Применение arm. ARM лицензиаты и приблизительная стоимость лицензии. Контроллер оперативной памяти. Его особенности

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

Cortex-A5;
Cortex-A7;
Cortex-A8;
Cortex-A9;
Cortex-A12;
Cortex-A15;
Cortex-A53;

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Cortex-A5

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Cortex-A7

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Cortex-A8

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

Cortex-A12

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

Cortex-A15

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Cortex-A53

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании , который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет на производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).

Здравствуйте наши любимые читатели. Сегодня мы расскажем вам про архитектуру процессора Cortex a53.

Вы даже и не подозреваете, как много ваших гаджетов работает благодаря этому процессору. Мало, кто знает об особенностях ядер техники и что отличает их друг от друга. В этой статье вы узнаете об особенностях конкретного популярного Cortex a53.

Характеристики

Данные процессоры могут иметь от 1 до 8 ядер, систему памяти типа L1 и общий кэш L2. Чтобы понимать, что отличает основную составляющую практически всей техники этой модели от других, нужно знать её преимущества:

  • Высокопроизводительность (поддержка широкого спектра мобильных приложений, DTV, аэрокосмических машин, хранилищ и прочей техники подобного образца);
  • Высококачественная архитектура Army8-A для автономных конструкций начального уровня;
  • Универсальность (может быть сопряжен с любыми процессорами, такими как Cortex-A72, Cortex-A57 и другие);
  • Качественный продукт с большим объёмом загрузки.

Это основные сильные стороны данного продукта, однако далеко не все его преимущества. Ядро этой марки выполняет множество функций:

  • Поддерживает до 64bit и архитектуры самых новых версий;
  • Технология безопасности TrustZone;
  • Расширения DSP и SIMD;
  • 8-ступенчатый конвейер с двумя выходами и улучшенным целым числом;
  • Может работать на частоте от 1,5 Ггц;
  • Поддержка виртуализации оборудования.

Это стандартный набор функций данной технической составляющей, однако это далеко не все функции, которые выполняет этот непростой механизм.

Где чаще всего используется

Процессоры данного типа встречаются не только в смартфонах среднего класса (Xiaomi redmi 4, Redmi 3s, Meizu m3/m5 Note и др.), а и в следующих технологиях:

  • Авиационно-космическая техника;
  • Сеть;
  • Хранилища данных (типа HDD, SDD);
  • Автомобильная информационно-развлекательная система;

Дополнительные возможности

  • Трубопровод, который отвечает за низкое энергопотребление;
  • Высокая пропускная способность, которая позволяет выполнять одновременно несколько команд;
  • Расширенные функции энергосбережения.

Процессор связан с разными IP

Данная техника используется в SoC, а также в технологиях типа Arm, графических IP, системных IP и физических IP. Мы предоставляем вам полный список инструментов, в которых может быть использован c ядром этой марки:

  • Mali-T860/Mali-T880;
  • Mali-DP550;
  • Mali-V550;
  • CoreLink;
  • Контролёр памяти;
  • Контролёр прерываний;
  • Студия разработки DS-5;
  • ARM компилятор;
  • Доски разработки;
  • Быстрые модели.

Существует 2 типа процессоров Cortex a53:

  • AArch64 – даёт возможность устанавливать и использовать 64-битные приложения;
  • AArch32 – даёт возможность использовать только существующие приложения Armv7-A.

Для чего вам нужна эта вся техническая информация

Если вы ничего не понимаете в технике и характеристиках, то более простыми словами Cortex a53 обеспечивает гораздо большую производительность нежели его предшественники с более высоким уровнем энергоэффективности. Производительность ядра даже выше, чем у марки Cortex-A7, которая стоит на многих популярных смартфонах.

Архитектура Armv8-A – это то, что определяет функциональность технологий. У данной марки ядра стоит 64-битная обработка данных, расширенная виртуальная адресация и 64-разрядные регистры общего назначения. Все эти функции сделали этот процессор первым, который был предназначен конкретно для обеспечения энергоэффективной 64-битной обработки.

Таким образом, вы поняли, что процессор Cortex a53 является именной той технической составляющей, которую не нужно пропускать, выбирая технику. Если в вашем смартфоне стоит такой процессор с использованием данной архитектуры, вам не нужно беспокоится о недостатке памяти или о быстрой разрядке телефона. Все эти проблемы в прошлом.

Мы надеемся, что наша статья была вам полезна. Если это так – подписывайтесь на наши группы в социальных сетях и следите за новыми статьями, которые также могут вам пригодиться. Не забывайте про наш канал на YouTube .

С вами был сайт


Про ARM-архитектуру слышал каждый, кто интересуется мобильными технологиями. При этом для большинства людей это ассоциируется с процессорами планшетов или смартфонов. Другие же поправляют их, уточняя, что это не сам камень, а лишь его архитектура. Но практически никто из них уж точно не интересовался, откуда и собственно когда возникла эта технология.

А между тем данная технология широко распространена среди многочисленных современных гаджетов, которых с каждым годом становится все больше и больше. К тому же на пути развития компании, которая занялась разработкой ARM-процессоров, есть один интересный случай, о котором не грех упомянуть, возможно, для кого-то он станет уроком на будущее.

ARM-архитектура для чайников

Под аббревиатурой ARM скрывается довольно успешная британская компания ARM Limited в области IT-технологий. Расшифровывается она как Advanced RISC Machines и является одним из крупных мировых разработчиков и лицензиаров 32-разрядной архитектуры RISC-процессоров, которыми оснащается большинство портативных устройств.

Но, что характерно, сама компания не занимается производством микропроцессоров, а лишь разрабатывает и лицензирует свою технологию другим сторонам. В частности ARM-архитектура микроконтролеров закупается такими производителями:

  • Atmel.
  • Cirrus Logic.
  • Intel.
  • Apple.
  • nVidia.
  • HiSilicon.
  • Marvell.
  • Samsung.
  • Qualcomm.
  • Sony Ericsson.
  • Texas Instruments.
  • Broadcom.

Некоторые из них известны широкой аудитории потребителей цифровых гаджетов. По заверениям британской корпорации ARM, общая численность произведенных по их технологии микропроцессоров - более 2,5 миллиарда. Существует несколько серий мобильных камней:

  • ARM7 - тактовая частота 60-72 МГц, что актуально для мобильных бюджетных телефонов.
  • ARM9/ ARM9E - частота уже более высокая около 200 МГц. Такими микропроцессорами оснащаются более функциональные смартфоны и карманные компьютеры (КПК).

Cortex и ARM11 являются уже более современными семействами микропроцессоров в сравнении с прошлой архитектурой микроконтроллеров ARM, с тактовой частотой до 1 ГГц и расширенными возможностями обработки цифровых сигналов.

Популярные микропроцессоры xScale от компании Marvell (до середины лета 2007 года проект находился в распоряжении Intel) на самом деле представляют собой расширенный вариант архитектуры ARM9, дополненный набором инструкций Wireless MMX. Данное решение от Intel было ориентировано на поддержку мультимедийных приложений.

ARM-технология относится к 32-битной микропроцессорной архитектуре, содержащая сокращенный набор команд, что именуется как RISC. По проведенным подсчетам, применение процессоров ARM - это 82% от всего количества производимых RISC-процессоров, что говорит о довольно широкой зоне охвата 32-битных систем.

Многие электронные устройства оснащаются ARM-архитектурой процессора, и это не только PDA и сотовые телефоны, но и портативные игровые консоли, калькуляторы, компьютерная периферия, сетевое оборудование и многое другое.

Небольшое путешествие назад в прошлое

Отправимся на воображаемой машине времени на несколько лет назад и попробуем разобраться, с чего же все начиналось. Можно с уверенностью сказать, что компания ARM - это, скорее, монополист в своей области. И это подтверждается тем, что подавляющее большинство смартфонов и прочих электронных цифровых устройств работают под управлением микропроцессоров, созданных по данной архитектуре.

В 1980 году была основана компания Acorn Computers, которая начала создавать персональные компьютеры. Поэтому ранее ARM была представлена как Acorn RISC Machines.

Год спустя на суд потребителей была представлена домашняя версия ПК BBC Micro с самой первой ARM-архитектурой процессора. Это был успех, тем не менее чип не справлялся с графическими задачами, а прочие варианты в лице процессоров Motorola 68000 и National Semiconductor 32016 тоже не годились для этого.

Тогда руководство компании задумалось над созданием своего микропроцессора. Инженеров заинтересовала новая процессорная архитектура, придуманная выпускниками местного университета. В ней как раз использовался сокращенный набор команд, или RISC. И после появления первого компьютера, который управлялся процессором Acorn Risc Machine, успех пришел довольно быстро - в 1990 году между британским брендом и Apple был заключен договор. Это положило началу разработки нового чипсета, что, в свою очередь, привело к образованию целой команды разработчиков, именуемой как Advanced RISC Machines, или ARM.

Начиная с 1998 года, компания сменила название на ARM Limited. И теперь специалисты не занимаются производством и реализацией ARM-архитектуры. Что это дало? На развитии компании это никоим образом не сказалось, хоть основным и единственным направлением компании стала разработка технологий, а также продажа лицензий сторонним фирмам, чтобы те могли пользоваться процессорной архитектурой. При этом некоторые компании приобретают права на готовые ядра, другие же по приобретенной лицензии оснащают процессоры своими ядрами.

Согласно некоторым данным заработок компании на каждом подобном решении составляет 0,067 $. Но эти сведения усредненные и устаревшие. Ежегодно количество ядер в чипсетах растет, соответственно и себестоимость современных процессоров превосходит старые образцы.

Область применения

Именно развитие мобильных устройств и принесло компании ARM Limited огромную популярность. А когда производство смартфонов и прочих портативных электронных устройств приобрело массовый характер, энергоэффективным процессорам тут же нашлось применение. Вот интересно, а есть ли linux на arm-архитектуре?

Кульминационный период развития компании ARM приходится на 2007 год, когда были возобновлены партнерские отношения с брендом Apple. После этого на суд потребителей был представлен первый iPhone на базе ARM процессора. Начиная с этого времени подобная процессорная архитектура стала неизменной составляющей практически любого выпускаемого смартфона, которые только можно найти на современном мобильном рынке.

Можно сказать, что практически каждое современное электронное устройство, которое нуждается в управлении процессором, так или иначе оснащенном чипами ARM. А тот факт, что такая процессорная архитектура поддерживает многие операционные системы, будь то Linux, Android, iOS, и Windows, является неоспоримым преимуществом. Среди них числиться и Windows embedded CE 6.0 Core, архитектура arm тоже ею поддерживается. Данная платформа рассчитана на наладонные компьютеры, мобильные телефоны и встраиваемые системы.

Отличительные особенности x86 и ARM

Многие пользователи, которые наслышаны о ARM и x86, немного путают эти две архитектуры между собой. А между тем у них есть определенные различия. Существует два основных типа архитектур:

  • CISC (Complex Instruction Set Computing).
  • Computing).

К CISC относятся процессоры x86 (Intel либо AMD), к RISC, как уже можно понять, семейство ARM. У архитектуры x86, и arm есть свои почитатели. Благодаря стараниям специалистов ARM, которые делали упор на энергоэффективность и использование простого набора инструкций, процессоры сильно выиграли от этого - мобильный рынок начал стремительно развиваться, а многие смартфоны практически почти приравнялись с возможностями компьютеров.

В свою очередь Intel всегда славилась выпуском процессоров с высокой производительностью и пропускной способностью для настольных ПК, ноутбуков, серверов и даже суперкомпьютеров.

Эти два семейства по-своему завоевывали сердца пользователей. Но в чем их различие? Отличительных признаков или даже особенностей несколько, разберем наиболее важные из них.

Мощность обработки

Начнем разбор различий архитектур ARM и x86 с этого параметра. Особенность профессоров RISC заключается в использовании как можно меньшего количества инструкций. Причем они должны быть максимально простыми, что наделяет их преимуществами не только для инженеров, но и разработчиков программного обеспечения.

Философия здесь несложная - если инструкция простая, то для нужной схемы не нужно слишком большое количество транзисторов. Как результат, освобождается дополнительное пространство для чего-либо или же размеры чипов становятся меньше. По этой причине микропроцессоры ARM стали объединять в себе периферийные устройства, вроде графических процессоров. Показательный пример - компьютер Raspberry Pi, у которого минимальное количество компонентов.

Однако простота инструкций обходится дорого. Чтобы выполнять те или иные задачи необходимы дополнительные инструкции, что обычно приводит к росту потребления памяти и времени на выполнение задач.

В отличие от arm-архитектуры процесора инструкции чипов CISC, коими являются решения от Intel, могут выполнять сложные задачи с большой гибкостью. Иными словами, машины на базе RISC производят операции между регистрами, и обычно требуется, чтобы программа загружала переменные в регистр, перед выполнением операции. Процессоры CISC способны на выполнение операций несколькими способами:

  • между регистрами;
  • между регистром и местом памяти;
  • между ячейками памяти.

Но это лишь часть отличительных особенностей, перейдем к разбору других признаков.

Потребляемая мощность

В зависимости от типа устройства потребляемая мощность может иметь разную степень значимости. Для той системы, которая подключена к постоянному источнику питания (электросеть) ограничения потребления энергии попросту нет. Однако мобильные телефоны и прочие электронные гаджеты в полной мере зависят от управления питанием.

Еще одно различие архитектуры arm и x86 в том, что у первой энергопотребление меньше чем 5 Вт, включая многие сопутствующие пакеты: графические процессоры, периферийные устройства, память. Такая малая мощность обусловлена меньшей численностью транзисторов в совокупности с относительно низкими скоростями (если провести параллель с процессорами для настольных ПК). В то же время это нашло отпечаток на производительности - для выполнения сложных операций требуется больше времени.

Ядра Intel отличаются сложность структурой и в силу этого потребление энергии у них существенно выше. К примеру, процессор Intel I-7 с высокой производительностью потребляет около 130 Вт энергии, мобильные версии - 6-30 Вт.

Программное обеспечение

Проводить сравнение по этому параметру довольно трудно, поскольку оба бренда очень популярны в своих кругах. Устройства, которые основываются на процессорах arm-архитектуры, прекрасно работают с мобильными операционными системами (Android и прочее).

Машины под управлением процессоров от Intel способны работать с платформами наподобие Windows и Linux. К тому же оба семейства микропроцессоров дружат с приложениями, написанными на языке Java.

Разбирая различия архитектур, можно однозначно сказать одно - процессоры ARM главным образом управляют энергопотреблением мобильных устройств. Задача же настольных решений большего всего заключается в обеспечении высокой производительности.

Новые достижения

Компания ARM за счет ведения грамотной политики, полностью прибрала к рукам мобильный рынок. Но в дальнейшем она не собирается останавливаться на достигнутом. Не так давно была представлена новая разработка ядер: Cortex-A53, и Cortex-A57, в которых было проведено одно важное обновление - поддержка 64-битных вычислений.

Ядро A53 является прямым последователем ARM Cortex-A8, у которого хоть и была не очень высокая производительность, но энергопотребление на минимальном уровне. Как отмечают специалисты, у архитектуры энергопотребление снижено в 4 раза, а по производительности она не будет уступать ядру Cortex-A9. И это притом, что площадь ядра A53 на 40% меньше, чем у A9.

Ядро A57 придет на замену Cortex-A9 и Cortex-A15. При этом инженеры ARM заявляют о феноменальном приросте производительности - в три раза выше, чем у ядра A15. Иными словами микропроцессор A57 будет в 6 раз быстрее Cortex-A9, а его энергоэффективность будет в 5 раз лучше, чем у A15.

Если подытожить, то серия cortex, а именно более совершенная a53, отличается от своих предшественников более высокой производительностью на фоне не менее высокой энергоэффективности. Даже процессоры Cortex-A7, которые ставятся на большинство смартфонов, не выдерживают конкуренции!

Но что более ценно это то, что архитектура arm cortex a53 - это та составляющая, которая позволит избежать проблем, связанных с нехваткой памяти. К тому же и устройство будет медленнее разряжать батарею. Благодаря новинке эти проблемы теперь останутся в далеком прошлом.

Графические решения

Помимо разработки процессоров, компания ARM трудится над воплощением графических ускорителей серии Mali. И самый первый из них - это Mali 55. Этим ускорителем оснастили телефон LG Renoir. И да, это самый обычный мобильник. Только в нем GPU отвечала не за игры, а лишь отрисовывал интерфейс, ведь если судить по современным меркам, графический процессор отличается примитивными возможностями.

Но прогресс неумолимо летит вперед и поэтому, чтобы идти в ногу со временем, у компании ARM есть и более совершенные модели, которые актуальны для смартфонов средней ценовой категории. Речь идет о распространенных GPU Mali-400 MP и Mali-450 MP. Хоть у них и небольшая производительность и ограниченный набор API, это не мешает им находить применение в современных мобильных моделях. Яркий пример - телефон Zopo ZP998, в котором восьмиядерный чип MTK6592 работает в паре с графическим ускорителем Mali-450 MP4.

Конкурентоспособность

В настоящее время компании ARM пока еще никто не противостоит и главным образом это обусловлено тем, что в свое время было принято верное решение. Но когда-то давно еще в начале своего пути команда разработчиков трудилась над созданием процессоров для ПК и даже предприняла попытку конкурировать с таким гигантом как Intel. Но даже после того, как направление деятельности было сменено, компании приходилось тяжело.

А когда всемирно известный компьютерный бренд Microsoft заключил договор с Intel, у остальных производителей просто не было шансов - операционная система Windows отказывалась работать с процессорами ARM. Как тут не удержаться от использования эмуляторов gcam на архитектуру arm?! Что касательно компании Intel, то наблюдая волну успеха ARM Limited, тоже попыталась создать процессор, который бы составил достойную конкуренцию. Для этого широкой публике был предоставлен чип Intel Atom. Но заняло это намного больший промежуток времени, чем у ARM Limited. И в производство чип ушел лишь в 2011 году, но драгоценное время было уже потеряно.

По сути, Intel Atom - это CISC-процессор с архитектурой x86. Специалистам удалось добиться более низкого энергопотребления, чем в ARM решениях. Тем не менее весь тот софт, который выходит под мобильные платформы, плохо адаптирован к архитектуре x86.

В конечном итоге компания признала полную повальность принятого решения и в дальнейшем отказалась от производства процессоров под мобильные устройства. Единственный крупный производитель чипов Intel Atom - это компания ASUS. В то же время эти процессоры не канули в лету, ими в массовом порядке оснащали нетбуки, неттопы и прочие портативные устройства.

Однако существует вероятность, что ситуация изменится и любимая всеми операционная система Windows станет поддерживать микропроцессоры ARM. К тому же шаги в этом направлении делаются, может и правда появятся что-то наподобие эмуляторов gcam на ARM-архитектуру для мобильных решений?! Кто знает, время покажет и все расставит по местам.

В истории развития компании ARM есть один интересный момент (в самом начале статьи именно он имелся ввиду). Когда-то в основе ARM Limited находилась компания Apple и вероятно, что вся технология ARM принадлежала бы именно ей. Однако судьба распорядилась иначе - в 1998 году Apple находилась в кризисном положении, и руководство было вынуждено продать свою долю. В настоящее время она находится наравне с прочими производителями и остается для своих устройств iPhone и iPad закупать технологии у ARM Limited. Кто же мог знать, как все может обернуться?!

Современные процессоры ARM способны выполнять боле сложные операции. А в ближайшем будущем руководство компании нацелилось выйти на серверный рынок, в чем она, несомненно, заинтересована. К тому же в наше современное время, когда близится эпоха развития интернет вещей (IoT), в числе которых и «умные» бытовые приборы, можно прогнозировать еще большую востребованность чипов с ARM-архитектурой.

Так что у компании ARM Limited впереди далеко не беспросветное будущее! И вряд ли в ближайшее время найдется кто-нибудь, кто может потеснить такого, вне всякого сомнения, мобильного гиганта по разработке процессоров для смартфонов и прочих подобных электронных устройств.

В качестве заключения

Процессоры ARM довольно быстро захватили рынок мобильных устройств и все благодаря низкому энергопотреблению и пусть не очень высокой, но все же, хорошей производительности. В настоящее время положению дел у компании ARM можно только позавидовать. Многие производители пользуются ее технологиями, что ставит Advanced RISC Machines наравне с такими гигантами в области разработок процессоров как Intel и AMD. И это притом, что компания не имеет собственного производства.

Какое-то время конкурентом мобильного бренда была компания MIPS с одноименной архитектурой. Но в настоящее время есть пока единственный серьезный конкурент в лице корпорации Intel, правда ее руководство не считает, что arm-архитектура может представлять угрозу для ее рыночной доли.

Также, по мнению специалистов из Intel, процессоры ARM не способны обеспечить запуск настольных версий операционных систем. Однако такое заявление звучит немного нелогично, ведь владельцы ультрамобильных ПК не пользуются «тяжеловесным» программным обеспечением. В большинстве случаев нужен выход в сеть интернет, редактирование документов, прослушивание медиафайлов (музыка, кино) и прочие несложные задачи. А ARM решения прекрасно справляются с такими операциями.

Они подумали, что раз уж группе студентов удалось создать вполне конкурентоспособный процессор, то их инженерам это будет не сложно. Поездка в Western Design Center в Фениксе показала инженерам Стиву Ферберу и Софи Уилсон, что им не потребуются невероятные ресурсы для осуществления этого плана.

Уилсон приступила к разработке системы команд , создавая симулятор нового процессора на компьютере BBC Micro . Это убедило инженеров Acorn, что они на верном пути. Но все же перед тем, как идти дальше, им требовалось больше ресурсов. Настало время для Уилсон подойти к директору Acorn Герману Хаузеру и объяснить, в чем же дело. После того как он дал добро, собралась небольшая команда для реализации модели Уилсон на аппаратном уровне.

Acorn RISC Machine: ARM2

Официальный проект Acorn RISC Machine был начат в октябре 1983 года . VLSI Technology (англ. ) была выбрана в качестве поставщика кремниевых компонентов, так как она уже снабжала Acorn микросхемами ПЗУ и некоторыми нестандартными интегральными схемами. Разработку возглавили Уилсон и Фербер. Их основной целью было достижение низкой латентности обработки прерывания, как у MOS Technology 6502 . Архитектура доступа к памяти, взятая от 6502, позволила разработчикам достичь хорошей производительности без использования дорогостоящего в реализации модуля DMA . Первый процессор был произведен VLSI 26 апреля 1985 года - тогда он впервые заработал и был назван ARM1. Первые серийные процессоры под названием ARM2 стали доступны в следующем году.

Его первое применение было в качестве второго процессора в BBC Micro , где он был использован при разработке программного обеспечения для моделирования, что позволило завершить работу над вспомогательными микросхемами компьютера, а также ускорить работу программного обеспечения CAD , используемого при разработке ARM2. Уилсон оптимизировала набор инструкций ARM для исполнения BBC BASIC . Изначальная цель компьютера, полностью построенного на базе ARM, была достигнута в 1987 году с выходом Acorn Archimedes.

Атмосфера вокруг проекта ARM была настолько секретна, что когда компания Olivetti вела переговоры о покупке контрольного пакета акций Acorn в 1985 году, они не стали рассказывать о развитии проекта до конца переговоров. В 1992 году Acorn еще раз выиграл премию королевы за ARM.

В ARM2 была 32-разрядная шина данных, 26-битное адресное пространство и 16 32-разрядных регистров. Программный код должен был лежать в первых 64 мегабайтах памяти, а программный счётчик был ограничен 26 битами, так как верхние 4 и нижние 2 бита 32-битного регистра служили флагами. ARM2 стал, возможно, самым простым из популярных 32-битных процессоров в мире, имея всего лишь 30000 транзисторов (для сравнения, в сделанном на 6 лет раньше процессоре Motorola 68000 было около 70000 транзисторов). Многое из этой простоты обусловлено отсутствием микрокода (который в процессоре 68000 занимает от одной четверти до одной трети площади кристалла), и отсутствием кэша , как и в многих процессорах того времени. Эта простота привела к низким затратам энергии, в то время как ARM был гораздо более производителен, чем Intel 80286. У его преемника - процессора ARM3 - уже был кэш 4 кб, что еще больше увеличило производительность.

Apple, DEC, Intel: ARM6, StrongARM, XScale

Современные смартфоны, КПК и другие портативные устройства используют в основном версию ядра ARMv5. Процессоры XScale и ARM926 (ARMv5TE) сейчас более многочисленны в высокотехничных устройствах, чем, например, процессоры StrongARM и процессоры ARMv4 на базе ARM9TDMI и ARM7TDMI, но менее сложные приборы могут использовать старые версии с меньшей лицензионной стоимостью. Процессоры ARMv6 по своей производительности на голову выше, чем стандартные ARMv5. Cortex-A создан специально для смартфонов, которые раньше использовали ARM9 и ARM11. Cortex-R созданы для приложений, работающих в реальном времени, а Cortex-M - для микроконтроллеров.

Влияние ARM-технологии на рынок

К концу 2012 года новые модели ARM-процессоров Apple и Samsung достигли производительности бюджетных процессоров Intel для ноутбуков. В частности, планшет Samsung Nexus 10 показал рейтинг производительности 2348 баллов , в то время как бюджетный процессор Intel Core Duo в ноутбуке Apple MacAir показывает рейтинг только 1982 балла .

Отдельные компании заявляют о разработках эффективных серверов на базе кластеров ARM процессоров . Тем не менее, на 2012 год продажи серверов на ARM исчезающе малы (< 1% рынка серверов) .

Процессоры ARM

Семейство ядер Версия архитектуры Ядро Функции Кэш (I/D)/MMU Типичная MIPS @ МГц Использование
ARM1 ARMv1 (устаревшая) ARM1 Нет ARM Evaluation System процессор BBC Micro
ARM2 ARMv2 (устаревшая) ARM2 Добавлена команда MUL (умножение) Нет 4 MIPS @ 8 МГц
0.33 DMIPS/МГц
Acorn Archimedes , Chessmachine
ARMv2a (устаревшая) ARM250 Встроенный MEMC (MMU), графический процессор, добавлены команды SWP и SWPB (swap) Нет, MEMC1a 7 MIPS @ 12 МГц Acorn Archimedes
ARM3 ARMv2a (устаревшая) ARM2a Впервые использован кэш 4 КБ общий 12 MIPS @ 25 МГц
0.50 DMIPS/МГц
Acorn Archimedes
ARM6 ARMv3 (устаревшая) ARM60 Впервые введено 32-битное (а не 26-битное) адресное пространство памяти Нет 10 MIPS @ 12 МГц 3DO Interactive Multiplayer , Zarlink GPS Receiver
ARM600 Как ARM60, сопроцессор математики с плавающей запятой FPA10 4 КБ общий 28 MIPS @ 33 МГц
ARM610 Как ARM60, кэш, без шины сопроцессора 4 КБ общий 17 MIPS @ 20 МГц
0.65 DMIPS/МГц
Acorn Risc PC 600, Apple Newton 100 series
ARM7 ARMv3 (устаревшая) ARM700 8 КБ общий 40 МГц
ARM710 Как ARM700 8 КБ общий 40 МГц Acorn Risc PC 700
ARM710a Как ARM700 8 КБ общий 40 МГц
0.68 DMIPS/МГц
Acorn Risc PC 700, Apple eMate 300
ARM7100 Как ARM710a, интегрированная SoC 8 КБ общий 18 МГц Psion Series 5
ARM7500 Как ARM710a, интегрированная SoC. 4 КБ общий 40 МГц Acorn A7000
ARM7500FE Как ARM7500, «FE» добавлены FPA и EDO контроллеры памяти 4 КБ общий 56 МГц
0.73 DMIPS/МГц
Acorn A7000+ Network Computer
ARM7TDMI ARMv4T ARM7TDMI(-S) 3-ступенчатый конвейер, режим Thumb Нет 15 MIPS @ 16.8 МГц
63 DMIPS @ 70 МГц
Game Boy Advance , Nintendo DS , Apple iPod , Lego NXT, Atmel AT91SAM7, Juice Box, NXP Semiconductors LPC2000 and LH754xx , Actel "s CoreMP7
ARM710T Как ARM7TDMI, кэш 8 КБ общий, MMU 36 MIPS @ 40 МГц Psion Series 5mx , Psion Revo /Revo Plus/Diamond Mako
ARM720T Как ARM7TDMI, кэш 8 КБ общий, MMU с расширением быстрого переключения контекстов (англ. Fast Context Switch Extension ) 60 MIPS @ 59.8 МГц Zipit Wireless Messenger, NXP Semiconductors LH7952x
ARM740T Как ARM7TDMI, кэш MPU
ARMv5TEJ ARM7EJ-S 5-ступенчатый конвейер, Thumb, Jazelle DBX, усовершенствованные команды DSP none
StrongARM ARMv4 SA-110 16 KB/16 KB, MMU 203 MHz
1.0 DMIPS/MHz
Apple Newton 2x00 series, Acorn Risc PC, Rebel/Corel Netwinder, Chalice CATS
SA-1100 16 KB/8 KB, MMU 203 MHz Psion netBook
SA-1110 Как SA-110, интегрированная SoC 16 KB/8 KB, MMU 206 MHz LART (computer), Intel Assabet, Ipaq H36x0, Balloon2, Zaurus SL-5x00, HP Jornada 7xx, Jornada 560 series, Palm Zire 31
ARM8 ARMv4 ARM810 5-ступенчатый конвейер, static branch prediction, double-bandwidth memory 8 KB unified, MMU 84 MIPS @ 72 MHz
1.16 DMIPS/MHz
Acorn Risc PC прототип карты CPU
ARM9TDMI ARMv4T ARM9TDMI 5-ступенчатый конвейер, Thumb none
ARM920T Как ARM9TDMI, кэш 16 KB/16 KB, MMU with FCSE (Fast Context Switch Extension) 200 MIPS @ 180 MHz Armadillo, Atmel AT91SAM9, GP32 , GP2X (first core), Tapwave Zodiac (Motorola i. MX1), Hewlett Packard HP-49/50 Calculators, Sun SPOT, Cirrus Logic EP9302, EP9307, EP9312, EP9315, Samsung S3C2442 (HTC TyTN, FIC Neo FreeRunner ), Samsung S3C2410 (TomTom navigation devices)
ARM922T Как ARM9TDMI, кэш 8 KB/8 KB, MMU NXP Semiconductors LH7A40x
ARM940T Как ARM9TDMI, кэш 4 KB/4 KB, MPU GP2X (второе ядро), Meizu M6 Mini Player
ARM9E ARMv5TE ARM946E-S Thumb, Enhanced DSP instructions, caches variable, tightly coupled memories, MPU Nintendo DS , Nokia N-Gage , Canon PowerShot A470, Canon EOS 5D Mark II , Conexant 802.11 chips, Samsung S5L2010
ARM966E-S Thumb, Enhanced DSP instructions no cache, TCMs STM STR91xF, includes Ethernet
ARM968E-S Как ARM966E-S no cache, TCMs NXP Semiconductors LPC2900
ARMv5TEJ ARM926EJ-S Thumb, Jazelle DBX, Enhanced DSP instructions variable, TCMs, MMU 220 MIPS @ 200 MHz, Mobile phones: Sony Ericsson (K, W series); Siemens and Benq (x65 series and newer); LG Arena, LG Cookie Fresh ; TI OMAP1710... OMAP1612, OMAP-L137, OMAP-L138; Qualcomm MSM6100...MSM6800; Freescale i.MX21, i.MX27, Atmel AT91SAM9, NXP Semiconductors LPC3000 , GPH Wiz, NEC C10046F5-211-PN2-A SoC - undocumented core in the ATi Hollywood graphics chip used in the Wii, Samsung S3C2412 used in Squeezebox Duet"s Controller. Squeezebox Radio; NeoMagic MiMagic Family MM6, MM6+, MM8, MTV; Buffalo TeraStation Live (NAS); Telechips TCC7801, TCC7901;ZiiLABS" ZMS-05 system on a chip; Western Digital MyBook I World Edition
ARMv5TE ARM996HS Clockless processor, как ARM966E-S no caches, TCMs, MPU
ARM10E ARMv5TE ARM1020E 6-ступенчатый конвейер, Thumb, улучшенные DSP-инструкции, (VFP) 32 KB/32 KB, MMU
ARM1022E Как ARM1020E 16 KB/16 KB, MMU
ARMv5TEJ ARM1026EJ-S Thumb, Jazelle DBX, Enhanced DSP instructions, (VFP) variable, MMU or MPU Western Digital MyBook II World Edition;Conexant so4610 and so4615 ADSL SoC
XScale ARMv5TE 80200/IOP310/IOP315 I/O Processor, Thumb, Enhanced DSP instructions
80219 400/600 MHz Thecus N2100
  • Процессор Intel 80219 включает высокоскоростное 32-разрядное ядро XScale с частотой 400 или 600 МГц с 64-разрядным интерфейсом PCI-X
  • Шина PCI/ PCI-X позволяет подключать гигабитные контроллеры Ethernet
IOP321 600 BogoMips @ 600 MHz Iyonix
IOP33x
IOP34x 1-2 core, RAID Acceleration 32K/32K L1, 512K L2, MMU
PXA210/PXA250 Applications processor, 7-ступенчатый конвейер PXA210: 133 and 200 MHz, PXA250: 200, 300, and 400 MHz Zaurus SL-5600, iPAQ H3900, Sony CLIÉ NX60, NX70V, NZ90
PXA255 32KB/32KB, MMU 400 BogoMips @ 400 MHz; 371-533 MIPS @ 400 MHz Gumstix basix & connex, Palm Tungsten E2, Zaurus SL-C860, Mentor Ranger & Stryder, iRex ILiad
PXA263 200, 300 and 400 MHz Sony CLIÉ NX73V, NX80V
PXA26x default 400 MHz, up to 624 MHz Palm Tungsten T3
PXA27x Applications processor 32 KB/32 KB, MMU 800 MIPS @ 624 MHz Gumstix verdex, «Trizeps-Modules» PXA270 COM, HTC Universal, hx4700, Zaurus SL-C1000, 3000, 3100, 3200, Dell Axim x30, x50, and x51 series, Motorola Q, Balloon3, Trolltech Greenphone , Palm TX, Motorola Ezx Platform A728, A780, A910, A1200, E680, E680i, E680g, E690, E895, Rokr E2, Rokr E6, Fujitsu Siemens LOOX N560, Toshiba Portégé G500, Toshiba Portégé G900, Trēo 650-755p, Zipit Z2, HP iPaq 614c Business Navigator
PXA800(E)F
PXA3XX (codenamed «Monahans») У PXA31x имеется аппаратный графический ускоритель 32KB/32KB L1, TCM, MMU 800 MIPS @ 624 MHz Highscreen alex
PXA900 Blackberry 8700, Blackberry Pearl (8100)
IXC1100 Control Plane Processor
IXP2400/IXP2800
IXP2850
IXP2325/IXP2350
IXP42x NSLU2 IXP460/IXP465
ARM11 ARMv6 ARM1136J(F)-S 8-ступенчатый конвейер, SIMD , Thumb, Jazelle DBX, (VFP), улучшенные DSP-инструкции variable, MMU 740 @ 532-665 MHz (i.MX31 SoC), 400-528 MHz TI OMAP2420 (Nokia E90 , Nokia N93 , Nokia N95 , Nokia N82), Zune , BUGbase , Nokia N800 , Nokia N810 , Qualcomm MSM7200 (with integrated ARM926EJ-S Coprocessor@274 MHz, used in Eten Glofiish, HTC TyTN II , HTC Nike), Freescale i.MX31 (used in the original Zune 30gb and Toshiba Gigabeat S), Freescale MXC300-30 (Nokia E63 , Nokia E71 , Nokia E72 , Nokia 5800 , Nokia E51 , Nokia 6700 Classic, Nokia 6120 Classic , Nokia 6210 Navigator, Nokia 6220 Classic, Nokia 6290, Nokia 6710 Navigator, Nokia 6720 Classic, Nokia E75 , Nokia N97 , Nokia N81), Qualcomm MSM7201A as seen in the HTC Dream , HTC Magic , Motorola ZN5, Motorola E8, Motorola VE66, Motorola Z6, HTC Hero , & Samsung SGH-i627 (Propel Pro), Qualcomm MSM7227 used in ZTE Link, HTC Legend , HTC Wildfire S , LG P500, LG GT540,
ARMv6T2 ARM1156T2(F)-S 9-ступенчатый конвейер, SIMD , Thumb-2, (VFP), улучшенные DSP-инструкции variable, MPU
ARMv6KZ ARM1176JZ(F)-S Как ARM1136EJ(F)-S variable, MMU+TrustZone Apple iPhone (original and 3G) , Apple iPod touch (1st and 2nd Generation) , Conexant CX2427X, Motorola RIZR Z8, Motorola RIZR Z10, NVIDIA GoForce 6100 ; Mediatek MT6573 ; Telechips TCC9101, TCC9201, TCC8900, Fujitsu MB86H60, Samsung S3C6410 (e.g. Samsung Moment), S3C6430
ARMv6K ARM11 MPCore Как ARM1136EJ(F)-S, 1-4 core SMP variable, MMU Nvidia APX 2500
Семейство ядер Версия архитектуры Ядро Функции Кэш (I/D)/MMU Типичная MIPS @ MHz Приложения
Cortex ARMv7-A Cortex-A5 VFP, NEON, Jazelle RCT and DBX, Thumb-2, 8-ступенчатый конвейер, In-order, 1-4 core SMP variable (L1), MMU+TrustZone up to 1500 (1.5 DMIPS/MHz) «Sparrow» (ARM code name)
Cortex-A8 VFP, NEON, Jazelle RCT, Thumb-2; 13-ступенчатый конвейер, In-order, 2 декодера variable (L1+L2), MMU+TrustZone up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) TI OMAP3xxx series, SBM7000, Oregon State University OSWALD, Gumstix Overo Earth, Pandora, Apple iPhone 3GS , Apple iPod touch (3rd Generation) , Apple iPad (Apple A4 processor), Apple iPhone 4 (Apple A4 processor), Archos 5, Archos 101, FreeScale i.MX51-SOC, BeagleBoard , Motorola Droid, Motorola Droid X, Palm Pre , Samsung Omnia HD , Samsung Wave S8500 , Nexus S , Sony Ericsson Satio, Touch Book , Nokia N900 , Meizu M9 , ZiiLABS ZMS-08 system on a chip, Boxchip A13
Cortex-A9 Application profile, (VFP), (NEON), Jazelle RCT and DBX, Thumb-2, Out-of-order speculative issue superscalar (2 декодера); 9-12 стадий конвейера MMU+TrustZone 2.5 DMIPS/MHz Apple iPhone 4S , Apple iPad 2 (Apple A5), MediaTek MT6575/6515M
Cortex-A9 MPCore Как Cortex-A9, 1-4 core SMP MMU+TrustZone 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC 40G (quad core?) (2.5 DMIPS/MHz per core) PlayStation® Vita , TI OMAP4430/4440, ST-Ericsson U8500, Nvidia Tegra2 , Samsung Exynos 4210, MediaTek MT6577/6517
Cortex-A15 MPCore 1-32 core SMP; Out-of-order superscalar (3 декодера); 15+ ступеней конвейера ; VFPv4, NEON MMU, LPAE 3.5 DMIPS/MHz/Core; 1.0GHz - 2.5GHz (@ 28nm )
Cortex-A7 MPCore FPU,NEON; In-order (1 декодер); 8 стадий конвейера. MMU, LPAE 1.9 DMIPS/MHz/CPU; 0.8-1.5 GHz (@28nm) (Broadcom, Freescale, HiSilicon, LG, Samsung, STEricsson, TexasInstruments, MediaTek)
ARMv7-R Cortex-R4(F) Embedded profile, Thumb-2, (FPU) variable cache, MPU optional 600 DMIPS @ 475 MHz Broadcom is a user, TI TMS570
ARMv7-ME Cortex-M4 (codenamed «Merlin») Microcontroller profile, both Thumb and Thumb-2, FPU. Hardware MAC, SIMD and divide instructions MPU optional 1.25 DMIPS/MHz NXP Semiconductors
ARMv7-M Cortex-M3 Microcontroller profile, Thumb-2 only. Hardware divide instruction no cache, MPU optional 125 DMIPS @ 100 MHz Stellaris , STM STM32 , NXP LPC1700 , Toshiba TMPM330FDFG , Ember"s EM3xx Series, Atmel AT91SAM3, Europe Technologies EasyBCU , Energy Micro"s EFM32, Actel "s SmartFusion , Миландр 1986ВЕ91Т
ARMv6-M Cortex-M0 (codenamed «Swift») Microcontroller profile, Thumb-2 subset (16-bit Thumb instructions & BL, MRS, MSR, ISB, DSB, and DMB) No cache 0.9 DMIPS/MHz NXP Semiconductors NXP LPC1100 , Triad Semiconductor , Melfas , Chungbuk Technopark , Nuvoton , austriamicrosystems , Миландр К1986ВЕ2Т
Cortex-M1 FPGA targeted, Microcontroller profile, Thumb-2 subset (16-bit Thumb instructions & BL, MRS, MSR, ISB, DSB, and DMB) None, tightly coupled memory optional Up to 136 DMIPS @ 170 MHz (0.8 DMIPS/MHz, MHz achievable FPGA-dependent) Actel ProASIC3, ProASIC3L, IGLOO and Fusion PSC devices , Altera Cyclone III , other FPGA products are also supported e.g. Synplicity
Семейство ядер Версия архитектуры Ядро Функции Кэш (I/D)/MMU Типичная MIPS @ MHz Приложения

Архитектура

Уже давно существует справочное руководство по архитектуре ARM, которое разграничивает все типы интерфейсов, которые поддерживает ARM, так как детали реализации каждого типа процессора могут отличаться. Архитектура развивалась с течением времени, и начиная с ARMv7 были определены 3 профиля: ‘A’(application) - приложения, ‘R’(real time) - в реальном времени,’M’(microcontroller) - микроконтроллер.

Профили могут поддерживать меньшее количество команд (команды определенного типа).

Режимы

Процессор может находиться в одном из следующих операционных режимов:

  • User mode - обычный режим выполнения программ. В этом режиме выполняется большинство программ.
  • Fast Interrupt (FIQ) - режим быстрого прерывания (меньшее время срабатывания)
  • Interrupt (IRQ) - основной режим прерывания.
  • System mode - защищённый режим для использования операционной системой.
  • Abort mode - режим, в который процессор переходит при возникновении ошибки доступа к памяти (доступ к данным или к инструкции на этапе prefetch конвейера).
  • Supervisor mode - привилегированный пользовательский режим.
  • Undefined mode - режим, в который процессор входит при попытке выполнить неизвестную ему инструкцию.

Переключение режима процессора происходит при возникновении соответствующего исключения, или же модификацией регистра статуса.

Набор команд

Чтобы сохранить дизайн чистым, простым и быстрым, оригинальное изготовление ARM было исполнено без микрокода, как и более простой 8-разрядный процессор 6502, используемый в предыдущих микрокомпьютерах от Acorn Computers .

Набор команд ARM

Режим, в котором исполняется 32-битный набор команд.

Набор команд Thumb

Для улучшения плотности кода процессоры, начиная с ARM7TDMI, снабжены режимом «thumb». В этом режиме процессор выполняет альтернативный набор 16-битных команд. Большинство из этих 16-разрядных команд переводятся в нормальные команды ARM. Уменьшение длины команды достигается за счет сокрытия некоторых операндов и ограничения возможностей адресации по сравнению с режимом полного набора команд ARM.

В режиме Thumb меньшие коды операций обладают меньшей функциональностью. Например, только ветвления могут быть условными, и многие коды операций имеют ограничение на доступ только к половине главных регистров процессора. Более короткие коды операций в целом дают большую плотность кода, хотя некоторые операции требуют дополнительных команд. В ситуациях, когда порт памяти или ширина шины ограничены 16 битами, более короткие коды операций режима Thumb становятся гораздо производительнее по сравнению с обычным 32-битным ARM кодом, так как меньший программный код придется загружать в процессор при ограниченной пропускной способности памяти.

Аппаратные средства типа Game Boy Advance, как правило, имеют небольшой объем оперативной памяти доступной с полным 32-битным информационным каналом. Но большинство операций выполняется через 16-битный или более узкий информационный канал. В этом случае имеет смысл использовать тумбовый код и вручную оптимизировать некоторые тяжелые участки кода, используя переключение в режим полных 32-битных инструкций ARM.

Первым процессором с декодером тумбовых команд был ARM7TDMI. Все процессоры семейства ARM9, а также XScale, имели встроенный декодер тумбовых команд.

Набор команд Thumb-2

Thumb-2 - технология, стартовавшая с ARM1156 core, анонсированного в 2003 году. Он расширяет ограниченный 16-битный набор команд Thumb дополнительными 32-битными командами, чтобы задать набору команд дополнительную ширину. Цель Thumb-2 - достичь плотности кода как у Thumb, и производительности как у набора команд ARM на 32 битах. Можно сказать, что в ARMv7 эта цель была достигнута.

Thumb-2 расширяет как команды ARM, так и команды Thumb еще большим количеством команд, включая управление битовым полем, табличное ветвление, условное исполнение. Новый язык «Unified Assembly Language» (UAL) поддерживает создание команд как для ARM, так и для Thumb из одного и того же исходного кода. Версии Thumb на ARMv7 выглядят как код ARM. Это требует осторожности и использования новой команды if-then, которая поддерживает исполнение до 4 последовательных команд испытываемого состояния. Во время компиляции в ARM код она игнорируется, но во время компиляции в код Thumb-2 генерирует команды. Например:

; if (r0 == r1) CMP r0, r1 ITE EQ ; ARM: no code ... Thumb: IT instruction ; then r0 = r2; MOVEQ r0, r2 ; ARM: conditional; Thumb: condition via ITE "T" (then) ; else r0 = r3; MOVNE r0, r3 ; ARM: conditional; Thumb: condition via ITE "E" (else) ; recall that the Thumb MOV instruction has no bits to encode "EQ" or "NE"

Все чипы ARMv7 поддерживают набор команд Thumb-2, а некоторые чипы, вроде Cortex-m3, поддерживают только Thumb-2. Остальные чипы Cortex и ARM11 поддерживают наборы команд как Thumb-2, так и ARM.

Набор команд Jazelle

Расширения безопасности

Расширения безопасности, позиционируемые как TrustZone Technology, находятся в ARMv6KZ и других, более поздних, профилированных на приложениях архитектурах. Оно обеспечивает низкозатратную альтернативу добавлению специального ядра безопасности, обеспечивая 2 виртуальных процессора, поддерживаемых аппаратным контролем доступа. Это позволяет ядру приложения переключаться между двумя состояниями, называемыми «миры» (чтобы избежать путаницы с названиями возможных доменов), чтобы не допустить утечку информации из более важного мира в менее важный. Этот переключатель миров обычно ортогонален всем другим возможностям процессора. Таким образом, каждый мир может работать независимо от других миров, используя одно и то же ядро. Память и периферия соответственно изготавливаются с учетом особенностей мира ядра, и могут использовать это, чтобы получить контроль доступа к секретам и кодам ядра. Типичные приложения TrustZone Technology должны запускать полноценную операционную систему в менее важном мире, и компактный, специализированный на безопасности, код в более важном мире, позволяя Digital Rights Management’у намного точнее контролировать использование медиа на устройствах на базе ARM, и предотвращая несанкционированный доступ к устройству.

На практике же, так как конкретные детали реализации TrustZone остаются собственностью компании и не разглашаются, остается неясным, какой уровень безопасности гарантируется для данной модели угрозы.

Отладка

Все современные процессоры ARM включают аппаратные средства отладки, так как без них отладчики ПО не смогли бы выполнить самые базовые операции типа остановки, отступа, установка контрольных точек после перезагрузки.

Архитектура ARMv7 определяет базовые средства отладки на архитектурном уровне. К ним относятся точки останова, точки просмотра и выполнение команд в режиме отладки. Такие средства были также доступны с модулем отладки EmbeddedICE. Поддерживаются оба режима - остановки и обзора. Реальный транспортный механизм, который используется для доступа к средствам отладки, не специфицирован архитектурно, но реализация, как правило, включает поддержку JTAG .

Существует отдельная архитектура отладки «с обзором ядра», которая не требуется архитектурно процессорами ARMv7.

Регистры

ARM предоставляет 31 регистр общего назначения разрядностью 32 бит. В зависимости от режима и состояния процессора пользователь имеет доступ только к строго определённому набору регистров. В ARM state разработчику постоянно доступны 17 регистров:

  • 13 регистров общего назначения (r0..r12).
  • Stack Pointer (r13) - содержит указатель стека выполняемой программы.
  • Link register (r14) - содержит адрес возврата в инструкциях ветвления.
  • Program Counter (r15) - биты содержат адрес выполняемой инструкции.
  • Current Program Status Register (CPSR) - содержит флаги, описывающие текущее состояние процессора. Модифицируется при выполнении многих инструкций: логических, арифметических, и др.

Во всех режимах, кроме User mode и System mode, доступен также Saved Program Status Register (SPSR). После возникновения исключения регистр CPSR сохраняется в SPSR. Тем самым фиксируется состояние процессора (режим, состояние; флаги арифметических, логических операций, разрешения прерываний) на момент непосредственно перед прерыванием.

usr sys svc abt und irq fiq
R0
R1
R2
R3
R4
R5
R6
R7
R8 R8_fiq
R9 R9_fiq
R10 R10_fiq
R11 R11_fiq
R12 R12_fiq
R13 R13_svc R13_abt R13_und R13_irq R13_fiq
R14 R14_svc R14_abt R14_und R14_irq R14_fiq
R15
CPSR
SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

Работа с памятью

Поддерживаемые системы ввода-вывода

В большинстве существующих моделей микропроцессоров реализована шина PCI и возможность работы с внешней динамической оперативной памятью (DRAM). В процессорах, предназначенных для потребительских устройств, также обычно интегрируются: контроллеры шин USB , IIC , AC’97-совместимое звуковое устройство, устройство для работы с флэш-носителями стандарта SD и MMC, контроллер последовательного порта.

Все процессоры имеют линии ввода-вывода общего назначения (GPIO). В потребительских устройствах к ним могут быть подключены кнопки «быстрого запуска», сигнальные светодиоды, колесо прокрутки (JogDial), клавиатура.

Процесс запуска ОС на ARM-машинах

Поддержка Unix-подобными системами

Архитектура ARM поддерживается Unix и Unix-подобными ОС GNU/Linux , BSD , QNX , Plan 9 , Inferno , Solaris , Mac OS X , iOS , WebOS и Android .

Linux

Следующие дистрибутивы поддерживают процессоры ARM:

BSD

Следующие производные от BSD поддерживают процессоры ARM:

Solaris

Поддержка других операционных систем

Операционные системы, которые работают на ARM: ReactOS , FreeRTOS , Nucleus , Symbian OS , Windows CE , RISC OS , Windows RT .

ARM лицензиаты и приблизительная стоимость лицензии

ARM не производит и не продает процессоры, сделанные по своим разработкам, но зато дает лицензии на процессоры заинтересованным партнерам. ARM предлагает широкий выбор условий лицензирования, различающихся по стоимости и деталям. Для всех владельцев лицензии ARM поставляет описание аппаратной части ядра, а также полный набор средств разработки программного обеспечения (компилятор, отладчик), а также право продавать произведенные процессоры ARM. Некоторые клиенты занимаются производством процессоров для сторонних компаний.

Годовой отчет ARM за 2006 год сообщает что в результате лицензирования 2,5 миллиардов единиц (процессоров) был выручен 161 миллион долларов. Это эквивалентно 0.067 доллара за единицу. Однако это очень усредненный показатель - ведь сюда входят и лицензии на очень дорогие новейшие процессоры, и старые дешевые процессоры.

Примечания

  1. "ARMed for the living room" .
  2. "An interview with Steve Furber"
  3. samsung Nexus 10 - Geekbench Browser
  4. MacBook Air - Geekbench Browser
  5. Apache Benchmarks for Calxeda’s 5-Watt Web Server – ARM Servers, Now!
  6. http://www.apm.com/global/x-gene/docs/2012_03_OPP%20Cloudy%20with%20a%20Chance%20of%20ARM.pdf
  7. «ARM810 - Dancing to the Beat of a Different Drum» ARM Holdings presentation at Hot Chips 1996-08-07.
  8. Register 13, FCSE PID register ARM920T Technical Reference Manual
  9. Neo1973: GTA01Bv4 versus GTA02 comparison . Архивировано из первоисточника 13 марта 2012. Проверено 15 ноября 2007.
  10. S3C2410 . Архивировано из первоисточника 13 марта 2012. Проверено 13 января 2010.
  11. Rockbox Samsung SA58xxx series . Архивировано
  12. Rockbox Meizu M6 Port – Hardware Information . Архивировано из первоисточника 13 марта 2012. Проверено 22 февраля 2008.
  13. Datasheets - Magic Lantern Firmware Wiki
  14. STR9 – STR912 – STR912FW44 microcontroller – documents and files download page . Mcu.st.com.(недоступная ссылка - история ) Проверено 18 апреля 2009.
  15. Starlet .
  16. Benchmarks – Albatross . Albatross-uav.org (18 июня 2005).(недоступная ссылка - история ) Проверено 18 апреля 2009.
  17. ARM1136J(F)-S – ARM Processor . Arm.com. Архивировано
  18. Qualcomm chips kernel ARM - from phones to laptops . xi0.info. Архивировано
  19. Qualcomm MSM7227 RISC Chipset . pdadb.net. Архивировано из первоисточника 13 марта 2012. Проверено 8 мая 2010.
  20. GoForce 6100 . Nvidia.com. Архивировано из первоисточника 13 марта 2012. Проверено 18 апреля 2009.
  21. Mediatek MT6573 . http://www.mediatek.com. ; Архивировано из первоисточника 6 июня 2012. Проверено 18 апреля 2009.
  22. Samsung S3C6410 and S3C6430 Series ARM Proccessors . Samsung. Проверено 8 октября 2009. , and the Qualcomm MSM7627 as seen in the Palm Pixi and Motorola Calgary/Devour
  23. Merrit, Rick "ARM stretches out with A5 core, graphics, FPGAs" . EE Times (21 октября 2009). Архивировано из первоисточника 13 марта 2012. Проверено 28 октября 2009.
  24. Clarke, Peter ARM tips plans for Swift and Sparrow processor cores . EE Times (3 февраля 2009). Архивировано из первоисточника 13 марта 2012. Проверено 18 апреля 2009.
  25. Segan, Sascha ARM"s Multicore Chips Aim for Netbooks . PC Magazine (9 апреля 2009). Архивировано из первоисточника 13 марта 2012. Проверено 18 апреля 2009.
  26. http://pc.watch.impress.co.jp/video/pcw/docs/423/409/p1.pdf
  27. Cortex-A15 Processor - ARM
  28. Cortex-A7 Processor - ARM
  29. Benz, Benjamin Cortex Nachwuchs bei ARM . Heise.de (2 февраля 2010). Архивировано из первоисточника 13 марта 2012. Проверено 3 мая 2010.
  30. Clarke, Peter ARM preps tiny core for low-power microcontrollers . EE Times (23 февраля 2009). Архивировано из первоисточника 13 марта 2012. Проверено 30 ноября 2009.
  31. Walko, John NXP first to demo ARM Cortex-M0 silicon . EE Times (23 марта 2009). Архивировано из первоисточника 13 марта 2012. Проверено 29 июня 2009.
  32. ARM Powered VCAs " Triad Semiconductor
  33. Cortex-M0 used in low power touch controller - 10/06/2009 - Electronics Weekly
  34. Chungbuk Technopark Chooses ARM Cortex-M0 Processor
  35. Google Translate
  36. Austriamicrosystems Chooses ARM Cortex-M0 Processor For Mixed Signal Applications
  37. «ARM Extends Cortex Family with First Processor Optimized for FPGA» , ARM press release, March 19, 2007. Retrieved April 11, 2007.

В этом материале пойдет речь о процессорной архитектуре . Полупроводниковые продукты на ее основе можно встретить в смартфонах, роутерах, планшетных ПК и прочих мобильных устройствах, где она до недавних пор занимала ведущие позиции в этом сегменте рынка. Сейчас же ее постепенно вытесняют более новые и свежие процессорные решения.

Краткая справка о компании ARM

История компании ARM началась в 1990 году, когда она была основана Робином Саксби. Основой же для ее создания стала новая микропроцессорная архитектура. Если до этого господствующие позиции на рынке ЦПУ занимала х86 или CISC , то после образования данной компании появилась достойная альтернатива в виде RISC. В первом случае выполнение программного кода сводилось к 4 этапам:

    Получение машинных инструкций.

    Выполнение преобразования микрокода.

    Получение микроинструкций.

    Поэтапное выполнение микроинструкций.

О сновная же идея архитектуры RIS С состояла в том, что обработку программного кода можно свести к 2 этапам:

    Получение RISC- инструкций.

    Обработка RISC- инструкций.

К ак в первом, так и во втором случае есть как плюсы, так и существенные недостатки. х86 успешно завоевала компьютерный рынок, а RISC ( в том числе и , представленная 2011 году) — рынок мобильных устройств.

История появления архитектуры Cortex A7. Ключевые особенности

В качестве основы для «Кортекс А7» выступала «Кортекс А8». Основная идея разработчиков в данном случае сводилась к тому, чтобы увеличить производительность и значительно улучшить энергоэффективность процессорного решения. Именно это в конечном итоге и получилось у инженеров компании ARM . Еще одной важной особенностью в данном случае стало то, что появилась возможность создавать ЦПУ с технологией big.LITTLE. То есть полупроводниковый кристалл мог включать 2 вычислительных модуля. Один из них был нацелен на решение наиболее простых задач с минимальным энергопотреблением и, как правило, в этой роли и выступали ядра «Кортекс А7». Второй же был предназначен для запуска наиболее сложного софта и базировался на вычислительных блоках «Кортекс А15» или «Кортекс А17». Официально «Кортекс А7» была представлена, как было отмечено ранее, в 2011 году. Ну а первый процессор ARM Cortex A7 увидел свет годом позже, то есть в 2012 году.

Технология производства

Изначально полупроводниковые продукты на основе А7 производились по технологическим нормам 65 нм. Сейчас эта технология безнадежно устарела. В дальнейшем были выпущены еще два поколения процессоров А7 по нормам допуска уже 40 нм и 32 нм. Но и они сейчас уже стали неактуальными. Наиболее свежие модели ЦПУ на основе этой архитектуры изготавливаются уже по нормам 28 нм, и именно их пока еще можно встретить в продаже. Дальнейший переход на более новые с новыми нормами допуска и устаревшей архитектурой ожидать вряд ли стоит. Чипы на базе А7 сейчас занимают наиболее бюджетный сегмент рынка мобильных устройств и их постепенно вытесняют уже гаджеты на основе А53, которая практически при той же энергоэффективности параметрах имеет более высокий уровень быстродействия.

Архитектура микропроцессорного ядра

1, 2, 4 или 8 ядер может входить в состав ЦПУ на базе ARM Cortex A7. Характеристики процессоров в последнем случае указывают на то, что в состав чипа входят, по существу, 2 кластера по 4 ядра. 2-3 года процессорные продукты начального уровня основывались на чипах с 1-им или 2-мя вычислительными модулями. Средний уровень занимали 4-ядерные решения. Ну а премиум-сегмент был за 8-ядерными чипами. Каждое микропроцессорное ядро на основе такой архитектуры включало следующие модули:

    Б лок обработки чисел с плавающей запятой (FPU).

    Кеш 1-го уровня.

    Блок NEON для оптимизации работы ЦПУ.

    Вычислительный модуль ARMv7.

Также были следующие общие компоненты для всех ядер в составе ЦПУ:

    Кеш L2.

    Блок управления ядрами CoreSight.

    Контроллер шины управления данными АМВА с разрядностью 128 бит.

Возможные частоты

Максимальное значение тактовой частоты для данной микропроцессорной архитектуры может изменяться от 600 МГц до 3 ГГц. Также необходимо отметить, что этот параметр, который указывает максимальное влияние на производительность вычислительной системы, изменяется. Причем на частоту оказывает влияние сразу три фактора:

    Уровень сложности решаемой задачи.

    Степень оптимизации программного обеспечения под многопоточность.

    Текущее значение температуры полупроводникового кристалла.

    В качестве примера рассмотрим алгоритм работы чипа МТ6582, который базируется на А7 и включает 4 вычислительных блока, частота которых изменяется от 600 МГц до 1,3 ГГц. В режиме простоя у этого процессорного устройства может находиться лишь только один блок вычислений, и он функционирует на минимально возможной частоте в 600 МГц. Аналогичная ситуация будет и в том случае, когда будет запущено простое приложение на мобильном гаджете. Но когда же в списке задач появиться ресурсоемкая игрушка с оптимизацией под многопоточность, то автоматически включатся в работу все 4 блока обработки программного кода на частоте 1,3 ГГц. По мере нагрева ЦПУ наиболее горячие ядра будут понижать значение частоты или даже отключаться. С одной стороны, такой подход обеспечивает энергоэффективнсть, а с другой — приемлемый уровень быстродействия чипа.

    Кеш-память

    Всего лишь 2 уровня кеша предусмотрено в ARM Cortex A7. Характеристики полупроводникового кристалла, в свою очередь, указывают на то, что первый уровень в обязательном порядке разделен на 2 равные половинки. Одна из них должна хранить данные, а другая — инструкции. Суммарный р азмер кеша на 1-ом уровне по спецификациям может быть равен 64 Кб. Как результат, получаем 32 Кб для данных и 32 Кб для кода. Кеш 2-го уровня в этом случае будет завис е ть от конкретной модели ЦПУ. Наименьший объем его может быть равен 0 Мб (то есть отсутствовать), а наибольший — 4 Мб.

    Контроллер оперативной памяти. Его особенности

    Встроенным контроллером оперативной памяти комплектуется любой процессор ARM Cortex A7. Характеристикитехнического плана указывают на то, что он ориентирован на работу в связке с ОЗУ стандарта LPDDR3. Рекомендованные частоты функционирования оперативной памяти в данном случае равны 1066 МГц или 1333 МГц. Максимальный же размер ОЗУ, который можно встретить на практике, для данной модели чипа равен 2 Гб.

    Интегрированная графика

    Как и положено, данные микропроцессорные устройства имеют интегрированную графическую подсистему. Компания-производитель ARM рекомендует использовать в сочетании с этим ЦПУ графическую карту собственной разработки Mali -400MP2 . Но ее производительности чаще всего недостаточно для того, чтобы раскрыть потенциал микропроцессорного устройства. Поэтому разработчики чипов применяют в сочетании с этим чипом более производительные адаптеры, например, Power VR6200.

    Программные особенности

    Три вида операционных систем нацелено на процессоры ARM:

      Android от поискового гиганта Google.

      iOS от APPLE.

      Windows Mobile от «Майкрософт».

    Все остальное системное программное обеспечение пока не получило большого распространения. Наибольшую долю на рынке такого софта, как не сложно догадаться, занимает именно Android. Эта система имеет простой и понятный интерфейс и устройства на ее основе начального уровня являются очень и очень доступными. До версии 4.4 включительно она была 32-битной, а с 5.0 стала поддерживать 64-разрядные вычисления. Эта ОС успешно функционирует на любом семействе ЦПУ архитектуры RISC , в том числе и ARM Cortex A7. Инженерное меню — это еще одна важная особенность данного системного софта. С ее помощью можно существенно перенастроить возможности ОС. Доступ же к этому меню можно получить с помощью кода, который для каждой модели ЦПУ индивидуален.

    Еще она важная особенность этой ОС — установка всех возможных обновлений автоматически. Поэтому даже новые возможности могут появиться на чипах семейства ARM Cortex A7. Прошивка их может добавить. Вторая система нацелена на мобильные гаджеты компании APPLE. Такие устройства в основном занимают премиум — сегмент и имеют соответствующие уровни быстродействия и стоимость. Последняя ОС в лице Windows Mobile пока не получила большого распространения. Устройства на ее основе есть в любом сегменте мобильны гаджетов, но вот малое количество прикладного софта в данном случае является сдерживающим фактором для ее распространения.

    Модели процессоров

    Наиболее доступными и наименее производительными в этом случае являются 1-ядерные чипы. Наибольшее распространение среди них получил МТ6571 от компании МедиаТек. На ступеньку выше находятся двухъядерные ЦПУ ARM Cortex A7 Dual Core. В качестве примера можно привести МТ6572 от все того же самого производителя. Еще больший уровень быстродействия обеспечивали Quad Core ARM Cortex A7. Наиболее популярным чипом из этого семейства является МТ6582, который сейчас даже можно встретить в мобильных гаджетах начального уровня. Ну а наибольший уровень быстродействия обеспечивали 8-ядерные центральные процессоры, к которым принадлежал МТ6595.

    Дальнейшие перспективы развития

    Пока еще можно встретить на прилавках магазинов мобильные устройства в основе которых лежит полупроводниковое процессорное устройство на базе 4X ARM Cortex A7. Это и МТ6580, МТ6582 и «Снапдрагон 200». Все эти чипы включают 4 вычислительных блока и имеют отменный уровень энергоэффективности. Также стоимость в этом случае очень и очень скромная. Но все же лучшие времена это микропроцессорной архитектуры уже позади. Пик продаж продукции на ее основе припал на 2013-2014 года, когда на рынке мобильных гаджетов у нее практически не было альтернативы. Причем в этом случае речь идет как о бюджетных устройствах с 1 или 2 вычислительными модулями, так и с флагманскими гаджетами с 8-ядерным ЦПУ. На текущий момент ее постепенно с рынка вытесняет «Кортекс А53», которая по существу является модифицированной 64-битной версией А7. При этом основные преимущества своей предшественницы она сохранила целиком и полностью, и будущее уж точно за ней.

    Мнение экспертов и пользователей. Реальные отзывы о чипах на базе данной архитектуры. Сильные и слабые стороны

    Безусловно, знаковым событием для мира мобильных устройств стало появление архитектуры микропроцессорных устройств ARM Cortex A7. Наилучшим доказательством этого стало то, что устройства на ее базе уже успешно продаются более 5 лет. Конечно, сейчас уже возможностей ЦПУ на основе А7 уже недостаточно даже для решения задач среднего уровня, но вот наиболее простой программный код на таких чипах и по сей день успешно функционирует. В перечень такого софта входит воспроизведение видео, прослушивание аудиозаписей, чтение книг, веб-серфинг и даже наиболее простые игрушки в этом случае запустятся без особых проблем. Именно на этом и акцентируют внимание на ведущих тематических порталах, посвященных мобильным гаджетам и девайсам как ведущие специалисты такого плана, так и обычные пользователи. Ключевой минус А7 — это отсутствие поддержки 64-битных вычислений. Ну а к основным плюсам ее можно отнести идеальное сочетание энергоэффективности и производительности.

    Итоги

    Безусловно, Cortex A7 — это целая эпоха в мире мобильных устройств. Именно с ее появлением мобильные устройства стали доступными и достаточно производительными. И один тот факт, что она уже более 5 лет успешно продается, лишнее тому подтверждение. Но если вначале гаджеты на ее базе занимали средний и премиум сегменты рынка, то сейчас за ними остался лишь бюджетный класс. Эта архитектура устарела и постепенно уходит в прошлое.