От чего зависит кпд солнечных батарей и как увеличить этот показатель. Что влияет на КПД и эффективность работы солнечных батарей

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

Мне интересно встречаться с людьми, которые находятся в постоянном поиске. Среди них, мой коллега Александр, фанат электромобилей. Информацию о его разработках и становлении парка электромобилей в Украине вы найдете здесь. Но, как ни странно, кроме электрокара его еще интересуют солнечные панели с высоким КПД.

После заданного им вопроса, мне пришлось немного попотеть, и вот что из этого вышло.

Кремниевые кристаллические фотомодули

Коэффициент полезного действия ячеек кремниевых модулей на сегодня порядка 15 – 20% (поликристаллы — монокристаллы). Этот показатель скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течение двух лет выпустить на рынок фотомодули с КПД 22%.

Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических – 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов – 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек – усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si — 23%. Это самый высокий на сегодня КПД ячеек серийных кристаллических модулей.

Тонкопленочные солнечные батареи

Под таким названием разработано несколько различных технологий, о производительности которых можно сказать следующее.

Сегодня существует три основных типа неорганических пленочных солнечных элементов – кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS).

КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия — 10-11% (производитель компания First Solar), на основе селенида меди-индия-галлия – 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов, производимых в Швейцарии — 18,7% (ЕМРА).

КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния – 12,2% (компания United Solar), CdTe элементов – 17,3% (First Solar), CIGS элементов – 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий – объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия – около 18% рынка, и селенид меди-индия-галлия – 2% рынка.

Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Отметим, что кремний – один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя большинство производителей таких солнечных панелей гарантируют полную утилизацию своей продукции.

Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

И все-таки, исходя из стабильности характеристик и относительно недорогой цены, предпочтение отдается солнечным батареям, изготавливаемые на основе аморфного кремния. Но КПД как мы видим, у них не более 12,2%.

Более высокие результаты достигнуты пока в лабораторных условиях. В качестве примера можно привести разработку инженеров из Швейцарской национальной лаборатории материалов, наук и технологий EMPA, которым удалось достигнуть высокого показателя КПД (20,4%) работая с новым поколением тонкопленочных солнечных панелей. В основе новых панелей лежат гибкие полимеры из комплексного соединения CIGS или copper indium gallium (di)selenid (медь-индий-галлий-(ди) селенид).

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.