Принцип работы усилителя на биполярных транзисторах. Усилитель на транзисторах: виды, схемы, простые и сложные

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от Uб на базе.

В качестве опыта для начинающего радиолюбителя соберем самый простой усилитель транзистор, в соответствии с предлагаемой схемой и рисунком.

К коллектору VT1 подсоединим высокоомный телефон BF2 , между базой и минусом блока питания подключим сопротивление , и развязывающую емкость конденсатора C св .

Конечно, сильного усиления звукового сигнала от такой схемы мы не получим, но услышать звук в телефоне BF1 все таки можно, т.к мы собрали ваш первый усилительный каскад.

Усилительным каскадом называют схему транзистора с резисторами, конденсаторами и другими радиокомпонентами, обеспечивающими последнему условия работы как транзистор усилитель. Кроме того сразу скажем о том, что усилительные каскады можно соединять между собой и получать многокаскадные усилительные устройства.

При подключение источника питания к схеме, на базу транзистора через сопротивление Rб идет небольшое отрицательное напряжение порядка 0,1 – 0,2В, называемое напряжением смещения. Оно немного приоткрывает транзистор, т.е снижает высоту потенциальных барьеров, и через переходы полупроводникового прибора начинает течь небольшой ток, который держит усилитель в дежурном режиме, из которого он способен мгновенно выйти, как только на входе появится входной сигнал.

Без присутствия напряжения смещения эмиттерный переход будет заперт и, как диод, будет не пропускать положительные полупериоды входного напряжения, а усиленный сигнал будет искажаться.

Если на вход усилителя подсоединить еще один телефон и применить его в роли микрофона, то он будет преобразовывать возникающие на его мембране звуковые колебания в переменное напряжение звукового диапазона, которое через емкость Ссв будет следовать на базу транзистора.

Конденсатор Ссв является связующим компонентом между телефоном и базой. Он отлично пропускает напряжение ЗЧ, но создает серьезную преграду постоянному току идущему из базовой цепи к телефону. Кроме того телефон обладает внутренним сопротивлением порядка 1600 Ом, поэтому без этой емкости конденсатора база через внутреннее сопротивление соединялась бы с эмиттером и никакого усиления не было бы.

Теперь, если начать говорить в телефон-микрофон, то эмиттерной цепи появятся колебания тока телефона Iтлф, которые и будут управлять большим током возникающем в коллекторе и эти усиленные колебания, преобразованные вторым телефоном в обычный звук, мы и будем слышать.

Процесс усиления сигнала можно представить так. В момент отсутствия напряжения входного сигнала Uвх, в цепях базы и коллектора протекают незначительные токи (прямые участки диаграммы а, б, в), заданные приложенным напряжением блока питания, напряжением смещения и усилительными характеристиками биполярного транзистора.

Как только на базу поступает входной сигнал (правая часть диаграммы а), то в зависимости от него начнут изменяться и токи в цепях трехвыводного полупроводникового прибора (правая часть диаграммы б, в).

В отрицательной полуволне сигнала, когда Uвх и напряжение БП суммируются на базе - токи протекающие через транзистор возрастают.

При плюсовой волне минусовое напряжение на базе снижается, как и протекающие токи. Вот таким образом и работает транзистор усилитель.

Если на выход подключить не телефон а резистор, то появляющееся на нем напряжение переменной составляющей усиленного сигнала можно подвести ко входной цепи второго каскада для дополнительного усиления. Один прибор способен усиливать сигнал в 30 - 50 раз.

По этому же принципу работают VT противоположной структуры n-p-n. Но для них полярность включения блока питания необходимо поменять на противоположную.

Для работы транзистора усилителя на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно должно поступать постоянное напряжение смещения, открывающее полупроводниковый прибор.

Для германиевых VT открывающее напряжение должно быть не более 0,2 вольта, а для кремниевых 0,7 вольта. Напряжение смещения на базу не подают только тогда, когда эмиттерный переход транзистора применяют для детектирования сигнала, но об этом мы поговорим позднее.

Появилось желание собрать более мощный усилитель «А» класса. Прочитав достаточное количество соответствующей литературы и выбрал из предлагавшегося самую последнюю версию. Это был усилитель мощностью 30 Вт соответствующий по своим параметрам усилителям высокого класса.

В имеющеюся трассировку оригинальных печатных плат никаких изменений вносить не предполагал, однако, ввиду отсутствия первоначальных силовых транзисторов, был выбран более надежный выходной каскад с использованием транзисторов 2SA1943 и 2SC5200. Применение этих транзисторов в итоге позволило обеспечить большую выходную мощность усилителя. Принципиальная схема моей версии усилителя далее.

Это изображение плат собранных по этой схеме с транзисторами Toshiba 2SA1943 и 2SC5200.

Если присмотреться, то сможете увидеть на печатной плате вместе со всеми компонентами стоят резисторы смещения, они мощность 1 Вт углеродного типа. Оказалось, что они более термостабильны. При работе любого усилителя большой мощности выделяется огромное количества тепла, поэтому соблюдение постоянства номинала электронного компонента при его нагреве является важным условием качественной работы устройства.

Собранная версия усилителя работает при токе около 1,6 А и напряжении 35 В. В результате чего 60 Вт мощности непрерывного рассеивается на транзисторах в выходном каскаде. Должен заметить, что это только треть мощности, которую они способны выдержать. Постарайтесь представить, сколько тепла выделяется на радиаторах при их нагреве до 40 градусов.

Корпус усилителя сделан своими руками из алюминия. Верхняя плита и монтажная плита толщиной 3 мм. Радиатор состоит из двух частей, его габаритные размеры составляют 420 x 180 x 35 мм. Крепеж - винты, в основном с потайной головкой из нержавеющей стали и резьбой М5 или М3. Количество конденсаторов было увеличено до шести, их общая ёмкость 220000 мкФ. Для питания был использован тороидальный трансформатор мощностью 500 Вт.

Блок питания усилителя

Хорошо видно устройство усилителя, которое имеет медные шины соответствующего дизайна. Добавлен небольшой тороид, для регулируемой подачи под управлением схемы защиты от постоянного тока. Так же имеется ВЧ фильтр в цепи питания. При всей своей простоте, надо сказать обманчивой простоте, топологии платы этого усилителя и звук им производится как бы без всякого усилия, подразумевающего в свою очередь возможность его бесконечного усиления.

Осциллограммы работы усилителя

Спад 3 дБ на 208 кГц

Синусоида 10 Гц и 100 Гц

Синусоида 1 кГц и 10 кГц

Сигналы 100 кГц и 1 МГц

Меандр 10 Гц и 100 Гц

Меандр 1 кГц и 10 кГц

Полная мощность 60 Вт отсечение симметрии на частоте 1 кГц

Таким образом становится понятно, что простая и качественная конструкция УМЗЧ не обязательно делается с применением интегральных микросхем - всего 8 транзисторов позволяют добиться приличного звучания со схемой, собрать которую можно за пол дня.

Страница 1 из 2

Принцип работы транзисторного усилителя основан на том, что с помощью небольших изменений напряжения или тока во входной цепи транзистора можно получить значительно большие изменения напряжения или тока в его выходной цепи.
Изменение напряжения эмиттерного перехода вызывает изменение токов транзистора. Это свойство транзистора используется для усиления электрических сигналов.
Для преобразования изменений коллекторного тока, возникающих под действием входных сигналов, в изменяющееся напряжение в коллекторную цепь транзистора включают нагрузку. Нагрузкой чаще всего служит резистор или колебательный контур. Кроме того, при усилении переменных электрических сигналов между базой и эмиттером транзистора нужно включить источник постоянного напряжения, называемый обычно источником смещения, с помощью которого устанавливается режим работы транзистора. Этот режим характеризуется протеканием через его электроды при отсутствии входного электрического сигнала некоторых постоянных токов эмиттера, коллектора и базы. С применением дополнительного источника увеличиваются размеры всего устройства, его масса, усложняется конструкция, да и стоят два источника дороже, чем один. В то же время можно обойтись одним источником, употребляемым для питания коллекторной цепи транзистора. Одна из таких схем усилителя показана на рисунке.

В этой схеме нагрузкой усилителя является резистор R K , а используя резистор R б, задают необходимый ток базы транзистора. Если режим работы транзистора задан (при этом часто говорят, что задана рабочая точка на характеристиках транзистора), становятся известными ток базы и напряжение U БЭ, а сопротивление резистора R б, обеспечивающего этот ток, можно определить по формуле:
R б =(G K -U БЭ)/I Б.
Так как U БЭ обычно составляет не более 0,2...0,3В для германиевых транзисторов и 0,6...0,8 В — для кремниевых, а напряжение G K измеряется единицами или даже десятками вольт, то U БЭ < и можно записать:
R б ≈G K /I Б.
Из выражений следует, что независимо от типа транзистора VT ток его базы будет постоянным: I Б = G K /R б. Поэтому такая схема получила название схемы с общим эмиттером (ОЭ) и фиксированным током базы.
Режим работы транзистора в усилительном каскаде при постоянных токах и напряжениях его электродов называют исходным, или режимом покоя.
Включение нагрузки в коллекторную цепь транзистора приводит к падению напряжения на сопротивлении нагрузки, равному произведению I K R K .
В результате напряжение, действующее между коллектором и эмиттером Uкэ транзистора, оказывается меньше, чем напряжение G K источника питания на величину падения напряжения на сопротивлении нагрузки, т. е.:
U КЭ =G K -I K R K .
Если эту зависимость отобразить графически на семействе статических выходных характеристик транзистора, то она будет иметь вид прямой линии. Для ее построения достаточно определить всего две принадлежащие ей точки (так как через две точки можно провести только одну прямую). Каждая точка должна быть задана двумя координатами: I K и U КЭ.
Задавшись конкретным значением одной из координат, определяют вторую координату, решая уравнение U КЭ =G K -I K R K . Прямая, построенная в соответствии с уравнением на семействе статических выходных характеристик, транзистора, называется нагрузочной прямой.
Нагрузочная прямая, показанная на рисунке (а), построена для случая, когда G K =10В и R К =200 Ом.

1-я точка: =0;U КЭ =G K —0R K =G K =10 В;
2-я точка: I K =30 мА; U КЭ =10—30-10^3-200=10—6=4 В.



Если в исходном режиме (режиме покоя) ток базы равен 2 мА, этот режим будет определяться точкой A, лежащей на нагрузочной прямой в месте пересечения ее со статической выходной характеристикой, полученной при I БО =2 мА. При этом I КО =20 мА; U КЭO =5,8 В. Если перенести точку A на семейство входных характеристик (рис., б), можно найти U БЭО. Оно равно 0,25 В.
При подаче на вход усилителя переменного напряжения с амплитудой 50 мВ (0,05 В) на оси напряжений входных характеристик относительно напряжения U БЭО =0,25 В откладывают по обе стороны отрезки, соответствующие напряжению 0,05 В, и из их концов восстанавливают перпендикуляры к оси U БЭ до пересечения со статической характеристикой, на которой расположена точка А, обозначающая режим покоя усилителя. В точках пересечения перпендикуляров с характеристикой проставляют буквы В и С. Таким образом, при поступлении на вход переменного напряжения режим работы будет уже определяться не точкой А, а ее перемещениями между точками В и С. При этом ток базы изменяется от 1 до 3 мА. Другими словами, переменное напряжение на входе усилителя приводит к появлению переменной составляющей в его входном токе — токе базы. В данном примере амплитуда переменной составляющей тока базы, как видно из рисунка, равна 1 мА.
Точки B и С можно перенести на семейство выходных характеристик. Они будут находиться в местах пересечения нагрузочной характеристики со статическими, полученными при токах базы, равных 1 и 3 мА. Из этого рисунка, видно, что в режиме с нагрузкой появилась переменная составляющая коллекторного напряжения. Иначе, коллекторное напряжение теперь не остается постоянным, а изменяется синхронно
с изменениями входного напряжения. Причем изменение коллекторного напряжения ΔU КЭ =7,5—4,3=3,2В оказывается больше изменения входного напряжения ΔU БЭ =0,3—0,2=0,1В в 32 раза; т. е. получено усиление входного напряжения в 32 раза.
Поскольку напряжение источника питания G K постоянное, изменение коллекторного напряжения равно изменению напряжения на резисторе коллекторной нагрузки, т. е.ΔU КЭ = ΔI К R К. Из этого выражения видно, что чем больше сопротивление резистора R К, тем сильнее изменяется на нем напряжение и тем больше будет усиление. Однако увеличивать сопротивление резистора R K можно лишь до некоторого предела, превышение которого может привести даже к снижению усиления и появлению больших искажений усиливаемого сигнала.
В усилителе, схема которого приведена на верхнем рисунке, режим работы транзистора определяется током базы, который устанавливается резистором R б. Режим работы транзистора можно также установить, подав на его эмиттерный переход напряжение с делителя R1R2.



Ток делителя I Д, протекающий через резисторы R1 и R2, вызывает на сопротивлении резистора R2 падение напряжения, которое подается на эмиттерный переход транзистора и смещает его в прямом направлении. Это напряжение определяется в основном соотношением сопротивлений резисторов R1,R2 и протекающим через них током I Д и почти не зависит от типа транзистора. Поэтому такую схему иногда называют схемой с фиксированным напряжением смещения.

Купив хороший ноутбук или крутой телефон, мы радуемся покупке, восхищаясь множеством функций и скоростью работы устройства. Но стоит подключить гаджет к динамикам, чтобы послушать музыку или посмотреть фильм, мы понимаем, что звук производимый устройством, как говорится «подкачал». Вместо полноценного и чистого звучания, мы слышим невразумительный шёпот с фоновым шумом.

Но не стоит расстраиваться и ругать производителей, проблему со звуком можно решить самостоятельно. Если вы немного разбираетесь в микросхемах и умеете хорошо паять, то вам не составит труда сделать собственный усилитель звука. В нашей статье мы расскажем как сделать усилитель звука для каждого типа устройства.

На первоначальном этапе работы по созданию усилителя, вам необходимо найти инструменты и купить комплектующие детали. Схема усилителя изготавливается на печатной плате при помощи паяльника. Для создания микросхем используйте специальные паяльные станции, которые можно купить в магазине. Использование печатной платы позволяет сделать устройство компактным и удобным в эксплуатации.

Усилитель звуковых частот
Не забывайте об особенностях компактных одноканальных усилителей на основе микросхем серий TDA, основным из которых является выделение большого количества тепла. Поэтому постарайтесь при внутреннем устройстве усилителя, исключить соприкосновение микросхемы с другими деталями. Для дополнительного охлаждения усилителя, рекомендуется использовать радиаторную решётку для отвода тепла. Размер решётки зависит от модели микросхемы и мощности усилителя. Заранее спланируйте место для теплоотвода в корпусе усилителя.
Ещё одной особенностью самостоятельного изготовления усилителя звука, является низкое потребление энергии. Это в свою очередь позволяет использовать усилитель в автомобиле подключив его к аккумулятору или в дороге, используя питание от батареи. Упрощённые модели усилителя, требуют напряжения тока всего лишь в 3 вольта.

Основные элементы усилителя
Если вы начинающий радиолюбитель, то для более удобной работы, рекомендуем вам воспользоваться специальной компьютерной программой - Sprint Layout. С помощью этой программы вы сможете самостоятельно создавать и просматривать схемы на компьютере. Учтите, что создание собственной схемы имеет смысл, только в том случаи если вы имеете достаточный опыт и знания. Если вы неопытный радиолюбитель, то пользуйтесь уже готовыми и проверенными схемами.

Ниже мы приведём схемы и описания разных вариантов усилителя звука:

Усилитель звука для наушников

Усилитель звука для портативных наушников обладает не большой мощностью, но потребляет очень мало энергии. Это немаловажный фактор для мобильных усилителей которые питаются от батареек. Также на устройство можно поместить разъём, для питания от сети через адаптер 3 вольта.

Самодельный усилитель для наушников
Для изготовления усилителя для наушников вам понадобятся:

  • Микросхема TDA2822 или аналог KA2209.
  • Схема сборки усилителя.
  • Конденсаторы 100 мкФ 4 штуки.
  • Гнездо для штекера наушников.
  • Разъём для адаптера.
  • Примерно 30 сантиметров медного провода.
  • Теплоотводящий элемент (для закрытого корпуса).
  • Схема усилителя звука для наушников
    Усилитель изготавливается на печатной плате или навесным монтажом. Не используйте в данном виде усилителя импульсный трансформатор, поскольку он может создавать помехи. После изготовления, данный усилитель способен обеспечить мощный и приятный звук с телефона, плеера иди планшета.
    Ещё с одним вариантом самодельного усилителя для наушников, вы можете ознакомится в видеоролике:

    Усилитель звука для ноутбука

    Усилитель для ноутбука собирается в тех случаях, если мощности встроенных в него динамиков не хватает для нормального прослушивания, или если динамики вышли из строя. Усилитель должен быть рассчитан на внешние динамики до 2 ватт и сопротивление обмоток до 4 Ом.

    Усилитель звука для ноутбука
    Для сборки усилителя вам потребуются:

    • Печатная плата.
    • Микросхема TDA 7231.
    • Блок питания на 9 вольт.
    • Корпус для размещения компонентов.
    • Конденсатор неполярный 0,1 мкФ - 2 штуки.
    • Конденсатор полярный 100 мкФ - 1 штука.
    • Конденсатор полярный 220 мкФ - 1 штука.
    • Конденсатор полярный 470 мкФ - 1 штука.
    • Резистор постоянный 10 Ком - 1 штука.
    • Резистор постоянный 4,7 Ом - 1 штука.
    • Выключатель двухпозиционный - 1 штука.
    • Гнездо для входа на громкоговоритель - 1 штука.

    Схема усилителя звука для ноутбука
    Порядок сборки определяется самостоятельно в зависимости от схемы. Радиатор охлаждения должен быть такого размера, чтобы рабочая температура внутри корпуса усилителя не превышала 50 градусов по Цельсию. Если вы планируете использовать устройство вне помещения, то для него необходимо изготовить корпус с отверстиями для циркуляции воздуха. Для корпуса можно использовать пластиковый контейнер или пластмассовые коробки из под старой радиоаппаратуры.
    Визуальную инструкцию вы можете посмотреть в видеоролике:

    Усилитель звука для автомагнитолы

    Данный усилитель для автомагнитолы собран на микросхеме TDA8569Q, схема не сложная и очень распространённая.

    Усилитель звука для автомагнитолы
    Микросхема имеет следующие заявленные характеристики:

    • Входная мощность 25 ватт на канал в 4 Ом и 40 ватт на канал в 2 Ом.
    • Напряжение питания 6-18 вольт.
    • Диапазон воспроизводимых частот 20-20000 Гц.

    Для использования в автомобиле, к схеме необходимо добавить фильтр от помех, которые создаются генератором и системой зажигания. Микросхема также имеет защиту от короткого замыкания на выходе и перегрева.

    Схема усилителя звука для автомагнитолы
    Сверяясь с представленной схемой произведите закупку необходимых компонентов. Далее нарисуйте печатную плату и просверлите в ней отверстия. После этого протравите плату хлорным железом. В заключении лудим и начинаем припаивать компоненты микросхемы. Учтите что дорожки питания лучше покрыть более толстым слоем припоя, чтобы не было просадок по питанию.
    На микросхему нужно установить радиатор или организовать активное охлаждение с помощью куллера, иначе при повышенной громкости усилитель будет перегреваться.
    После сборки микросхемы, необходимо изготовить фильтр для питания по приведённой ниже схеме:

    Схема фильтра от помех
    Дроссель в фильтре мотается в 5 витков, проводом сечением 1-1,5 мм., на феритовом кольце диаметром 20 мм.
    Также данный фильтр можно использовать если ваша магнитола ловит «наводки».
    Внимание! Будьте внимательны и не перепутайте полярность питания, иначе микросхема сгорает моментально.
    Как сделать усилитель для стерео сигнала, вы также можете узнать из видео:

    Усилитель звука на транзисторах

    В качестве схемы для транзисторного усилителя используйте схему приведённую ниже:

    Схема транзисторного усилителя звука
    Схема хоть и старая но имеет массу поклонников, по следующим причинам:

    • Упрощённый монтаж из-за малого количества элементов.
    • Нет необходимости перебирать транзисторы в комплементарные пары.
    • 10 ватт мощности, с запасом хватает для жилых комнат.
    • Хорошая совместимость с новыми звуковыми картами и проигрывателями.
    • Отличное качество звука.

    Начните сборку усилителя с питания. Разделите два канала для стерео двумя вторичными обмотками идущими от одного трансформатора. На макете сделайте мосты на диодах Шоттки для выпрямителя. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме, мощности 2 Вт будет достаточно.

    Усилитель на транзисторах
    Переходим к плате усилителя. Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям - с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. Затем с помощью R1 и R2 выставляется ток покоя - ставим тестер на измерение постоянного тока и измеряем ток в точке входа плюса питания. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток должен быть 1.2 А при напряжении 27 вольт, что означает 32.4 ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются.
    При регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. Считается что данная схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф. Предохранители нужно ставить как на трансформатор, так и на силовой вход схемы.
    Хорошей идеей будет использование термопасты для максимального контакта между транзистором и радиатором.
    Теперь несколько слов о корпусе. Размер корпуса задаётся радиаторами - NS135-250 по 2500 квадратных сантиметров на каждый транзистор. Сам корпус делается из оргстекла или пластмассы. Собрав усилитель, прежде чем начать наслаждаться музыкой, необходимо для минимизации фона правильно развести землю. Для этого присоедините СЗ к минусу входа-выхода, а остальные минуса выведите на «звезду» возле конденсаторов фильтра.

    Корпус усилителя звука на транзисторах
    Примерная стоимость расходных материалов для транзисторного усилителя звука:

    • Конденсаторы фильтра 4 штуки - 2700 рублей.
    • Трансформатор - 2200 рублей.
    • Радиаторы - 1800 рублей.
    • Выходные транзисторы - 6-8 штук 900 рублей.
    • Мелкие элементы (резисторы, конденсаторы, транзисторы, диоды) около - 2000 рублей.
    • Разъёмы - 600 рублей.
    • Оргстекло - 650 рублей.
    • Краска - 250 рублей.
    • Плата, провода, припой около - 1000 рублей

    В итоге получается сумма - 12100 рублей.
    Также вы можете посмотреть видеоролик по сборке усилителя на германиевых транзисторах:

    Ламповый усилитель звука

    Схема простого лампового усилителя состоит из двух каскадов - предварительный усилитель на 6Н23П и усилитель мощности на 6П14П.
    Схема лампового усилителя
    Как видно из схемы, оба каскада работают в триодном включении, а анодный ток ламп близок предельному. Токи выстраиваются катодными резисторами - 3мА для входной и 50мА для выходной лампы.
    Детали используемые для лампового усилителя должны быть новыми и высокого качества. Допустимое отклонение номиналов резисторов может составлять плюс-минус 20%, а ёмкости всех конденсаторов можно увеличить в 2-3 раза.
    Фильтрующие конденсаторы должны быть рассчитаны на напряжение не меньше 350 вольт. На такое же напряжение должен быть рассчитан и межкаскадный конденсатор. Трансформаторы для усилителя могут быть обычными - ТВ31-9 или более современный аналог - TWSE-6.

    Ламповый усилитель звука
    Регулятор громкости и баланса стерео на усилитель лучше не устанавливать, поскольку данные регулировки можно сделать в самом компьютере или плеере. Входная лампа выбирается из - 6Н1П, 6Н2П, 6Н23П, 6Н3П. В качестве выходного пентода применяют 6П14П, 6П15П, 6П18П или 6П43П (с увеличенным сопротивлением катодного резистора).
    Даже если у вас имеется работающий трансформатор, для первого включения лапового усилителя лучше использовать обычный трансформатор с выпрямителем на 40-60 ватт. Только после успешного испытания и настройки усилителя можно установить импульсный трансформатор.
    Гнёзда для штекеров и кабелей используйте стандартные, для подключения динамиков лучше установить «педальки» на 4 контакта.
    Корпус для лапового усилителя обычно делают из оболочки старой техники или кейсов системных блоков.
    Ещё один вариант лампового усилителя вы можете посмотреть в видеоролике:

    Классификация усилителей звука

    Чтобы вы могли определить к какому классу усилителей звука принадлежит собранное вами устройство, ознакомьтесь с приведённой ниже классификацией УМЗЧ:


      Усилитель класса А
    • Класс А - усилители этого класса работают без отсечки сигнала на линейном участке вольтамперной характеристики усилительных элементов, что обеспечивает минимум нелинейных искажений. Но за это приходится расплачиваться большим размером усилителя и огромной потребляемой мощность. КПД усилителя класса А составляет всего лишь 15-30%. К данному классу относят ламповые и транзисторные усилители.

    • Усилитель класса В
    • Класс В - усилители класса В работают с отсечкой сигнала 90 градусов. Для режима такой работы используется двухтактная схема, в ней каждая часть усиливает свою половину сигнала. Основной минус усилителей класса В, это искажения сигнала по причине ступенчатого перехода одной полуволны к другой. Плюсом данного класса усилителей считают высокий КПД, иногда достигающий 70%. Но не смотря на высокую производительность, современных моделей усилителя класса В, вы не встретите на прилавках.

    • Усилитель класса АВ
    • Класс АВ - это попытка объединения усилителей описанных выше классов, с целью добиться отсутствия искажений сигнала и высокого коэффициента полезного действия.

    • Усилитель класса Н
    • Класс Н - разработан специально для автомобилей, у которых имеется ограничение напряжения, питающего выходные каскады. Причиной создания усилителей класса Н служит то, что реальный звуковой сигнал имеет импульсный характер и его средняя мощность намного ниже пиковой. В основе схемы данного класса усилителей, лежит простая схема для усилителя класса AB, работающая по мостовой схеме. Добавлена лишь специальная схема удвоения напряжения питания. Основной элемент схемы удвоения, это накопительный конденсатор большой емкости, который постоянно заряжается от основного источника питания. На пиках мощности этот конденсатор подключается схемой управления с основным источником питания. Напряжение питания выходного каскада усилителя удваивается, позволяя ему справиться с передачей пиков сигнала. КПД усилителей класса Н достигает 80%, при искажении сигнала всего в 0,1%.

    • Усилитель класса D
    • Класс D - это отдельный класс усилителей получивший название -«цифровые усилители». Цифровое преобразование обеспечивает дополнительные возможности по обработке звука: от регулировки уровня громкости и тембра до реализации цифровых эффектов, таких как реверберация, подавление шума, подавление акустической обратной связи. В отличие от аналоговых усилителей, выходной сигнал усилителей класса D представляет собой импульсы прямоугольной формы. Их амплитуда постоянна, а длительность изменяется в зависимости от амплитуды аналогового сигнала, поступающего на вход усилителя. КПД усилителей этого типа может достигать 90%-95%.

    В заключении хотелось бы сказать, что занятие радиоэлектроникой требуют большого объёма знаний и опыта, которые приобретаются в течении длительного времени. Поэтому, если у вас что-то не получилось, не расстраивайтесь, подкрепляйте свои знания из других источников и пробуйте снова!