Принцип временного разделения каналов. Метод частотного разделения каналов

Тема № 7

Принципы построения многоканальных систем передачи

Тема занятие № 2

Временное разделение каналов

Первый учебный вопрос

Временное разделение каналов

Многоканальные системы передачи с временным разделением ка­налов (ВРК) широко применяются для передачи аналоговой и дис­кретной информации.

Временное разделение каналов возможно лишь в случае импульсной модуляции.

При большой скважности между импульсами одного кана­ла остается большой промежуток времени, в котором можно разместить импульсы других каналов. Все каналы занимают одну и ту же полосу частот, но линия связи используется поочередно для периодической пе­редачи канальных сигналов. Частоту повторения канальных сигналов выбирают согласно теореме Котельникова. Для синхронизации работы переключателей передатчика и приемника передают вспомогательные синхронизирующие импульсы, для которых отводят один или несколь­ко каналов. При ВРК используют различные виды импульсной моду­ляции в каналах: ФИМ, ШИМ, ИКМ, ДМ и др. Для радиолиний при­меняют двойную модуляцию: ИКМ-ОФМн, ФИМ-ЧМ и др.

На рис.7.2.1 приведена структурная схема многоканальной системы (МКС) с временнвым разделением каналов (ВРК), где обо­значено:

М- модулятор, ПБ - промежуточный блок, ГИ- генератор импульсов, СТ - счетчик, ДС - декодер, ГН - генератор несущей, ПРД - передатчик, ЛС - линия связи, ИП - источник помех, ПРМ - приемник, Д - детектор, ВСИ - выделитель синхроимпульса, И - схема совпадения.

Рис.7.2.1. Структурная схема многоканальной системы с временным разделением канала

Блоки ТИ, СТ, ДС образуют распределительную ли­нию РЛ, которая обведена штриховой пунктирной линией.

Первый импульс ГИ появляется на первом отводе ДС, второй - на втором и т. д., N-й импульс - на N-м (последнем). Следующий импульс N + 1 появится вновь на первом входе ДС и далее процесс повторяется. На отводах ДС образуются периодические последовательности импуль­сов, сдвинутые во времени друг относительно друга. Первая последовательность импульсов поступает на управляющий вход формиро­вателя синхроимпульсов ФСИ, остальные - на входы канальных модуляторов М (первая ступень модуляции). На их вторые входы по­ступают передаваемые информационные сигналы, которыми модули­руются высокочастотные импульсы с ДС по одному из их параметров (амплитуде, длительности и т. д.).

Принцип функционирования представленной схемы поясняется временными диаграммами (рис.7.2.2 а-г) для случая АИМ в канальных модуляторах Мi.

Рис.7.2.2. Временная диаграмма работы схемы МКС с ВРК

Последние представ­ляют собой дискретизаторы, выполненные на ключевых схемах или мультиплексорах. Рассмотрим сначала модуляторы АИМ на ключах, число которых N = 4. Причем первый канал отведен под синхроим­пульс, а три остальных - под информационные сигналы. Синхросиг­нал СС отличается от информационных импульсов каким-либо пара­метром, например длительностью или амплитудой. Первый импульс с ГИ (рис.7.2.2 д) открывает первый ключ, формируя СС на его вы­ходе, второй импульс - второй ключ и пропускает на свой выход со­ответствующую часть сигнала первого канала, третий импульс - часть сигнала второго канала и так до четвертого импульса. Пятый импульс вновь формирует СС и т. д. Поскольку выходы всех ключей соединены между собой параллельно, то суммарный (групповой) сигнал состоит из неперекрывающихся во времени импульсов. В этом случае говорят, что каналы уплотнены во времени. Далее групповой сигнал (рис.7.2.2 д) после усиления в блоке ПБ поступает в качестве модулирующего на вторую ступень модуляции М, после чего он усиливается в блоке ПРД и по линии связи поступает на приемную сторону.

На практике чаще всего используется не АИМ, а ИКМ, в состав которой входит и АИМ. Остальные же опе­рации ИКМ (квантование по уровню, кодирование) должны осуще­ствляться в блоке ПБ.

На приемной стороне сигнал с линии поступает в ПРМ, где он фильтруется, усиливается, а за­тем детектируется в блоке Д (см. рис. 12.5) для получения группо­вого сигнала (см. рис.7.2.2 е). Если в каналах использована АИМ, то групповой сигнал после усиления в блоке ПБ поступает сразу на одни входы всех схем сов­падения И, на другие входы кото­рых подаются импульсы синхро­сигнала СС (рис.7.2.2 ж) с выхода распределителя РЛ. Работа по­следнего такая же, как и на пере­дающей стороне, за исключением того, что ГИ синхронизирован им­пульсами СИ, выделенными из группового сигнала. Каждая схе­ма совпадения И открывается на время, определяемое длительно­стью импульса распределителя, и пропускает на свой выход сигнал своего канала. В схемах И и осу­ществляется ВРК (рис.7.2.2 з-к). На выходе каждой такой схемы имеется ФНЧ, который выполняет функции второй ступени демоду­ляции, преобразуя сигнал АИМ в передаваемый аналоговый сигнал. Если же канальные сигналы циф­ровые (с ИКМ), то в блоке ПБ приемника должно иметь место деко­дирование, преобразующее ИКМ в АИМ. Далее групповой сигнал с АИМ разделяется описанным выше способом.

Схемы И приемника выполняют роль временных параметрических фильтров или ключей.

При ВРК тоже имеют место взаимные помехи, которые обуслов­лены двумя причинами: линейными искажениями и несовершенст­вом синхронизации. Действительно, при ограничении спектра импуль­сов (линейные искажения) их фронты "заваливаются", и импульсы одного канала накладываются на импульсы другого, от чего и обра­зуются переходные помехи. Для снижения их уровня вводят защитные интервалы, что соответствует некоторому расширению спектра сиг­нала.

Эффективность использования частотного спектра при ВРК практически (не теоретически) хуже, чем при ЧРК: с увеличением числа каналов растет полоса частот. Зато при ВРК отсутствуют помехи нелинейного происхождения и аппаратура значительно проще, а пик-фактор сигнала меньше, чем при ЧРК. Существенным преимущест­вом ВРК является высокая помехоустойчивость импульсных методов передачи (ИКМ, ФИМ и др.).

При ВРК просто выделить каналы на приемной стороне без какого-либо ограничения их качества. Аппара­тура имеет малые размеры, массу, что обусловлено широким исполь­зованием интегральных микросхем, элементов цифровой вычисли­тельной техники, микропроцессоров.

Основной недостаток ВРК - необходимость обеспечения синхронизации передающей и приемной сторон системы передачи.

Отметим, что при ВРК канальные сигналы ортогональны между собой, поскольку они не перекрываются во времени. Это значит, что при их передаче может быть использовано и фазовое разделение ка­налов (ВФРК). Примером тому может являться однополосная пере­дача цифровых сигналов, минимальная частотная манипуляция и др.

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

Принципы разделения измерительных каналов

Из большого числа различных принципов разделения каналов в измерительных информационных системах следует выделить наиболее часто применяемые на практике разделение каналов: многоканальное (кабельное оптоволоконное), частотные, временное, кодовое и ортогональное (в связи).

Частотное разделение каналов отличается тем, что каждому сигналу вы­деляется своя отдельная частота так, чтобы полосы частот каждого сигнала размещались в не перекрывающихся по частоте участках диапазона частотам.

Максимальная информационная емкость частотных устройствдля электрических контуров и фильтров ограничивается сравнительно небольшим числом, частотных избирателей размещаемых в рабочем диапазоне частот (например, в телефонном канале), что вызвано трудностями реализации узкополосных избирателей. Поэтому в ча­стотные устройствахс относительно большой ин­формационной емкостью каждому сигналу выделяется не индивидуальная частота, а комбинация нескольких частот при этом, частоты могут передаваться одновременно или поочередно.

При одновременной передаче частот суммарное число сигналов N для n возможных частот и m частот, участвующих в образовании одной кодовой комбинации,

Если в каждой кодовой комбинации участвуют две одновременно передаваемые частоты, то формула упрощается и число сигналов

При последовательной посылке частот в любой момент времени передается не более одной частоты. Это позволяет уменьшить требования к нелинейным искажениям в канале и к аппаратуре до легко достижимого значения. Поэтому более широкое применение получили устройства разделения измерительных каналов с последовательной передачей частот.

В этом случае

Для применяемого кода с избиранием каждого объекта двумя частотами формула упрощается:

Полоса частот, занимаемая в канале связи, ограничивается в основном селективными свойствами и стабиль­ностью частотных избирателей и генераторов. Широкое применение получили частотные избиратели с электриче­скими резонансными контурами и полосовыми фильтрами. Для увеличения добротности применяются катушки ин­дуктивности с ферромагнитными сердечниками. Сужение полосы частотных избирателей позволяет экономнее использовать полосу частот в канале связи и повысить помехоустойчивость ИИС. Поэтому для даль­нейшего развития частотных устройств, представляют интерес узкополосные электромеханические частотные изби­ратели и генераторы, а также – фильтры и генераторы с гибридной технологией производства.

Частотные методы разделения позволили создать простые частотные избиратели объектов не требующими местных источников питания, что очень важно, для массовых объектов управле­ния, рассредоточенных по каналу связи: на трубопроводах, в ирригации, на нефтепромыслах и т. п.

Временное разделение каналов отлича­ется тем, что каждому из N передаваемых сигналов, канал связи предоставляется поочеред­но (последовательно). В интервал времени T 1 передается первый сигнал, а в интервал времени T i I-й сигнал. Следовательно, каждый сигнал имеет присвоенный ему временной интервал, который недопустимо занимать другими сигналами. Разделение сигналов на передающей и приемной сторонах канала связи осуществляется синхронно и синфазно работающими коммутаторами (распределителями). Для всех систем с временным раз­делением сигналов обязательна синхронизация работы распределителей.

Бесконтактные элементы релейного действия с неограниченными или очень большими ресурсами срабатывания релейных элементов оказалось целесообразным воспользоваться циклическим режимом работы устройств со стабильной тактовой частотой и стабильным по частоте циклом работы коммутаторов, составляющим доли секунды. В качестве тактовой частоты во многих случаях использовалось общая на передающей и прямой сторонах силовая сеть 50 Гц. Это облегчало синхронизацию распределителей.

За время цикла распределителей в таких устройствах, еще применяемых в народном хозяйстве, передается только одна подготовительная команда для избирания выходных цепей объекта. В ответных импульсных сериях в каждом цикле многоканальным методом передается информация о всех ТИС. Оператор после подтверждения подготовительной команды передает исполнительную команду. Во всех устройствах с временным разделением используется ряд защит, резко повышающих достоверность передачи команд. Достоверность передачи сигналов ТИ и ТК возрастает при их циклическом повторении.

Кодовое разделение каналов устройства с временным кодовым разделением сигна­лов, называемые также цифровыми устройствами, обладают неоспоримыми преимуществами, такими, как более высокая помехоустойчивость, лучшее использование канала связи, большие возможности унификации массового производства и применения в самых разнообразных условиях, несмотря на несколько большее число компонентов (деталей) в системе на один сигнал.

Учитывая многообразие возможных и используемых принципов построения кодовых (цифровых) устройств, ог­раничимся изложением обобщенных, упрощенных принци­пов разделения и передачи кодовых сигналов в многофунк­циональных устройствах.

К кодовым (цифровым) устройствам относятся устройства с времен­ным разделением элементов сигнала, двухпозиционными кодами, адресными передачами сигналов или с преобладанием адресных передач над многоканальными.

Скорость передачи информации в устройст­вах может изменяться в широких пределах путем переклю­чения тактовой частоты и ограничивается главным образом полосой частот канала связи. Отметим, что возмож­ность изменения скорости передачи путем изменения такто­вой частоты характерна для широкого класса цифровых систем. Цифровые устройства ИИС могут работать по телеграфному и телефон­ному каналу со скоростью от 50 до 2000 – 3000 Бод и более.

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс 1-го канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рис. приведены временные диаграммы, поясняющие принцип ВРК. На рис. а-в приведены графики трех непрерывных аналоговых сигналов u 1 (t), u 2 (t) и u 3 (t) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов в канале (линии) связи образуется групповой сигнал с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов.

Интервал времени между ближайшими импульсами группового сигнала T K называется канальным интервалом . Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи Т Ц. От соотношения Т Ц и T K зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

При временном разделении существуют взаимные помехи, в основном обусловленные двумя причинами.

Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Между каналами возникают взаимные переходные помехи или межсимвольная интерференция .

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения.

Итак рассмотрим как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC -Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module), по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.

Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI -International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64 бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56 бит кодирование.


На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи. Максимальная мощность излучения подвижного аппарата в зависимости от его назначения (автомобильный постоянный или переносный, носимый или карманный) может изменяться в пределах 0.8-20 Вт (соответственно 29-43 dBm). В качестве примера в таблице 4.9. приводятся классы станций и абонентских устройств по применяемой мощности, принятые в системе GSM-900.