена ситуация, когда принимается аналоговый сигнал с телецентра. Прямой видимости нет, его закрывает холм, поэтому антенна поднята как можно выше и принимает в основном волны метрового диапазона. Возможно вы помните из курса школьной физике, что чем длиннее волна, тем лучше её способность огибать препятствия. Именно поэтому в условиях, изображенных на первом рисунке, некоторые аналоговые каналы будет ловиться хорошо, а другие совсем плохо. Более-менее нормально в такой ситуации можно принимать метровый диапазон (изображен оранжевым цветом), дециметровые волны (ДМВ) проходят значительно хуже. Такая же ситуация происходит при отсутствии явных препятствий, но при большом удалении приемной антенны от источника телесигнала.

Прием цифрового телевидения

В аналоговом телевидении часть каналов находится в метровом диапазоне, а часть в дециметровом. Поэтому жители глубинка раньше смотрели гораздо меньше каналов, чем жители городов. Цифровое эфирное телевидение, за редким исключением, всегда транслируется на дециметровых волнах. Поэтому, для обеспечения максимального покрытия сети РТРС установила много новых передатчиков, но транслируют они только цифровой сигнал . На рисунке снизу красным изображена новая цифровая вышка DVB-T2, поэтому жителю коричневого домика следует развернуть антенну на эту вышку, если он хочет смотреть цифровые каналы. А если вышка находится совсем недалеко, то и поднимать антенну высоко уже нет смысла. В некоторых случаях даже проще купить новую недорогую комнатную антенну, чем возиться со старой, тем более что со временем утрачивают свои свойства как кабель, так и сама антенна.