Понятие определителя п го порядка. Определитель n-го порядка. Свойства определителей. Миноры и алгебраические дополнения. Теорема Лапласа и ее следствие Определитель n-го порядка

ОПРЕДЕЛИТЕЛИ. МАТРИЦЫ

1. Понятие определителя n-го порядка.

2. Методы вычисления определителей 2-го и 3-го порядков.

3. Теорема Лапласа.

4. Матрицы и их виды. Действия над матрицами.

5. Обратная матрица.

6. Ранг матрицы.

1. Понятие определителя n-го порядка.

Определитель n-го порядка записывается в виде квадратной таблицы, содержащей n строк и n столбцов:

Числа а ij - элементы определителя, i – номер строки, j –номер столбца, n - порядок определителя.

Диагональ определителя, состоящая из элементов с одинаковыми индексами, называется главной , а другая называется побочной .

Определителем n-го порядка называется число, являющееся алгебраической суммой n! членов, каждый из которых есть произведение n элементов, взятых по одному из каждой строки и из каждого столбца, причем знак всякого члена определяется входящими в его состав элементами.

Основные свойства определителей n - го порядка.

1. При замене строк столбцами значение определителя не меняется.

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Если все элементы какой-нибудь строки (столбца) определителя равны нулю, то определитель равен нулю.

4. Если определитель имеет две одинаковые или пропорциональные строки (столбца), то такой определитель равен нулю.

5. Общий множитель всех элементов строки (столбца) можно выносить за знак определителя.

6. Значение определителя не изменится, если к элементам какой-нибудь строки (столбца) добавить элементы другой строки (столбца), умноженные на одно и то же число.

7. Если элементы какой-нибудь строки (столбца) являются линейной комбинацией соответствующих элементов двух (или нескольких) других строк (столбцов), то такой определитель равен нулю.

2. Методы вычисления определителей 2-го и 3-го порядков.

Величину называют определителем (детерминантом) второго порядка и обозначают .

Таким образом,

Определителем третьего порядка называют величину

Эта формула называется правилом Сарруса (правило «треугольников») для вычисления определителей 3-го порядка. Для лучшего запоминания формулы можно составить таблицу Сарруса, добавив к определителю первый и второй столбцы. Тогда все члены будут представлять собой произведение элементов по диагоналям.

Примеры: Вычислить определители:

а)

3. Теорема Лапласа.

Вычисление определителей более высоких порядков непосредственно весьма сложно, поэтому для их вычисления используют свойства определителей, а также теорему Лапласа, позволяющую понижать порядок данного определителя.

Пусть дан определитель:

Вычеркнем в этом определителе i-ую строку и j-ый столбец, на пересечении которых находится элемент а ij . Тогда получим определитель M ij

(n-1) – го порядка, который называют минором элемента а ij .

Алгебраическим дополнением А ij элемента а ij называют минор этого элемента, взятый со знаком (+), если сумма индексов i+j – четное число, и со знаком (-), если эта сумма – число нечетное, т.е.

А ij = (-1) i + j M ij

Пример. Дан определитель третьего порядка

Найти минор и алгебраическое дополнение элемента а 32 .

Решение. ,

Теорема Лапласа: Сумма произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения равна определителю, т.е.

Эта теорема дает возможность разложить определитель по элементам какой-нибудь строки или столбца и свести его вычисление к вычислению определителей более низкого порядка. При этом вычисление определителя значительно упрощается, если среди элементов некоторой строки (столбца) имеются нули.

4. Матрицы и их виды. Действия над матрицами.

Матрицей размерности kxn называется прямоугольная таблица чисел:

.

Числа а ij называются ее элементами. В компактном виде матрицу можно записать:, i=1, …, k, j=1, …, n. Матрицы обозначаются заглавными буквами А,В,С, …, элементы матрицы – строчными буквами с двойной индексацией.

Виды матриц.

Матрица называется квадратной n -го порядка , если число строк равно числу столбцов и равно n.

Матрица, состоящая из одной строки, называется матрицей-строкой .

Матрица, состоящая из одного столбца, называется матрицей-столбцом.

Если в матрице А переставить строки и столбцы местами, то получим новую матрицу А Т транспонированную к матрице А:

Матрица, у которой все элементы равны 0, называется нулевой.

Квадратная матрица, у которой элементы вдоль главной диагонали равны 1, а остальные – нули, называется единичной матрицей. Она обозначается буквой Е.

Квадратная матрица n-го порядка называется вырожденной (особенной) , если определитель n-го порядка, составленный из ее элементов, равен нулю. Если же этот определитель отличен от нуля, то матрица называется невырожденной (неособенной).

Две матрицы называются равными , если соответствующие элементы их тождественно равны.

Действия над матрицами.

1. Сложение (вычитание) матриц .

Две матрицы одинаковой размерности, т.е. матрицы, имеющие одно и то же число строк и одно и то же число столбцов, можно сложить (вычесть). При этом под суммой (разностью) двух матриц понимают новую матрицу, элементы которой равны сумме (разности) соответствующих элементов данных матриц.

2. Умножение матрицы на число.

Чтобы умножить матрицу на число, нужно каждый элемент данной матрицы умножить на это число.

3. Умножение матриц.

Две матрицы можно перемножить только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы .

Произведением матрицы А на матрицу В называется новая матрица С, у которой элемент с ijj , стоящий на пересечении i-ой строки и j-го столбца, равен сумме произведений элементов i-ой строки матрицы А на элементы j-го столбца матрицы В. Матрица С имеет столько строк, сколько матрица А, и столько столбцов, сколько матрица В. Правило умножения матриц называют « строка на столбец ».

Замечание : операция умножения матриц в общем случае не перестановочна , т.е. АВ ≠ ВА.

Пример. Найти произведение матриц А и В: С=АВ,

где, .

Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Определение 7. Определителем матрицы А (определителем N-го порядка) Называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае.

Обозначение определителя: |А | = .

Например, при n = 6 произведение А21а13а62а34а46а55 является членом определителя, так как в него входит точно по одному элементу из каждой строки и из каждого столбца. Подстановка, составленная из его индексов будет . В ней 4-е инверсии в верхней строке и 2-е инверсии – в нижней. Общее число инверсий равно 6, т. е. подстановка чётная. Следовательно, данное произведение входит в разложение определителя со знаком «+».

Произведение А21а13а62а34а46а15 не является членом определителя, так как в него входят два элемента из первой строки.

Свойства определителей.

10. При транспонировании определитель не меняется (напомним, что транспонирование матрицы и определителя означает перемену строк и столбцов местами).

Действительно, если (-1)к является членом определителя, то все a1, a2, … , an различны и к – число инверсий в перестановке (a1, a2, … , an). При транспонировании номера строк станут номерами столбцов и наоборот. Следовательно, в произведении Все множители будут из разных столбцов и строк, т. е. это произведение будет входить в транспонированный определитель. Знак его будет определяться числом инверсий в подстановке . Но это число, очевидно равно к. Итак, (-1)к будет членом транспонированного определителя. Так как мы брали любой член данного определителя, а число членов в данном и транспонированном определителях одинаково, то отсюда и следует их равенство. Из доказанного свойства следует, что всё, что будет доказано для строк определителя, будет верно и для его столбцов.

20. Если все элементы строки (или столбца) определителя равны нулю, то определитель равен нулю.

Это следует из того, что по одному элементу указанной строки (или столбца) будет входить в каждый член определителя.

30. Если все элементы какой-нибудь строки определителя имеют общий множитель, то его можно вынести за знак определителя.

Действительно, если все элементы к-ой строки имеют общий множитель l, то их можно записать в виде . Любой член определителя будет иметь вид (-1)s. Следовательно, из всех членов определителя можно вынести множитель l.

40. Если две строки определителя поменять местами, то определитель сменит знак.

Действительно, если (-1)к любой член данного определителя, то в новом определителе номера строк р и q поменяются местами, а номера столбцов останутся прежними. Следовательно, в новом определителе это же самое произведение будет входить в виде (-1)s. Так как в номерах строк произошла одна транспозиция, а номера столбцов не изменились, то к и s имеют противоположные чётности. Итак, все члены данного определителя изменили знак, следовательно, и сам определитель изменил знак.

50. Если две строки определителя пропорциональны, то определитель равен нулю.

Действительно, пусть все элементы к-ой строки равны соответствующим элементам р-ой строки, умноженным на l, т. е. |А | = = = 0.

60. Если в определителе все элементы к-ой строки есть суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки, кроме к-ой, такие же как и в данном определителе. На месте элементов к-ой строки одного из них стоят первые слагаемые элементов к-ой строки данного определителя, а на месте элементов к-ой строки второго – вторые их слагаемые.

Пусть элементы к-ой строки будут + Ск1, + Ск2 , …. , + Скn . Тогда любой член определителя будет иметь вид

(-1)s= (-1)s + (-1)s.

Собрав все первые слагаемые, мы получим определитель, отличающийся от данного только к-ой строкой. На месте к-ой строки будут стоять , , …. , . Собрав все вторые слагаемые, получим определитель тоже отличающийся от данного только к-ой строкой. В к-ой строке будут стоять Ск1, ск2 , …. , Скn .

70. Если к одной строке определителя прибавить другую его строку, все элементы которой умножены на одно и то же число, то определитель не изменится.

Это свойство является следствием двух предыдущих.

Если в определителе |А | вычеркнуть к-ую строку и р-ый столбец, то останется определитель (n–1)-го порядка. Он называется Минором, дополнительным для элемента и обозначается Мкр . Число (-1)к+р×МКр Называется Алгебраическим дополнением для элемента и обозначается Акр .

80. Дополнительный минор и алгебраическое дополнение не зависит от того, какой элемент стоит в к-ой строке и р-ом столбце определителя.

Лемма 1 D = . (8)

Доказательство. Если А11 = 0, то равенство (8) очевидно. Пусть А11 ¹ 0. Так как в каждый член определителя входит точно один элемент из первой строки, то ненулевыми членами определителя могут быть только те, в которые входит А11 . Все они имеют вид , где gк и к пробегают значения от 2 до N . Знак этого члена в определителе D определяется чётностью подстановки s = .Таким образом D есть алгебраическая сумма слагаемых вида Со знаками, определяемыми подстановкой s. Если в этой сумме вынести за скобки А11 , то получим, что D = А11 × S , где S Есть алгебраическая сумма слагаемых вида , знак которых определяется подстановкой s. Этих слагаемых, очевидно, (N – 1)!. Но подстановка s и подстановка имеют одинаковую чётность. Следовательно, S = М 11. Так как А11 = (-1)1+1×М 11 = М 11, то D = А11 ×А11 .

Лемма 2. D = (9)

Доказательство. В определителе D переставим р-ую строку последовательно с каждой предыдущей. При этом р-ая строка займёт место первой строки, но минор, дополнительный к элементу Арк не изменится. Всего будет сделано (Р – 1) перестановка строк. Если новый определитель обозначить D1, то D1 = (-1)р-1×D. В определителе D1 переставим К -ый столбец последовательно с каждым предыдущим столбцом, при этом будет сделано (К – 1) перестановка столбцов и минор, дополнительный к Арк , не изменится. Получится определитель

D2 = . Очевидно, D2 = (-1)к-1×D1 = (-1)р+к-2×D = (-1)р+к×D. По лемме 1, D2 = Арк ×М Рк. Отсюда D = Арк × (-1)р+к× М Рк = Арк ×Арк.

Теорема 3. Определитель равен сумме произведений элементов некоторой строки на их алгебраические дополнения, т. е. D = Ак1Ак1 + ак2 ×Ак2 +…+а Kn ×А Kn (10).

Доказательство. Пусть D = . Элементы к-ой строки запишем в виде Ак1 =ал1 + 0 + …+ 0, Ак2 = 0 + Ак2 + 0 + … + 0, … , А = 0 + 0 + …+ 0 + А . Используя свойство 60, получим, что D =
= = Ак1Ак1 + Ак2Ак2 + … + АА (использовали лемму 2).

Теорема 4. Сумма произведений элементов одной строки определителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Доказательство. Пусть D = . По предыдущей теореме

D = . Если взять , то в определителе Dбудет две одинаковые строки, т. е. D будет равен нулю. Следовательно, 0 = , если р ¹ к.

Замечание. Теоремы 3 и 4 будут верны, если в их формулировках слово «строка» заменить на слово «столбец».

Способ вычисления определителя N-го порядка.

Для вычисления определителя N -го порядка достаточно в какой-нибудь строке (или столбце) получить как можно больше нулей, используя свойство 70, а потом использовать теорему 3. При этом вычисление определителя n-го порядка сведётся к вычислению определителя (N – 1)-го порядка.

Пример. Вычислите определитель D = .

. Получим нули во второй строке. Для этого Второй столбец 1) умножим на (-2) и прибавим к первому столбцу; 2) прибавим к третьему столбцу; 3) умножим на (-4) и прибавим к четвёртому столбцу. Получим, что D = . Разложим полученный определитель по элементам второй строки. При этом произведения всех элементов этой строки на их алгебраические дополнения, кроме элемента 1, равны нулю. Для того, чтобы получить алгебраическое дополнение для элемента 1, нужно вычеркнуть те строку и столбец, где этот элемент стоит, т. е. вторую строку и второй столбец. Знак алгебраического дополнения определяет (-1)2+2 = (-1)4 = +1. Итак, D = + . Получили определитель 3-го порядка. Этот определитель можно вычислить, используя диагонали и треугольники, но можно свести к определителю второго порядка. Умножим Первый столбец 1) на (-4) и прибавим ко второму столбцу, 2) умножим его на 2 и прибавим к третьему столбцу. Получим, что

Определитель n-го порядка

Определителем или детерминантом n-го порядка называется число записываемое в виде

И вычисляемым по данным числам (действительным или комплексным) - элементам определителя

Схемы вычисления определителей 2-ого и 3-его порядков

Теорема Крамера.

Пусть (дельта)-определитель матрицы системы А,а (дельта)i-определитель матрицы,получается из матрицы А заменой j-го столбца столбцов свободных чисел.Тогда,если (дельта) не равна 0,то система имеет единственное решение,определяемое во формуле:

1.Определитель 2-го порядка вычисляется по формуле

2. Определитель третьего порядка вычисляется по формуле

Существует удобная схема для вычисления определителя третьего порядка (см. рис. 1 и рис. 2).

Свойство определителей

1.Если какая-либо строка (столбец) матрицы состоит из одних нулей,то её определитель равен 0.

2.Если все элементы какой-либо строки (столбца) матрицы умножить на чило (лямбда),то её определитель умножится на это число (лямбда).

3.При транспонировании матрицы её определитель не изменяется.

Транспонирование -в математике,это преобразование квадратной матрицы-замена столбцов на строки или наоборот.

4.При перестановки двух строк (столбцов) матрицы её определитель меняет знак на противоположный.

5.Если квадратная матрица содержит две одинаковые строки (столбца),то её определитель равен 0

6.Если элементы двух строк (столбцов)матрицы пропорциональны,то её определитель равен 0

7.Сумма произведений элементов какой-либо строки (столбца)матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равно 0

8.Определитель матрицы не изменяется,если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца),предварительно умноженные на одно и то же число.

9.Сумма произведений чисел b1,b2,...,bn на алгебраические дополнение элементов любой строки (столбца) равна определителю матрицы,полученной из данной заменой элементов этой строки (столбца) b1,b2,...bn.

10.Определитель произведения двух квадратных матриц равен произведению их определителей |C|=|А|*|B|,где С=А*В;А и В-матрицы n-го порядка.

Методы вычисления определителей n – го порядка 1. Метод приведения к треугольному виду Этот метод заключается в преобразовании определителя к такому виду, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю. Пример 1. Вычислить определитель порядка n d= 01 01 01 01 11110 xxx xxx xxx xxx . Решение. Прибавим первую строку, умноженную на (– x) ко всем остальным: d= x x x x − − − − 0001 0001 0001 0001 11110 . К первому столбцу прибавим все последующие столбцы, умноженные на (1/x). Получим d= . 0000 0000 0000 0000 1111)1(x x x x x n − − − − − Мы получили треугольный вид, следовательно, определитель равен произведению элементов главной диагонали d=(– 1) n – 1 (n – 1)x n – 2 . Пример 2. Вычислить определитель 2221 2212 2122 1222 − − − − =d . Решение. Прибавим к первой строке все остальные, тогда в первой строке все элементы будут равны 2(n – 1) – 1=2n – 3 и, следовательно, общий множитель можно вынести за знак определителя: . 2221 2212 2122 1111)32(− − − −= nd Теперь воспользуемся тем, что в первой строке все элементы равны 1. Умножая первую строку на (– 2) и прибавляя её ко всем остальным строкам, мы получим. 0003 0030 0300 1111)32(− − − −= nd Побочная диагональ в определитель n-го порядка входит со знаком 2)1()1(− − nn (это легко проверить, если подсчитать число инверсий в подста- новке −− 1...21 ...321 nnn n). Тогда получим () ()() () () .32313321 1 1 2)1(1 2)1(−−=−−−= − − + − − nnd n nn n nn Пример 3. Вычислить определитель. 000 00330 00022 1321 nn nn d − − − − = Решение. Прибавим к (n – 1)-му столбцу n-ый, затем полученный (n – 1)-ый столбец прибавим к (n – 2)-му, и т. д. Тогда получим определитель треугольного вида. 2)1(! 0000 00300 00020 123 2)1(1 2)1(2)1(+ = −− + − ++ = nn n n nn nnnnnn d 2. Разложение определителя по строке (столбцу) Пример 1. Вычислить определитель d разложением по третьей строке, если d= 2164 7295 4173 2152 − −− −− − . Решение. Мы знаем, что имеет место, следующее разложение определителя по i-ой строке: d=a i1 A i1 +a i2 A i2 +…+a in A in , где A ij , j= n,1 – алгебраические дополнения элементов определителя. В нашем случае формула принимает вид d=a 31 A 31 +a 32 A 32 +a 33 A 33 +a 34 A 34 , т. е. мы имеем следующее разложение: d=5∙ (– 1) 3+1 ∙ 216 417 215 − − − +(– 9)∙(– 1) 3+2 ∙ 214 413 212 −− +2∙(– 1) 3+3 ∙ 264 473 252 − − − + + (-7)∙ (– 1) 3+4 ∙ 164 173 152 − −− − . Вычисляя полученные определители третьего порядка, получим d=5∙(– 6)+9∙12+2∙(– 54) + 7∙(– 3)= –51. Пример 2. Вычислить определитель d= 78102 4552 5882 6593 −−− . Решение. Прибавляя третью строку, умноженную на (– 1) ко всем остальным, получим d= 3350 4552 913130 2041 −−− . Прибавляя к третьей строке первую, умноженную на (– 2), получим d= 3350 0530 913130 2091 − −−− . Разложив этот определитель по первому столбцу, содержащему лишь один, не равный нулю элемент (с суммой индексов 1+1=2, т. е. чётной), получим d= 335 053 91313 − −−− . Преобразуем полученный определитель. Прибавляя к первой строке третью, умноженную на 3, получим d= 335 053 042 − − . Полученный определитель в третьем столбце содержит лишь один, не равный нулю элемент (с суммой индексов 3+3, т. е. чётной). Поэтому его удобно разложить по третьему столбцу: d=3 53 42 − − =3(10 – 12)= – 6. Пример 3. Вычислить определитель. 000 11000 00300 00220 00011 nn nn d − −− − − = Решение. Разложим определитель по 1-му столбцу, тогда () () () . 1100 0030 0022 0001 1 000 1100 0030 0022 1 12 nn n n nn d n −− − − −−+ −− − −= + В этом равенстве первый и второй определители имеют треугольный вид, поэтому первый определитель равен n!, а второй определитель равен (– 1)(– 2) . . . (1 – n)=(– 1) n–1 (n – 1)!. Тогда получим: () () () .011!1!! 1212 =−+=−+= +−++ nnn nnnd 3. Теорема Лапласа Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1≤k≤n – 1. Тогда сумма произведений всех миноров k – го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d. Пример 1. Пользуясь теоремой Лапласа, вычислить определитель, предварительно преобразовав его. d= 43220 50300 20100 34523 12532 − − −− −− . Выберем третью и четвёртую строки. В них находится единственный минор отличный от нуля, поэтому d= 53 21 − ∙(– 1) 3+4+4+5 ∙ 320 423 232 − −− . Воспользовавшись формулами для вычисления определителей второго и третьего порядков, получим d=12–12+16+27=43. Пример 2. Вычислить определитель. 005000 050000 500000 000500 000010 000001 − = d Решение. Данный определитель имеет вид, указанный в следствии из теоремы Лапласа, поэтому мы можем этим следствием воспользоваться. Тогда () .51 005 050 500 ,5 500 010 001 3 2)4)(3(3 − −− − −==−=−= n nn n BA По следствию из теоремы Лапласа имеем: () .51 2 2 147 2 − +− −== n nn BAd 4. Метод выделения линейных множителей Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, обнаруживают, что он делится на ряд линейных множителей, а значит (если эти множители взаимно просты) и на их произведение. Сравнивая отдельные члены определителя с членами произведения линейных множителей, находят частное от деления определителя на это произведение и тем самым находят выражение определителя. Пример. Вычислить определитель методом линейных множителей d= 2 2 9132 5132 32x-21 3211 x − . Решение. Прибавим к первой строке вторую, умноженную на (– 1), а к третьей – четвёртую, умноженную на (– 1): d= 2 2 2 2 9132 4000 32x-21 0010 x x x − − − . Воспользуемся тем, что в первой строке и в третьей строке стоит лишь по одному неравному нулю элементу, и обнулим элементы стоящие во втором и третьем столбцах: d= 0102 4000 0201 0010 2 2 − − x x . Прибавим ко второй строке четвёртую, тогда d= 0102 4000 0303 0010 2 2 − − x x . Из первой строки видно, что определитель делится на x 2 – 1, из второй строки видно, что определитель делится на 3, а из третьей строки видно, что он делится на x 2 – 4. Так как все эти множители взаимно просты, то определитель делится на их произведение 3(x 2 – 1)(x 2 – 4). В данном произведении член x 4 имеет знак «+», а в определителе он содержится со знаком « – », поэтому d= – 3(x 2 – 1)(x 2 – 4). 5. Метод представления определителя в виде суммы определителей Некоторые определители легко вычисляются путём разложения их в сумму определителей того же порядка относительно строк или столбцов. Пример. Вычислить определитель d= add acc abb aaa 42 32 22 12 + + + + . Элементы первого столбца являются суммами двух слагаемых, это даёт возможность данный определитель представить как сумму двух определителей: d= ad ac ab aa 42 32 22 12 + add acc abb aaa 4 3 2 1 . В первом определителе первый и четвёртый столбцы пропорциональны, следовательно, он равен нулю. Во втором определителе первый и третий столбцы равны, следовательно, он тоже равен нулю. Таким образом, d=0. 6. Метод изменения элементов определителя Этот метод основан на следующем свойстве: если ко всем элементам определителя D прибавить одно и то же число x, то определитель увеличится на произведение числа x на сумму алгебраических дополнений всех элементов определителя D. D′=D+x = n ji ij A 1, . Таким образом, вычисление определителя D′ сводится к вычислению определителя D и суммы его алгебраических дополнений. Этот метод применяют в тех случаях, когда путём изменения всех элементов определителя на одно и то же число он приводится к такому виду, в котором легко сосчитать алгебраические дополнения всех элементов. Пример. Вычислить определитель D= n axxxx xaxx xxax xxxa 3 2 1 . Прибавим ко всем элементам число (– x), тогда D′= xa xa xa xa n − − − − 0000 000 000 000 3 2 1 . Алгебраические дополнения элементов определителя D, не лежащих на главной диагонали, равны нулю. Остальные алгебраические дополнения имеют положительный знак, поскольку все суммы индексов чётные. В нашем случае формула принимает вид: D′=(a 1 – x)…(a n – x), x = n ji ij A 1, = – x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − . Тогда искомый определитель D=D′–x = n ji ij A 1, =(a 1 – x)…(a n – x)+x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − = =x(a 1 – x)(a 2 – x)…(a n – x) − +…+ − + xaxax n 111 1 . 7. Метод рекуррентных соотношений Этот метод заключается в том, что данный определитель выражают, преобразуя и разлагая его по строке или столбцу, через определители того же вида, но более низкого порядка. Полученное равенство называется рекуррентным соотношением. Этот метод используется для вычисления определителей вида.)(000 00 0 00 21 −− −+= + + + + = nnn DDD αββα βα βαα ββαα ββα D n – (α+β)D n – 1 +αβD n – 2 =0 или, в общем виде D n – pD n – 1 +qD n – 2 =0, где p=α+β, q=αβ. Пусть рекуррентное соотношение имеет вид: D n =pD n – 1 – qD n – 2 , n>2, (5) где p, q – постоянные не зависящие от n. При q=0 D n вычисляется как член геометрической прогрессии: D n =p 1 − n D 1 ; здесь D 1 – определитель 1 – го порядка данного вида, т. е. элемент определителя D n , стоящий в левом верхнем углу. Пусть q>0 и α, β – корни квадратного уравнения x 2 – px+q=0. Тогда р=α+β, q=αβ и равенство (5) можно переписать так: D n – αD n – 1 =β (D n – 1 – αD n – 2) (6) или D n – βD n – 1 =α(D n – 1 – βD n – 2). (7) Предположим сначала, что α≠β. По формуле (n – 1) – го члена геометрической прогрессии находим из равенств (6) и (7): D n – αD n – 1 =β 2 − n (D 2 – αD 1) и D n – βD n – 1 =α 2 − n (D 2 – βD 1). Откуда.)()(12 1 12 1 βα αββα − −−− = −− DDDD D nn n (8) Пусть теперь α=β. Равенства (6) и (7) обращаются в одно и то же D n – αD n – 1 =α (D n – 1 – αD n – 2), откуда D n – αD n – 1 =Aα 2 − n , (9) где A=D 2 – αD 1 . Заменяя здесь n на n – 1, получим: D n – 1 – αD n – 2 =Aα 3 − n , откуда D n – 1 =αD n – 2 +Aα 3 − n . Подставляя это выражение в равенство (9), найдём D n =α 2 D n – 2 +2Aα 2 − n . Повторяя тот же приём несколько раз, получим D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 . Пример 1. Вычислить определитель методом рекуррентных соотношений. d= 21...0000 12...0000 ..................... 00...2100 00...1210 00...0121 00...0012 . Решение. Разложим определитель по первой строке, тогда D n =2(– 1) 1+1 D n – 1 +(– 1) 2+1 2...000 ............... 0...210 0...120 0...011 . Определитель в последнем равенстве разложим по первому столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =2, D 2 =3, тогда A=3 – 2=1. Следовательно, D n =2+(n – 1)=n+1. Пример 2. Вычислить определитель методом рекуррентных соотношений: d= 210...000 121...000 012...000 ..................... 000...210 000...122 000...043 . Решение. Разлагая d по последней строке, получим D n =2(– 1) nn + D n – 1 +(– 1))1(−+ nn 110...000 021...000 012...000 ..................... 000...210 000...122 000...043 . Определитель в последнем равенстве разложим по (n – 1) – му столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n = α n – 1 D 1 +(n – 1)Aα n – 2 , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =3, D 2 = – 2, тогда A= – 5. Следовательно, D n =3+(n – 1)(– 5)=8 – 5n. 8. Определитель Вандермонда Определителем Вандермонда называется определитель вида. 1111 11 3 1 2 1 1 22 3 2 2 2 1 321 −−−− = n n nnn n n aaaa aaaa aaaa d Докажем, что при любом n определитель Вандермонда равен произведению всевозможных разностей a i – a j , где 1≤j

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.