Плюсы водяного охлаждения компьютера. Как выбрать систему жидкостного охлаждения

Введение

Вам не кажется, что термин "жидкостное охлаждение" наводит на мысль об автомобилях? На самом деле, жидкостное охлаждение является неотъемлемой частью обычного двигателя внутреннего сгорания почти 100 лет. Сразу же напрашивается вопрос: почему именно оно является предпочтительным методом охлаждения дорогих автомобильных двигателей? Чем же так замечательно жидкостное охлаждение?

Чтобы это выяснить, мы должны сравнить его с воздушным охлаждением. При сравнении эффективности этих методов охлаждения нужно учесть два наиболее важных свойства: теплопроводность и удельную теплоёмкость.

Теплопроводность - это физическая величина, показывающая, насколько хорошо вещество переносит тепло. Теплопроводность воды почти в 25 раз больше, чем воздуха. Очевидно, что это даёт водяному охлаждению огромное преимущество над воздушным, так как оно позволяет гораздо быстрее переносить тепло от горячего двигателя к радиатору.

Удельная теплоёмкость - ещё одна физическая величина, которая определяется как количество теплоты, необходимое для повышения температуры одного килограмма вещества на один кельвин (градус Цельсия). Удельная теплоёмкость воды почти в четыре раза больше, чем воздуха. Это означает, что для нагревания воды требуется в четыре раза больше энергии, чем для нагревания воздуха. И снова способность воды поглощать гораздо больше тепловой энергии без повышения собственной температуры является огромным преимуществом.

Итак, имеем неоспоримые факты того, что жидкостное охлаждение является более эффективным, чем воздушное. Однако совсем не обязательно, что это - лучший метод для охлаждения компонентов ПК. Давайте разберёмся.

Жидкостное охлаждение ПК

Несмотря на очень хорошие качества воды, касающиеся отвода тепла, есть несколько убедительных причин, чтобы не помещать воду в компьютер. Самая главная из этих причин - электропроводность охлаждающей жидкости.

Если бы вы случайно пролили стакан воды на бензиновый двигатель во время заправки радиатора, то ничего страшного бы не произошло; вода не повредила бы двигатель. А вот если бы вы вылили стакан воды на материнскую плату своего компьютера, то было бы очень плохо. Поэтому существует определённый риск, связанный с применением воды для охлаждения компонентов компьютера.

Следующий фактор - это сложность технического обслуживания. Системы воздушного охлаждения проще и дешевле производить и ремонтировать по сравнению с водяными аналогами, и радиаторы не требуют никакого технического обслуживания, разве что необходимо удалять из них пыль. С системами водяного охлаждения работать гораздо сложнее. Их труднее устанавливать, они часто требуют обслуживания, хотя и незначительного.

В-третьих, элементы системы водяного охлаждения для ПК стоят гораздо больше, чем детали системы охлаждения воздухом. Если комплект качественных радиаторов и вентиляторов воздушного охлаждения для процессора, видеокарты и материнской платы будет стоить, скорее всего, в пределах $150, то стоимость системы жидкостного охлаждения для тех же самых комплектующих легко может доходить до $500.

Имея столько недостатков, системы водяного охлаждения, казалось бы, не должны пользоваться спросом. Но на самом деле они настолько хорошо отводят тепло, что это их свойство оправдывает все недостатки.

На рынке можно найти полностью готовые к установке системы жидкостного охлаждения, которые уже не являются набором запасных частей, с которым энтузиастам приходилось иметь дело в прошлом. Готовые системы собраны, проверены и вполне надёжны. К тому же, водяное охлаждение не так опасно, как кажется: разумеется, всегда существует большой риск при использовании жидкостей в ПК, но если соблюдать осторожность, то этот риск существенно снижается. Что касается технического обслуживания, то современные хладагенты требуют замены довольно редко, может, раз в год. Что касается цены, то любое оборудование, которое работает с высокой производительностью, всегда стоит дороже обычного, будь то "Феррари" в вашем гараже или система водяного охлаждения для вашего компьютера. За высокую производительность приходится платить.

Предположим, что вас привлекает этот метод охлаждения или, по крайней мере, вам хотелось бы узнать, как он работает, что с ним связано, и каковы его преимущества.

Общие принципы водяного охлаждения

Цель любой системы охлаждения в ПК - отвести тепло от компонентов компьютера.

Традиционный воздушный кулер для ЦП отводит тепло от процессора на радиатор. Вентилятор активно прогоняет воздух через рёбра радиатора, и когда воздух проходит мимо, он забирает тепло. Воздух из корпуса компьютера выводится другим вентилятором или даже несколькими. Как видите, воздух совершает много перемещений.

В системах водяного охлаждения вместо воздуха для отвода тепла используется охлаждающая жидкость (теплоноситель) - вода. Вода выходит из резервуара по трубке, поступая туда, куда нужно. Блок водяного охлаждения может либо представлять собой отдельный блок вне корпуса ПК, либо может быть встроен в корпус. На диаграмме водоохладительный блок является внешним.

Тепло передаётся от процессора к головке охлаждения (водоблоку), которая представляет собой полый радиатор-теплосъёмник с входным и выходным отверстиями для охлаждающей жидкости. Когда вода проходит сквозь головку, она забирает с собой тепло. Теплоотдача за счёт воды происходит гораздо эффективнее, чем за счёт воздуха.

Затем нагретая жидкость закачивается в резервуар. Из резервуара она протекает в теплообменник, где отдаёт тепло радиатору, а тот - окружающему воздуху, обычно с помощью вентилятора. После этого вода попадает снова в головку, и цикл начинается сначала.

Сейчас, когда мы имеем хорошее представление об основах жидкостного охлаждения ПК, поговорим о том, какие системы доступны на рынке.

Выбор системы водяного охлаждения

Есть три основных типа систем водяного охлаждения: внутренние, внешние и встроенные. Главное различие между ними заключается в том, где по отношению к корпусу компьютера расположены их основные компоненты: радиатор/теплообменник, насос и резервуар.

Как следует из названия, встроенная охлаждающая система является составной частью корпуса ПК, то есть вмонтирована в корпус и продаётся в комплекте с ним. Так как вся система водяного охлаждения смонтирована в корпусе, этот вариант, возможно, является самым простым в обращении, потому что и внутри корпуса остаётся больше места, и снаружи нет громоздких конструкций. Недостатком, разумеется, является то, что если вы решите перейти на такую систему, то старый корпус ПК окажется бесполезным.


Если вам нравится корпус вашего ПК, и вы не хотите с ним расставаться, то внутренние и внешние системы водяного охлаждения, вероятно, покажутся более привлекательными. Компоненты внутренней системы помещаются внутрь корпуса ПК. Так как большинство корпусов не рассчитаны на размещение такой системы охлаждения, внутри становится довольно тесно. Однако установка подобных систем позволит сохранить ваш любимый корпус, а также переносить его без особых препятствий.


Третий вариант - внешняя система водяного охлаждения. Она тоже для тех, кто желает оставить старый корпус своего ПК. В таком случае радиатор, резервуар и водяной насос помещаются в отдельный блок вне корпуса компьютера. Вода по трубкам закачивается в корпус ПК, к головке охлаждения, а по обратной трубке нагретая жидкость выкачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она может использоваться с любым корпусом. Она также позволяет использовать радиатор большего размера и может обладать лучшей охлаждающей способностью, чем средняя встроенная установка. Недостаток заключается в том, что компьютер с внешней системой охлаждения становится не таким мобильным, как с внутренними или встроенными системами охлаждения.


В нашем случае мобильность не имеет большого значения, однако нам хотелось бы оставить наш "родной" корпус ПК. Кроме того, нас привлекла повышенная эффективность охлаждения внешнего радиатора. Поэтому для обзора мы выбрали внешнюю систему охлаждения. Компания Koolance любезно предоставила нам отличный образец - систему EXOS-2.


Внешняя система водяного охлаждения Koolance EXOS-2.

EXOS-2 представляет собой мощную внешнюю систему водяного охлаждения с охлаждающей способностью свыше 700 Вт. Это не означает, что система потребляет 700 Вт - она потребляет лишь малую часть этого. Это значит, что система может эффективно справляться с тепловыделением в 700 Вт, поддерживая температуру на уровне 55 градусов Цельсия при 25 градусах окружающей среды.

EXOS-2 поставляется со всеми необходимыми трубками и приспособлениями, кроме головок охлаждения (водоблоков). Пользователю придётся купить подходящие головки, в зависимости от того, какие компоненты ПК он хочет охлаждать.

Охлаждение нескольких компонентов

Одним из преимуществ большинства систем жидкостного охлаждения является то, что они расширяемы и могут охлаждать не только процессор, но и другие компоненты. Даже после прохождения через головку охлаждения процессора, вода всё ещё способна охладить, например, чипсет материнской платы и видеокарту. Это основное, но по желанию можно добавить ещё больше компонентов, например жёсткий диск. Для этого каждому компоненту, который будет охлаждаться, потребуется свой собственный водоблок. Конечно, придётся заняться и планированием, чтобы убедиться, что охлаждающая жидкость протекает хорошо.

Почему выгодно объединить все три компонента - центральный процессор, чипсет и видеокарту - с хорошей системой водяного охлаждения?

Большинство пользователей понимают необходимость охлаждения процессора. ЦП сильно нагревается в корпусе ПК, а устойчивая работа компьютера зависит от поддержания низкой температуры процессора. Центральный процессор является одной из самых дорогих составляющих компьютера, и чем ниже поддерживаемая температура, тем дольше прослужит процессор. Наконец, охлаждение процессора особенно актуально при разгоне.


Водоблок центрального процессора и аксессуары для сборки.

Идея охлаждения чипсета материнской платы (вернее, северного моста), возможно, не всем знакома. Но учтите, что компьютер устойчив настолько, насколько стабилен его чипсет. Во многих случаях дополнительное охлаждение чипсета может поспособствовать стабильности системы, особенно при разгоне.


Водоблок чипсета и аксессуары для сборки.

Третий компонент очень важен для тех, кто обладает higher-end видеокартой и использует ПК для игр. Во многих случаях графический процессор видеокарты выделяет тепла больше остальных компонентов компьютера. Опять же, чем лучше охлаждение графического процессора, тем дольше он прослужит, тем выше устойчивость и больше возможностей для разгона.

Разумеется, для тех пользователей, кто не намерен использовать свой компьютер для игр и имеет маломощную графическую карту, водяное охлаждение окажется излишеством. Но для современных мощных и сильно нагревающихся видеокарт, водяное охлаждение может стать выгодным приобретением.

Мы собираемся установить охлаждающую систему на нашу видеокарту Radeon X1900 XTX. Хотя эта видеокарта не самая новая и мощная, она всё ещё хоть куда, и к тому же очень сильно нагревается. В случае с данной моделью компания Koolance предлагает не только водоблок для графического процессора/памяти, но и отдельную головку охлаждения для стабилизатора напряжения.


Водоблок для графического процессора и аксессуары для сборки.

Если системы воздушного охлаждения могут поддерживать температуру графического процессора в допустимых пределах, то нам не известны подобные системы, способные урегулировать чрезвычайно высокую температуру регуляторов напряжения на X1900, которая при нагрузках легко может достигать 100 градусов Цельсия. Интересно, как водоблок для регулятора напряжения повлияет на видеокарту X1900.


Водоблок для регулятора напряжения видеокарты и аксессуары для сборки.

Это основные компоненты, которые охлаждаются с помощью воды. Как говорилось выше, есть и другие компоненты, которые можно охлаждать таким образом. Например, компания Koolance предлагает блок питания мощностью 1200 Вт с жидкостным охлаждением. Все электронные компоненты блока питания погружены в жидкость, не проводящую ток, которая прокачивается через собственный внешний радиатор. Это - особый пример альтернативного жидкостного охлаждения, однако такая система отлично справляется с работой.


Koolance: 1200-Вт блок питания с жидкостным охлаждением.

Сейчас можно приступить к установке.

Планирование и установка

В отличие от систем воздушного охлаждения, установка системы жидкостного охлаждения требует некоторого планирования. Жидкостное охлаждение предполагает несколько ограничений, которые пользователь должен принять во внимание.

Во-первых, во время установки следует всегда помнить об удобстве. Трубки с водой должны свободно проходить внутрь корпуса и между компонентами. Кроме того, охлаждающая система должна оставлять свободное место, чтобы в дальнейшем работа с ней и комплектующими не вызывала трудностей.

Во-вторых, течение жидкости не должно быть ничем ограничено. Следует также помнить, что охлаждающая жидкость нагревается при прохождении через каждый водоблок. Если бы мы спроектировали систему таким образом, чтобы вода поступала в каждый последующий водоблок в такой последовательности: сначала к процессору, затем к чипсету, к видеокарте и, наконец, к регулятору напряжения видеокарты, то в водоблок регулятора напряжения всегда поступала бы вода, нагретая всеми предыдущими компонентами системы. Такой сценарий нельзя назвать идеальным для последнего компонента.

Чтобы как-то смягчить эту проблему, неплохо бы пустить охлаждающую жидкость по отдельным, параллельным путям. Если это сделать правильно, то поток воды будет менее нагружен, и в водоблоки каждого компонента будет поступать вода, не нагретая другими компонентами.

Набор Koolance EXOS-2, который мы выбрали для данной статьи, предназначен в основном для работы с соединительными трубками сечением 3/8", и водоблок для центрального процессора спроектирован с прессуемыми соединителями на 3/8". Однако головки охлаждения чипсета и видеокарты Koolance спроектированы для работы с соединительными трубками меньшего диаметра - 1/4". Из-за этого пользователь вынужден использовать сплиттер, разделяющий 3/8" трубку на две 1/4" трубки. Эта схема хорошо работает, когда мы разбиваем поток на два параллельных пути. По одной из этих 1/4" трубок будет охлаждаться чипсет материнской платы, а по другой - видеокарта. После того, как вода заберёт тепло от этих компонентов, две 1/4" трубки соединятся вновь в одну 3/8", по которой нагретая вода потечёт из корпуса ПК обратно в радиатор для охлаждения.

Весь процесс представлен на следующей схеме.


Спланированная конфигурация охлаждающей системы.

При планировании расположения собственной системы водяного охлаждения рекомендуем вам начертить простую схему. Это поможет правильно установить систему. Начертив план на бумаге, можно приступать к реальной сборке и установке.

Для начала можно разложить на столе все детали системы и прикинуть необходимую длину трубок. Не обрезайте слишком коротко, оставьте запас; потом вы всегда сможете отрезать лишнее.

После подготовительных работ можно приступать к установке водоблоков. Головка охлаждения Koolance для процессора, который мы используем, требует установки металлической скобы крепления на задней стороне материнской платы за процессором. И что хорошо, эта скоба крепления поставляется вместе с пластмассовой прокладкой, чтобы предотвратить замыкание с материнской платой. Сначала мы достали материнскую плату из корпуса и установили скобу крепления.


Затем можно снять радиатор, который прикреплён к северному мосту материнской платы. Мы воспользовались материнской платой Biostar 965PT, у которой чипсет охлаждается с помощью пассивного радиатора, прикреплённого пластмассовыми фиксаторами.


Чипсет материнской платы без радиатора. Готов к установке водоблока.

После того, как радиатор чипсета снят, следует прикрепить элементы крепления водоблока для чипсета.

Во время установки мы заметили, что элементы крепления водоблока для чипсета, в частности, пластмассовая прокладка, давит на резистор на задней части материнской платы. За этим нужно внимательно следить при установке. Чрезмерно сильное затягивание болтов может нанести непоправимый ущерб материнской плате, поэтому будьте внимательны и осторожны!

После установки элементов крепления головок охлаждения процессора и чипсета можно вернуть материнскую плату в корпус ПК и подумать о подсоединении водоблоков к процессору и чипсету. Не забудьте удалить с процессора и чипсета остатки старой термопасты перед тем, как нанести новый тонкий слой.


Процессор с элементами крепления для водоблока.

Возможно, вам захочется подсоединить трубки для воды к водоблокам до того, как вы установите их на материнскую плату. Но будьте при этом осторожны: можно не рассчитать давление и силу, которые при сгибании трубок приложатся к хрупким чипсету и процессору. Главное - оставить достаточную длину трубок, ведь подрезать их по размерам можно позже.

Сейчас можно осторожно установить водоблоки на процессор и чипсет с помощью предоставленных элементов крепления. Помните, что не нужно прижимать их с силой: достаточно просто хорошо их установить на процессор и чипсет. Применяя силу, можно повредить комплектующие.


После установки водоблоков на процессор и чипсет, можно переключить внимание на видеокарту. Удаляем имеющийся на ней радиатор и заменяем его водоблоком. В нашем случае мы также сняли радиатор стабилизатора напряжения и установили на карту второй водоблок. После того, как водоблоки установлены на видеокарту, можно подсоединить трубки. После этого видеокарту можно вставить в слот PCI Express.


После установки всех водоблоков следует подсоединить оставшиеся трубки. Последней нужно подключать трубку, которая ведёт к внешнему блоку водяного охлаждения. Убедитесь в правильности направления движения воды: охлаждённая жидкость должна поступать сначала в водоблок процессора.


Настал момент, когда можно заливать воду в резервуар. Наполняйте резервуар только до уровня, указанного в инструкции производителя. По мере заполнения резервуара, вода будет медленно поступать в трубки. Особенно внимательно следите за всеми креплениями и имейте под рукой полотенце на случай непредвиденной утечки жидкости. При малейших признаках протекания, немедленно устраните проблему.


Когда все компоненты собраны вместе, можно заливать охлаждающую жидкость.

Если вы всё сделали аккуратно, и в системе не возникло протечек, то вам нужно прокачать охлаждающую жидкость, чтобы удалить пузырьки воздуха. В случае с Koolance EXOS-2 это достигается путём замыкания контактов на блоке питания ATX, чтобы подать питание водяному насосу, но не подавать питание на материнскую плату.

Пусть система поработает в таком режиме, а вы в это время медленно и осторожно наклоняйте компьютер в одну и другую стороны, чтобы пузырьки воздуха вышли из водоблоков. Когда все пузырьки выйдут, вы, скорее всего, обнаружите, что в систему требуется добавить охлаждающей жидкости. Это нормально. Примерно через 10 минут после заливки в трубках не должно быть видно никаких пузырьков воздуха. Если вы убедились, что пузырьков воздуха больше нет и вероятность протечки исключена, то можно запускать систему по-настоящему.


Тестовая конфигурация и тесты

Все заботы по сборке и установке позади. Настало время посмотреть, какие преимущества даёт система водяного охлаждения.

Аппаратное обеспечение
Процессор Intel Core 2 Duo e4300, 1,8 ГГц (разогнан до 2250 МГц), кэш 2 Мбайт L2
Платформа Biostar T-Force 965PT (Socket 775), чипсет Intel 965, BIOS vP96CA103BS
Оперативная память Patriot Signature Line, 1x 1024 Мбайт PC2-6400 (CL5-5-5-16)
Жёсткий диск Western Digital WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Сеть Встроенный адаптер Ethernet 1 Гбит/с
Видеокарта ATI X1900 XTX (PCIe), 512 Мбайт GDDR3
Блок питания Koolance 1200 Вт
Системное ПО и Драйверы
ОС Microsoft Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Графический драйвер ATI Catalyst 7.2

В нашей тестовой конфигурации мы использовали платформу Core 2 Duo, потому что процессор E4300 очень легко разогнать. Разгон позволил нам посмотреть, насколько высоко поднимется температура, и как с этим справятся стандартная система воздушного охлаждения и наша новая система водяного охлаждения.

Методика проста: максимально разогнать процессор E4300 со штатным воздушным охлаждением, а затем разогнать его с водяным охлаждением и сравнить результаты. Как оказалось, E4300 способен на большее. Мы увеличили частоту процессора с заявленных 1800 МГц до 2250 МГц. При этом процессор E4300 легко справлялся с добавленными 450 МГц без увеличения напряжения или каких-либо других проблем. Однако стандартный кулер не справился с работой, так как при нагрузке температура процессора поднялась до нежелательных 62 градусов Цельсия. Хотя ядро можно было бы разгонять и дальше, дальнейшее повышение температуры могло стать опасным, поэтому мы остановились, зафиксировали результат и установили систему водяного охлаждения.

Прежде чем рассмотреть температуру процессора при нагрузке, давайте взглянем на температуру при простое системы.

В режиме простоя водяное охлаждение даёт приличное снижение температуры процессора, примерно на 10 градусов. Однако это не такое уж большое достижение, если учесть, что собственный кулер процессора относится к классу low-end, а высококачественный воздушный кулер мог бы быть эффективнее. Тем не менее, стоит помнить, что водяное охлаждение не может снижать температуру так, чтобы она была ниже, чем температура окружающей среды, которая в нашем случае была около 22 градусов Цельсия.

При нагрузке системы - десятиминутный прогон стресс-теста Orthos - установка водяного охлаждения действительно показала, на что она способна.

Вот это уже на самом деле интересно. Штатный воздушный кулер не может даже поддерживать температуру процессора ниже нежелательно высоких для него 60 градусов, а система водяного охлаждения снизила температуру до 49 градусов при самой низкой скорости вентиляторов. Кроме снижения температуры, система водяного охлаждения работает гораздо тише, чем штатный кулер процессора.

При максимальной скорости вентиляторов в системе водяного охлаждения температура процессора опускается ниже 40 градусов! Это на 24 градуса ниже, чем со штатным кулером при нагрузке, и практически столько же, сколько собственный кулер выдаёт при простое. Результат производит впечатление, хотя при высокой скорости вентиляторов система водяного охлаждения производит больше шума, чем хотелось бы. Однако скорость вентиляторов регулируется по 10-бальной шкале, и вряд ли в повседневном использовании придётся устанавливать её на полную мощность. Orthos нагружает процессор сильнее, чем другие тесты, и нам было весьма интересно посмотреть, на что способна система водяного охлаждения.

В заключение обратите внимание на результаты, полученные для видеокарты. Обычно X1900 XTX нагревается очень сильно, но в нашем распоряжении был один из лучших воздушных кулеров - Thermalright HR-03. Посмотрим, какими преимуществами обладает водяное охлаждение по сравнению с этим кулером после 10 минут стресс-теста Atitool в режиме тестирования на артефакты.

Температура, поддерживаемая штатным кулером, ужасна: 89 градусов на графическом процессоре и свыше 100 градусов на стабилизаторе напряжения! Кулер Thermalright HR-03 потрясающе сработал, охладив графический процессор до 65 градусов, но температура стабилизаторов напряжения по-прежнему слишком высока - 97 градусов!

Система водяного охлаждения снизила температуру графического процессора до 59 градусов. Это на 30 градусов лучше, чем со штатным кулером, и всего на 6 градусов лучше, чем с HR-03, что ещё больше подчёркивает её эффективность.

Отдельный водоблок для стабилизатора напряжения демонстрирует отличный результат. HR-03 не имеет средств для охлаждения стабилизатора напряжения, а водоблок снизил температуру до 77 градусов, что на 25 градусов лучше, чем со штатным кулером. Это очень хороший результат.

Заключение

Результаты, полученные при тестировании с использованием системы водяного охлаждения, достаточно очевидны: жидкостное охлаждение намного эффективнее воздушного.

Водяное охлаждение доступно сейчас не только ограниченному кругу профессионалов, но и простым пользователям. К тому же, современные системы водяного охлаждения, такие, как EXOS-2, очень легко устанавливать, они работают по принципу "включай и работай", в отличие от старых систем, которые требовали сборки. Кроме того, современные наборы водяного охлаждения с подсвеченными и стилизованными корпусами выглядят очень симпатично.

Если вы энтузиаст и испробовали уже все системы воздушного охлаждения, то жидкостное охлаждение будет для вас следующим логическим шагом. Конечно, существует риск, и оборудование для водяного охлаждения будет стоить больше, чем для воздушного, но выгода очевидна.

Мнение редактора

Долгое время я избегал водяного охлаждения, так как опасался, что от него будет больше проблем, чем пользы. Но сейчас могу с уверенностью сказать, что моё мнение изменилось: системы водяного охлаждения гораздо легче устанавливать, чем я думал, а результаты охлаждения говорят сами за себя. Также хотелось бы выразить благодарность компании Koolance за предоставленный нам набор EXOS-2, работа с которым доставила удовольствие.

Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

Развитие технологий неизбежно приводит к тому, что основные компоненты персональных компьютеров становятся более производительными, а значит, и «горячими». Для станций требуется высокоэффективное охлаждение. В качестве отличного варианта для решения такой задачи можно предложить для ПК.

Основные преимущества

Подобная система имеет целый ряд преимуществ в сравнении с традиционным воздушным охлаждением. В первую очередь следует помнить о высокой теплопроводности воды в сравнении с воздухом, а это сказывается положительно на всей системе охлаждения. Следующий нюанс касается высокопроизводительных кулеров, которые создают много шума при прохождении больших масс воздуха. С водяным охлаждением уровень шума минимизируется во время работы всей системы. Современное водяное охлаждение для ПК характеризуется простотой установки при высочайшей производительности. При том, что такая система стоит довольно дорого, она становится выбором очень многих, то есть ее популярность неустанно растет.

Общая характеристика

Водяная система охлаждения для ПК представляет собой совокупность элементов, используемых для переноса воды в качестве теплоносителя. От традиционной воздушной она отличается тем, что все тепло сначала передается воде, а потом уже воздуху. При использовании такой системы все тепло, вырабатываемое процессором и остальными тепловыделяющими элементами, передается посредством специального теплообменника воде. Этот компонент называется ватерблоком. Вода, которая нагрелась таким образом, переносится в следующий теплообменник - радиатор, где ее тепло передается воздуху, покидая пределы компьютера. За движение воды в системе отвечает специальный насос, который обычно называют помпой.

Установка водяного охлаждения для ПК дает массу преимуществ за счет того, что выше, чем воздуха, благодаря чему обеспечивается более эффективный и быстрый отвод тепла от охлаждаемых элементов, а значит, и более низкие температуры. При всей совокупности равных условий данный тип всегда будет намного эффективнее в сравнении со всеми остальными.

Водяная система охлаждения (для ПК и пр.) показала себя довольно надежным и производительным решением за все время его использования. Даже при применении в различных системах, устройствах и механизмах, которые требовательны к надежности и мощности охладителей, к примеру, в двигателях внутреннего сгорания, радиолампах, мощных лазерах, станках на заводах, АЭС и прочих.

Компьютер и водяное охлаждение

Высокая эффективность такой системы позволяет не только добиться более мощного охлаждения, способного положительно сказаться на стабильности и разгоне системы, но и понизить уровень шума компьютера. Можно собрать такую систему, чтобы обеспечить разогнанному компьютеру работу при минимальном уровне создаваемого шума. Именно эта причина делает такие системы особо актуальными для пользователей мощнейших компьютеров, любителей сильного разгона, желающих сделать свой ПК тише, но не желающих идти на компромисс с мощностью.

Нередко геймеры устанавливают себе трех-четырех чиповые видеоподсистемы, при этом работа видеокарт осуществляется с высокой температурой и частыми перегревами, а также с сильным шумом используемых систем охлаждения. Может даже показаться, что для современных видеокарт проектируются такие охладители, которые не позволят использовать мультичиповые конфигурации. Именно поэтому в случаях установки видеокарт одна возле другой часто возникает целый ряд проблем, ведь им просто неоткуда черпать холодный воздух. На рынке имеются альтернативные системы воздушного охлаждения, предназначенные для мультичиповых конфигураций, однако и они не спасают положение. Именно водяное охлаждение ПК в данном случае способно радикально исправить ситуацию, то есть понизить температуру, улучшить стабильность и повысить надежность работы компьютера.

Компоненты водяного охлаждения

В данную систему входит определенный набор компонентов, которые условно делятся на обязательные и необязательные, то есть устанавливаемые по желанию.

Итак, обязательные комплектующие для водяного охлаждения ПК включают: ватерблок, помпу, радиатор, фитинги, шланги, воду. При том, что список необязательных элементов можно расширить, обычно в него включаются: термодатчики, резервуар, сливные краны, контроллеры вентилятора и помпы, измерители и индикаторы, второстепенные ватерблоки, бэкплейты, присадки к воде, фильтры. Для начала следует рассмотреть компоненты, без которых водяное охлаждение для ПК попросту не станет работать.

Ватерблоки

Ватерблок представляет собой специальный теплообменник, посредством которого тепло от греющегося элемента передается воде. Чаще всего его конструкция предполагает наличие медного основания, а также пластиковой или металлической крышки с набором креплений, предназначенных для закрепления ватерблока на охлаждаемом элементе. Для всех тепловыделяющих компонентов компьютера существуют ватерблоки, даже для тех, на которые они не особо требуются, то есть их производительность от этого сильно не возрастет. К основным и наиболее востребованным элементам можно отнести процессорные ватерблоки, ватерблоки для видеокарт и системных чипов. Приспособления для видеокарт бывают двух типов: закрывающие только сам графический чип, закрывающие все элементы видеокарты, которые при работе нагреваются.

При том, что изначально такие элементы делались из толстых листов меди, современные тенденции в данной области привели к тому, что основания ватерблоков теперь делают тонкими, чтобы от процессора к воде тепло передавалось намного быстрее. Помимо этого увеличение поверхности теплопередачи достигается за счет микроигольчатых и микроканальных структур.

Радиаторы

В системах водяного охлаждения радиатором называется водно-воздушный теплообменник, передающий воздуху тепло от воды, которое набирается в ватерблоке. Существует два подтипа радиаторов в таких системах: пассивные, то есть не оснащенные вентилятором, и активные, то есть их продувает вентилятор.

Итак, если вас интересует установка водяного охлаждение для ПК, то стоит отметить, что безвентиляторные радиаторы встречаются не так часто, так как их эффективность заметно ниже, что характерно для всех видов пассивных систем. Помимо низкой производительности, такие радиаторы характеризуются большими габаритами, из-за чего они редко помещаются даже в модифицированные корпуса.

Продуваемые радиаторы, то есть активные, являются более распространенными в компьютерных системах водяного охлаждения, так как их эффективность заметно выше. В случае применения бесшумных или тихих вентиляторов можно добиться бесшумной или тихой работы всей охлаждающей системы, то есть позаимствовать основное достоинство пассивного охлаждения.

Помпа

Помпа представляет собой электрический насос, задачей которого является обеспечение циркуляции воды в системе охлаждения компьютера, без него вся конструкция просто не будет работать. Помпы могут работать как от 220 вольт, так и от 12 вольт. Поначалу, когда в продаже почти не встречалось помп для таких установок, энтузиастами использовались аквариумные помпы, работающие от городской сети, что создавало некоторые трудности, так как их нужно было включать синхронно с компьютером. Для этих целей обычно использовались реле, включающие помпу автоматически при старте компьютера. Развитие систем водяного охлаждения дало возможности для появления новых приспособлений, которые при питании от компьютерных 12 вольт обладали высокой производительностью при компактных размерах.

Так как современные ватерблоки характеризуются очень высоким коэффициентом водного сопротивления, а это ведь плата за высокую производительность, с ними рекомендуется использовать мощные помпы. Это связано с тем, что с даже наиболее мощным, современная водная система охлаждения для ПК не полностью продемонстрирует свою производительность. Не стоит особо гнаться за мощностью, применяя в одном контуре несколько помп или насосы от отопительных систем, так как это не приведет к повышению производительности всей системы в целом. Этот параметр ограничивается эффективностью ватерблока и теплорассеивающей способность радиатора.

Шланги

ПК с водяным охлаждением просто немыслим без применения шлангов или трубок, так как именно они соединяют разные компоненты системы между собой. Чаще всего для компьютеров используются шланги из ПВХ, в крайнем случае, из силикона. Размер шланга не оказывает влияния на производительность, тут главное - не выбирать слишком тонкие, то есть диаметром менее 8 мм.

Фитинги

С помощью фитингов производится подключение шлангов к компонентам системы охлаждения. Их вкручивают в отверстие с резьбой на компоненте без применения так как в качестве уплотнения соединения используются резиновые кольца. Сейчас подавляющее большинство компонентов поставляется без фитингов. Сделано это для того, чтобы у пользователя была возможность самостоятельно подобрать подходящий для себя вариант, ведь они существуют разных типов и под разные размеры шлангов. Наиболее популярным типом являются а также фитинги-елочки. Они могут быть прямыми или угловыми, а устанавливаются в зависимости от того, как производится установка водяного охлаждения на ПК.

Вода

Если вы хотите сделать игровой ПК с водяным охлаждением, то должны понимать, что для этих целей требуется брать дистиллированную воду, то есть избавленную от каких-либо примесей. На западных сайтах иногда пишут о необходимости использования но она отличается от дистиллированной только способом подготовки. Иногда воду заменяют специальными смесями или добавляют в нее присадки. В любом случае не рекомендуется использовать воду из под крана или бутилированную.

Необязательные компоненты

Обычно и без них система водяного охлаждения ПК работает вполне стабильно и без проблем. Основной смысл использования необязательных компонентов состоит в том, чтобы сделать систему более удобной в эксплуатации, либо они служат в качестве декора.

Итак, если вас заинтересовала установка водяного охлаждения на ПК своими руками, то вы можете использовать помимо основных компонентов и дополнительные, первым из которых является резервуар, или Чаще всего вместо него для удобной заправки системы используется фитинг-тройник и заливная горловина. Преимущество варианта без резервуара состоит в том, что при установке системы в компактный корпус ее можно разместить гораздо удобнее. Установка водяного охлаждение на ноутбуке может потребовать наличия резервуара для обеспечения удобства заправки и более удобного удаления воздушных пузырей из системы. Не принципиально, каким объемом характеризуется резервуар, так как он не оказывает воздействия на производительность системы. Выбор размера и формы расширительного бачка зависит только от индивидуальных предпочтений и внешнего вида.

Представляет собой компонент, обеспечивающий удобство слива воды из системы охлаждения. Он в обычном состоянии перекрыт. Этот компонент способен сильно повысить удобство пользования в плане обслуживания.

Индикаторы, датчики и измерители выпускаются специально для тех, кто не может остановиться на минимуме компонентов, а любит различные излишества. В их числе представлены электронные датчики потока и давления воды, температуры воды, контроллеры, которые подстраивают работу вентиляторов под температуру, контроллеры помп, механические индикаторы и прочие.

Фильтр встречается в некоторых системах водяного охлаждения, где его подключают к контуру. Он занят тем, что отфильтровывает разнообразные механические частицы, которые оказались в системе - это пыль, которая могла присутствовать в шлангах, осадок, появившийся из-за использования антикоррозионной добавки или красителя, остатки пайки в радиаторе и прочее.

Внешняя или внутренняя СВО?

Если вам интересно, как установить водяное охлаждение на ноутбуке, то тут стоит сначала сказать о наличии двух видов систем. Внешние обычно выполняются в виде отдельного ящика, то есть модуля, который подключается к ватерблокам посредством шлангов. В корпусе внешней системы обычно находится радиатор с вентиляторами, резервуар, помпа, а иногда и блок питания для помпы с температурными датчиками. Понятно, что такой вариант оптимален для ноутбука, так как корпус лэптопа не позволит разместить это все в нем. Для компьютера такие системы удобны тем, что пользователю не потребуется дорабатывать корпус своего ПК, но неудобны, если вы решите переставить прибор в другое место.

Существует внутреннее водяное охлаждение для ПК. Установить самому такую систему довольно сложно, если сравнивать ее с внешней. Среди плюсов подобной системы отмечается удобство при необходимости переноски компьютера в другое место, так как для этого не потребуется сливать всю жидкость. Еще одно достоинство состоит в том, что внешний вид корпуса при этом никак не изменится, а при правильном моддинге такая система послужит еще и украшением.

Готовые системы или персональная сборка?

Можно сделать водяное охлаждение ПК своими руками, используя для этого отдельные компоненты, а можно воспользоваться уже готовыми решениями, которые сопровождают подробнейшие инструкции. Большинство энтузиастов убеждено, что решения «из коробки» характеризуются низкой производительностью, однако это совсем не так. Многими марками выпускаются комплекты с высокой производительностью, к примеру, Danger Dan, Alphacool, Koolance, Swiftech. В числе преимуществ готовых систем отмечается удобство, так как в одном наборе имеется все необходимое для установки. Помимо того производители часто нацелены на то, чтобы помочь пользователям в любых сложившихся обстоятельствах, поэтому в комплект входят разнообразные элементы и крепления. Однако неудобно, что у пользователя отсутствует возможность выбрать именно те компоненты, которые ему необходимы, системы продаются только в сборе.

Можно и самостоятельно сделать водяное охлаждение для ПК. Отзывы большинства опытных пользователей говорят о том, что в этом случае система будет более гибкой, так как вы сможете подобрать компоненты, подходящие именно вам. Кроме того, если составлять систему из отдельных компонентов, можно иногда сэкономить. Минусом такого подхода является сложность сборки, особенно для новичков.

Выводы

В качестве основных плюсов систем водяного охлаждения можно назвать возможность сборки мощного и тихого ПК, расширение возможностей в плане разгона, улучшение стабильности при разгоне, продолжительный срок эксплуатации и прекрасный внешний вид. Такое решение позволяет собрать мощный игровой компьютер, который будет работать без лишнего шума, что совершенно недостижимо для воздушных систем.

В числе минусов обычно отмечается сложность сборки, ненадежность и дороговизну. Однако такие недостатки можно назвать спорными и относительными. В плане сложности сборки можно отметить, что это не намного сложнее, чем собирать сам компьютер. К надежности правильно собранных систем тоже нет претензий, так как при условии правильной сборки и эксплуатации проблем не возникает.

19. 06.2017

Блог Дмитрия Вассиярова.

Система жидкостного охлаждения компьютера — она же водянка

Здравствуйте.

Вы наверняка сами не раз чувствовали, что в процессе работы ваш комп выделяет тепло. Чтобы он не перегрелся, часто используется встроенный кулер. Но с ростом производительности железа его стало не достаточно. Для качественного обдува его мощность тоже должна быть увеличена, из-за чего повышается шумность работы компа, тем более если вы ещё и занимаетесь разгоном.

Чтобы избавиться от этих и других недостатков, разработана система жидкостного охлаждения компьютера. Хотите узнать о ней больше? Читаем статью.

Если вы подумали что это что — то типо того, то вы ошибаетесь:))

Итак, что это такое?

В данной теме вы можете встретить аббревиатуру СВО, которая расшифровывается как система водяного охлаждения. Также используется еще одна - СЖО, где второе слово заменено на «жидкостного». Как вы догадались, от воздушного охлаждения, к которому вы привыкли, отличает ее то, что тепло от железа передается не воздуху, а воде.

Плюсы и минусы

Новаторское решение эффективнее своего воздушного предшественника по таким причинам:

  • Повышенная теплоемкость жидкости.
  • Стабильность при разгоне.
  • Тепло отводится от центра проца. В свою очередь, микромотор воздушных систем расположен над самой горячей зоной радиатора, напротив , из-за чего создается мертвая точка, откуда горячий воздух не выводится. А его (тепло) по логике лучше всего отдалять — дабы повысить качество охлаждения.

Подающая воду помпа создает гораздо меньше шума, чем вентилятор.

  • Полностью выводит тепло из системного блока, в то время как воздушная система просто разгоняет его внутри корпуса.

У вас мощный компьютер с современными комплектующими? Тогда стоит рассмотреть установку водяной схемы, потому что она лучше способна уберечь устройства от перегрева, и как следствие, быстрого выхода из строя и не будет надоедать вам шумом. Такая система и сама прослужит долго. Приятным бонусом является привлекательный дизайн.

Но выделяют и недостатки водяных систем:

  • Высокая цена. Учитывая стоимость комплектующих, которые она будет защищать, на это можно закрыть глаза.
  • Более сложная сборка.
  • Возможность разгерметизации. Но при правильной установке этот «минус» исключается.

Принцип работы

Теплообменником СЖО является «waterblock» или второе название «водоблок» . Он берет на себя горячий воздух, выделяемый процессором, видеокартой и пр., и передает его воде. При помощи особого насоса она поступает в еще один теплообменник - радиатор, забирающий тепло из воды и выводит его в воздух за границы системника.

Комплектация СВО

Выше уже упомянуты основные элементы водяной системы. Так как многие энтузиасты решают сами заниматься ее сборкой, разберем подробнее, из чего состоит СВО. В комплектацию современных моделей может входить множество разных элементов. Мы рассмотрим только основные из них.

Водоблок

Зачем он нужен, вы теперь знаете. Как он выглядит? Прибор имеет обычно медное основание, крышку из пластика или металла и крепления, чтобы присоединять его к охлаждаемому устройству.

Кстати, для процессоров, северного моста на чипе и видеокарт существуют разные типы водоблоков. Те, что предусмотрены для последних в перечислении девайсов, разделяются на подвиды: закрывающие только графический чип («gpu only») либо все нагревающие элементы.

Сейчас основание ватерблоков делается из тонкой меди, в отличие от первоначальных вариантов, чтобы тепло быстрее передавалось воде. Дно может быть выполнено и из алюминия: это дешевле, но менее эффективно.

Также нынешние приборы имеют микроканальную или микроигольчатую структуру для усовершенствования поверхности теплоотдачи. Но в случаях, к примеру, с системным чипом, где не идет счет эффективности охлаждения на градусы, может использоваться плоское дно или архитектура с простыми каналами.

В зависимости от схемы устройства, ватерблоки разделяются на 3 вида:

  • «Змейка». Используется один или несколько непрерывных каналов. Они могут быть выполнены с расходящейся спиралью, когда штуцер находится посередине прибора, или в виде зигзага, если 2 штуцера расположены по краям.

  • Пересекающиеся каналы. Они создаются путем сверления в основании с торцов, а отверстия закрываются при помощи заглушек.

  • Без канальные. К основанию припаивается емкость со штуцерами. Через расположенный на входе теплоноситель поступает вода и выводится через боковой.

Радиатор

Его также называют водно-воздушным теплообменником из-за выполняемых им функций. Он бывает 2 типов: с вентилятором или без. Первые - активные - встречаются чаще, потому что эффективнее пассивных собратьев, хотя вторые отличаются бесшумностью.

Размер более распространенных радиаторов может быть разным, но в большинстве случаев кратен габаритам вентилятора на 120 мм или 140 мм. Получается, что теплообменник на 3 120-миллиметровых вентилятора будет иметь длину 360 мм и ширину 120 мм. Такой вариант называют трёхсекционным .

Эта штука гоняет жидкость по всей системе (иными словами насос). Работает он от электричества: некоторые модели при напряжении 12 V, другие - 220 V. Бывает внешняя помпа (пропускает воду через себя) и погружная (выталкивает ее). Второй вариант компактнее первого.

Учитывайте, что указанная производителем мощность насоса является максимальной и достигать ее не рекомендуется.

Некоторые умельцы используют аквариумную помпу, однако в случае с дорогими комплектующими компьютера не стоит проводить такие эксперименты. Современные ватерблоки обладают высоким гидросопротивлением из-за усиленной производительности, поэтому лучше устанавливать к ним специализированный насос.

Шланги и крепления

Несложно догадаться, что трубки нужны для циркуляции жидкости в системе. Чаще всего они изготавливаются из ПВХ, иногда встречаются силиконовые. Их длина абсолютно не влияет на эффективность СВО. Что касается диаметра, лучше не брать шланги тоньше 8 мм.

Не обойтись и без фитингов, которые нужны для подсоединения трубок к комплектующим системы. Каждый из них имеет отверстие с резьбой, куда и вкручиваются крепления.

Самые популярные - компрессионные (с гайкой) и в виде елочки (штуцеры). Также они бывают прямые и угловые. Различаются и по типу резьбы: зачастую используются G1/4′′, редко - G1/8′′ и G3/8′′.

Вода

Для заправки лучше брать дистиллированную воду. Это самый хороший и доступный вариант. Иногда применяется деионизированная вода или с разными примесями, но особой необходимости в этом нет.

Необязательные составляющие

Подробно не буду останавливаться на каждом комплектующем элементе, а только приведу список того, что может входить в состав СВО, но без чего можно и обойтись:

  • Термодатчики;
  • Краны для слива воды;
  • Контроллеры насосов и вентиляторов;
  • Измерители температуры, давления, потока и пр.;
  • Фильтры;
  • Расширительный бачок;
  • Фильтр, подсоединенный в контур;
  • Бэкплейт - пластина для снятия нагрузки с материнки или видеокарты;
  • Дополнительные ватерблоки.

Виды водяных систем

По способу расположения СЖО бывают внешними и внутренними. Первые выполняются в виде отдельного корпуса, который при помощи трубок подсоединяется к ватерблоку, находящемуся внутри системного блока. В стоящем рядом «ящике» располагаются остальные элементы системы.

Этот вариант хорош тем, что не приходится ничего менять внутри системника при установке СВО. Однако если вы соберетесь переносить комп, то столкнетесь с неудобствами. Среди внешних систем популярны модели «Большая вода» торговой марки Thermaltake или EK.

Внутренние системы, очевидно, располагаются внутри системного блока. Но не всегда получается впихнуть внутрь все компоненты, поэтому часто выносится наружу радиатор.

Удачи в выборе и терпения в установке.

До свидания, увидимся ещё, надеюсь;).


Радиаторы и кулеры – об этом даже писать не так интересно, потому что все это давно есть в любом компьютере и этим никого не удивишь. Жидкий азот и всякие там системы с фазовым переходом – еще одна крайность, шансы встречи с которой в хозяйстве обычного человека почти нулевые. А вот «водянка»… в вопросе охлаждения компьютера это как золотая середина – необычно, но доступно; почти не шумит, но в то же время охладить может что угодно. Справедливости ради, СВО (система водяного охлаждения) правильней называть СЖО (система жидкостного охлаждения), ведь, по сути, залить внутрь можно что угодно. Но, забегая вперед, я использовал обычную воду, так что орудовать больше буду именно термином СВО.

Совсем недавно я достаточно подробно писал про сборку нового системного блока. Получившийся стенд выглядел следующим образом:

Вдумчивое изучение списка говорит о том, что тепловыделение некоторых устройств не просто высокое, а ОЧЕНЬ высокое. И если подключить все как есть, то внутри даже самого просторного корпуса будет как минимум жарко; а как показывает практика, будет еще и очень шумно.

Напомню, что корпусом, в который собирается компьютер, является пусть и не очень практичный (хотя с каждым разом я убеждаюсь в обратном), но очень презентабельный Thermaltake Level 10 – у него есть минусы, но за один только внешний вид ему можно очень многое простить.

На этом этапе материнская плата была установлена в корпус, в нее поставлена видеокарта – предварительно в самый верхний PCI-слот.

Установка радиатора/помпы/резервуара

Один из самых интересных этапов работы, на который у нас ушло больше всего времени (если бы мы сразу пошли по легкому пути, то управились бы за полчаса, но сперва мы перепробовали все сложные варианты, из-за которых все работы суммарно растянулись на 2 дня (конечно же, далеко неполных).

Система водяного охлаждения очень похожа на ту, что применяется в автомобилях, просто немного побольше – там тоже есть радиатор (чаще всего не один), кулер, охлаждающая жидкость и т.д. Но у автомобиля есть одно преимущество – солидный встречный поток холодного воздуха, который играет ключевую роль в охлаждении системы во время движения.

В случае с компьютером, отводить тепло приходится тем воздухом, который есть в комнате. Соответственно, чем больше размеры радиатора и количество кулеров, тем лучше. А так как хочется минимум шума, то эффективное охлаждение будет достигаться в основном за счет поверхности радиатора.

А суть проблемы заключалась в следующем. В скайпе мы предварительно сошлись на мнении «повесим сзади радиатора на 2-3 секции – его более чем хватит!», но как только мы взглянули на корпус, оказалось, что все не так-то просто. Во-первых, для трехсекционного радиатора там действительно было маловато места (если крепить радиатор на то отверстие, куда предполагается установка выдувного кулера корпуса), а во-вторых, даже если бы и хватило, то никак не получилось бы открыть сам корпус – мешалась бы «дверь» системного отсека:)

В общем, вариантов установки радиатора в корпус Thermaltake Level 10 мы насчитали минимум четыре – все они возможны, на каждый потребовалось бы разное количество времени и у каждого были бы свои плюсы и минусы. Начну с тех, что мы рассматривали, но которые нам не подошли:

1. Установка радиатора на задней (от пользователя) боковой стороне, то есть на съемной дверце.
Плюсы:
+ Возможность горизонтальной и вертикальной установки любого радиатора, хоть на 3-4 кулера
+ Размеры корпуса особо не увеличились бы

Минусы:
- Пришлось бы сверлить в дверце от 4 до 6-8 отверстий
- Снимать дверцу было бы очень неудобно
- При горизонтальном расположении потребовался бы радиатор с нестандартным расположением отверстия для залива жидкости
- При вертикальном расположении шланги были бы очень длинными и с большим изгибом
- Корпус будет стоять слева от меня (на подоконнике), а теплый воздух от кулеров в лицо мне не нужен:)

2. Установка радиатора сверху, на «кожухе» отсека блока питания. Плюсы и минусы идентичны

3. Установка двухсекционного радиатора внутри системного отсека

Плюсы:
+ Простота решения
+ Внешне не было бы никаких изменений
+ Дверца системного отсека открывалась бы без проблем

Минусы:
- Подошел бы только 2-секционный радиатор (этого мало для железа конфига)
- В таком случае браться холодному воздуху было бы не откуда, а гонять туда-сюда теплый воздух не хотелось.
- Были бы сложности по «расстановке» помпы и резервуара
- Даже если использовать сверхтонкие кулеры, перекрывались бы все SATA-разъемы (если бы они выводились на пользователя, а не вбок, то этой проблемы бы не было)

В общем, все эти варианты мы в той или иной степени попробовали – потратили много времени на поиски нужных компонентов, их примерку и т.д.

Самым последним вариантом оказалось достаточно необычное решение – может быть не самое на первый взгляд красивое, но действительно практичное. Это установка радиатора на задней стороне корпуса через специальный регулируемый переходник с механизмом типа «ножницы» .

Плюсы:
+ Ничего не пришлось сверлить
+ Возможность повесить ЛЮБОЙ радиатор
+ Отличная продуваемость
+ Не перекрывался доступ к разъемам материнской платы
+ Минимальная длина шлангов, минимум изгибов
+ Конструкция съемная и транспортабельна

Минусы:
- Не самый презентабельный внешний вид:)
- Открыть дверь системного отсека теперь не так просто
- Достаточно дорогой переходник

Почему мы пришли к этому варианту в последнюю очередь? Потому что во время поисков для предыдущих трех вариантов, совершенно случайно нашли переходник, про который все забыли, а в в интернет магазине его не было) Глядя на единственный (последний) экземпляр монтажной рамки Koolance Radiator Mounting Bracket , я подумал «И чего только не придумают!». Суть в следующем – в отверстия для крепления к корпусу заднего выдувного кулера вставляются 4 «конусных гвоздя», на которые вешается специальная рамка.

Конструкция этой рамки такова, что ее длинна может изменяться путем подкручивания фиксаторов, а снимается она смешением двух частей ее корпуса (чтобы отверстия разжались и ее можно было снять с «гвоздиков») – вот я загнул!) Гораздо проще понять все по фото.

Рамка металлическая и очень прочная – в этом я убедился, когда мы на пробу повесили 3-секционный (на 3 кулера) радиатор. Ничего не болтается и не качается, все висит намертво, но в «разжатом» случае дверь вполне себе открывалась – такой вариант меня полностью устраивал!

Радиаторов на выбор было огромное количество – черные, белые, красные… В этом вопросе меня больше всего удивил 4-секционный TFC Monsta , способный отвести до 2600Вт тепла (это, видимо, SLI из четырех 480ых)! Но мы люди гораздо проще, поэтому решили остановиться на том радиаторе, который примеряли - Swiftech MCR320-DRIVE . Его преимущество в том, что он объединяет в себе сразу три компонента – радиатор (MCR320 QP Radiator для трех 120мм кулеров), резервуар для жидкости и помпу высокого давления (MCP350 Pump , полный аналог «обычной» помпы Laing DDC ). По сути, с такой железякой для СВО потребуется докупить только водоблоки, шланги и прочие мелочи, что у нас уже было. Помпа работает от 12В (от 8 до 13.2), издавая шум 24~26 dBA. Максимальное создаваемое давление составляет 1.5бар, что примерно равно 1.5 «атмфосферам».

Для радиатора было три кулера-претендента – Noctua , Be Quiet и Scythe . В итоге остановились на индонезийских (с японскими корнями) Scythe Gentle Typhoon (120мм, 1450 об/мин, 21 dBA) – эти вертушки не первый день пользуются большим спросом у многих пользователей. Они ооочень тихие, а качество балансировки подшипников просто удивляет – кулер будет неестественно долго крутиться даже от самого легкого прикосновения. Срок службы составляет 100000 часов при 30°C (или 60000 часов при 60 °C), чего хватит для морального устаревания данного системника.

Обзор этих «тайфунов» был на ФЦентре – советую почитать . Поверх кулеров были поставлены защитные решетки, чтобы ребенок не засунул в вентиляторы чего-нибудь жизненно необходимого.

Примеряем получившуюся конструкцию к системному блоку – выглядит очень необычно) Но зато смотрите, как удобно – чтобы залезть внутрь корпуса (или снять систему охлаждения), достаточно нажать одну «кнопку» и вся конструкция, фактически, уже отсоединена. Сжимаем монтажную рамку и имеем полный доступ к внутренностям – там более чем просторно, ведь мы туда ничего не громоздили. Может быть я описал не самый удобный вариант, но… если учесть, что после сборки компьютера лазить внутрь практически не придется, а хорошее охлаждение гораздо важнее, то я считаю наше решение правильным.

Конструкция в сборе весит 2.25 килограмма, а с жидкостью и фитингами, наверное, все 3 – забегая вперед, даже такой вес рамке от Koolance оказался по силам, за что ей респекты и уважухи:)

Финишная прямая

Дело осталось за малым – установить все компоненты, «обвязать водой» и протестировать получившийся компьютер. Все началось с установки фитингов – красивые такие железки (в виде «ёлочек»), которые через специальные прокладки (и иногда, когда резьба фитинга очень длинная, через специальные спэйсеры) устанавливаются в соответствующее отверстие водоблока или резервуара – для затягивания мы использовали небольшой разводной ключ, но тут тоже важно не перестараться.

Помимо фитингов, в два отверстия водоблока видеокарты были установлены специальные заглушки:

После этого мы продумали маршрут, по которому будет идти вода. Правило простое – от менее нагретого к более. Соответственно, «выход» радиатора соединяется сперва с водоблоком материнской платы, из него выход на процессор, затем в видеокарту и уже потом обратно на вход в радиатор, остужаться. Так как вода одна на всех, то температура всех компонентов в результате будет примерно одинаковой – именно из этих соображений делают многоконтурные системы и именно по этой причине не имеет смысла подключать к одному контуру еще и всякие там жесткие диски, оперативку и т.д.

Роль шланга досталась красному Feser Tube (ПВХ, рабочая температура от -30 до +70°C, давление на разрыв 10МПа), для нарезки которого использовался специальный хищный инструмент.

Ровно отрезать шланг – может быть и не так сложно, но очень важно! Почти на все шланги были надеты специальные пружины против изгибов и изломов шланга (минимальный радиус петли шланга становится равным ~3.5см).

На каждый шланг (с обеих сторон) в области фитинга нужно установить по «хомуту» – мы использовали красивые Koolance Hose Clamp . Устанавливаются они с помощью обычных плоскогубцев (с грубой мужской силой), поэтому нужно действовать аккуратно, чтобы случайно не задеть чего-нибудь.

Пришло время поработать над соединением «внутреннего мира» с «внешним». Для того, чтобы иметь возможность снять радиатор-резервуар-помпу (например, для открытия корпуса или для транспортировки), мы поставили на трубки так называемые «быстросъемы» (быстросъемные клапаны), принцип действия которых до безобразия прост.

Когда мы поворачиваем соединение (как у BNC-коннекторов), отверстие в трубке закрывается-открывается, благодаря чему разобрать «водянку» можно меньше чем за минуту, без всяких луж и прочих последствий. Еще парочка дорогих, но прекрасно выглядящих железяк:

Расходы

5110 - Водоблок EK FB RE3 Nickel на материнскую плату
3660 - Водоблок EK-FC480 GTX Nickel+Plexi на видеокарту
1065 - Бэкплэйт EK-FC480 GTX Backplate Nickel на видеокарту
2999 - Водоблок Enzotech Stealth на процессор
9430 - Помпа/радиатор/резервуар Swiftech MCR320-DRIVE
2610 - Два быстросъемных клапана Release Coupling
4000 - Переходник Koolance Radiator Mounting Bracket
1325 - Три кулера Scythe Gentle Typhoon (120мм) для радиатора
290 - Четыре фитинга EK-10mm High Flow Fitting
430 - Термопаста Arctic-Cooling-MX-3
400 - Девять зажимов для шлангов Koolance Hose Clamp
365 - Жидкость Nanoxia HyperZero
355 - Шланг Feser Tube

Столь высокая цена в данном случае вызвана тем, что использовались fullcover-водоблоки для ОЧЕНЬ горячих железок, все тепло от которых нужно рассеивать соответствующим радиатором. Для более простых систем подобные решения просто не понадобятся, так же можно обойтись и без декоративных накладок и всяких быстросъемных клапанов – в таких случаях можно запросто уложиться и в половину стоимости. Цена среднестатистической «водянки» составляет 12-15 тысяч рублей, что в 4-5 раз превышает стоимость действительно хорошего процессорного кулера.

Включение и работа

После того, как все компоненты системы были соединены, подошло время к «leak-тесту» (тест на протечку) – в радиатор была залита охлаждающая жидкость (дважды дистиллированная вода Nanoxia HyperZero красного цвета, с антикоррозийными и антибиологическими присадками) – в контур вошло порядка 500 мл.


Парень в хабрамайке заправляет радиатор)

Т.к. нельзя исключать вероятность того, что к компонентам компьютера что-то было подсоединено не так, было решено отдельно проверить работу самой системы водяного охлаждения. Для этого все провода (от кулеров и от помпы) были подсоединены, а в 24-пиновый разъем блока питания вставлена скрепка – для «холостого хода». На всякий случай внизу мы положили салфеток, чтобы малейшую течь было легче обнаружить.

Нажатие кнопки и… все как задумывалось) Честно сказать, до этого мне приходилось видеть водянки (помимо интернетов) только на различных выставках и конкурсах, где было очень шумно; поэтому я подсознательно готовился к «журчанию ручья», но уровень шума приятно удивил – по большей части было слышно только работу помпы. Первоначально присутствовали «шипящие» звуки – из-за пузырьков воздуха, находящихся внутри контура (их было видно в некоторых местах шлангов). Для решения этой проблемы была открыта пробка резервуара-радиатора – от циркуляции потока воздух постепенно вышел и система стала работать еще тише. После долива жидкости пробка была закрыта и компьютер поработал еще минут 10. Шума от кулера блока питания и от трех на радиаторе не было слышно вообще, хотя их воздушные потоки давали о себе знать.

Убедившись в том, что система полностью работоспособна, мы решили окончательно собрать тестовый стенд. Подключение проводов заняло не больше минуты – гораздо дольше искали монитор и провод для его подключения, т.к. все работали на ноутбуках;) Фраза «Reboot and select proper boot device or insert boot media in selected boot device and press a key» стала бальзамом на душу – мы вставили один из «рабочих» SSD-дисков (с Windows 7 на борту) - хорошо, что новый комп принял такой вариант. Для полного счастья только обновили драйвера для чипсета и установили драйвера для видеокарты.

Запускаем диагностического монстра Everest , где на одной из вкладок находим показания датчиков температуры: 30°C были справедливы для всех компонентов системы – CPU, GPU и материнской платы – что ж, очень приятные цифры. Равенство цифр вызвало предположение о том, что охлаждение в режиме простоя ограничено комнатной температурой, ведь ниже нее температуры в обычной водянке быть не может. В любом случае гораздо интересней посмотреть, какая ситуация будет при нагрузке.

15 минут «офисной работы» и температура видеокарты поднялась до 35°C.

Начинаем с проверки CPU, для чего используем программу OCCT 3.1.0 – спустя достаточно продолжительное время в режиме 100% нагрузки, максимальная температура процессора составила 38°C, а температура ядер 49-55°C соответственно. Температура материнской платы составляла 31°C, северного моста - 38°C, южного - 39°C. Кстати, это очень примечательно, что у всех четырех ядер процессора была практически равная температура – судя по всему, это заслуга именно водяного блока, который отводит тепло равномерно со всей поверхности крышки процессора. 50+ градусов для 4-ядерного Intel Core i7-930 с TDP в 130Вт – на такой результат едва способен хоть один стоковый воздушный кулер. А если и способен, то шум от его работы при этом вряд ли кому-то понравится (интернет гласит о температуре данного процессора в 65-70 градусов с кулером Cooler Master V10 – тот, что с элементом Пельтье).

Видеокарту по привычке прогревали программой FurMark 1.8.2 (в простонародье «бублик») – вряд ли на скорую руку можно было придумать что-то более ресурсоемкое и информативное.

Помимо «Эвереста» так же была установлена программа EVGA Precision 2.0 . На максимально доступном разрешении (с максимальным сглаживаниями) был запущен стресс-тест с ведением лога температуры – уже минуты через 3 температура видеокарты устоялась на отметке в 52 градуса! 52 градуса в нагрузке для топовой (на данный момент) видеокарты NVIDIA GTX 480 на архитектуре Fermi – это не просто здорово, это замечательно!)

Для сравнения, температура видеокарты в нагрузке со штатным кулером может доходить до 100 градусов, а с хорошим нереференсным – до 70-80.

В общем, температурный режим в полном порядке – в нагрузке кулеры выдувают из радиатора практически холодный воздух, а сам радиатор еле теплый. Не буду говорить в этой статье про разгонный потенциал, скажу лишь, что он есть. Но гораздо приятней совсем другое - система работает практически бесшумно!

The end

Можно долго рассуждать о получившемся результате, но он мне понравился, как и всем тем, кто его уже успел посмотреть. Как ни крути, а в корпусе Thermaltake Level 10 мне удалось собрать более чем производительный конфиг, который еще долгое время будет актуальным. Более того, почти без проблем «встала» полноценная система водяного охлаждения, которая помимо хорошего охлаждения начинки дает +5 к внешнему виду. Говоря о температурном режиме, можно смело говорить и о солидном потенциале для разгона – сейчас даже в нагрузке система охлаждения работает далеко не на пределе возможностей.

Я забыл написать про еще один важный плюс – интересность. Пожалуй, это самое интересное, что мне приходилось делать с железками – ни одна сборка компьютера не приносила столько удовольствия! Одно дело, когда ты собираешь обычные «бездушные» компики, совсем другое дело – когда понимаешь всю ответственность и подходишь к делу со всей душой. Такая работа занимает далеко не 5 минут – все это время ты ощущаешь себя ребенком, играющим во взрослый конструктор. А еще инженером-технологом-конструктором-сантехником-дизайнером, да просто гиком… в общем, интересность сильно повышенная!