Проекты Arduino для всех. Китайская Arduino DUE

Arduino Due - это мощная Arduino, основанная на 32-битном ARM-процессореAT91SAM3X8E от Atmel. Он обладает тактовой частотой 84 МГц, а его 32-битная архитектура позволяет выполнять большинство операций на целыми числами в 4 байта за один такт.

Характеристики Arduino Due

  • 96 Кб SRAM (оперативная память)
  • 512 Кб флеш-памяти (для хранения программы)
  • Прямой доступ к памяти (DMA) для задач, активно работающих с данными в памяти
  • 54 цифровых входов/выходов; 12 из них поддерживают ШИМ (PWM)
  • 4 аппаратных последовательных порта (UART)
  • 12 аналоговых входов
  • 2 цифро-аналоговых преобразователя (DAC) для 2 аналоговых выходов
  • 2 шины TWI / I²C
  • SPI-разъём
  • JTAG-разъём
  • Поддержка USB On The Go (USB OTG) для подключения других USB-устройств

Внимание! В отличии от большинства плат Arduino, родным напряжением Arduino Due является 3,3 В, а не 5 В . Соответственно, выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Подача большего напряжения может повредить процессор! Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.

Контакты Arduino Due

  • Цифровые входы/выходы: контакты 0–53. Работают на напряжении 3,3 В. В режиме выхода могут выдавать ток 3 или 15 мА (в зависимости от контакта); в режиме входа - принимать ток 6 или 9 мА (в зависимости от контакта). К контактам также подключены подтягивающие резисторы по 100 кОм, которые по умолчанию выключены, но могут быть включены программно.
  • Аппаратные последовательные порты (RX/TX): 0/1, 19/18, 17/16, 15/14. Передача данных осуществляется на уровне 3,3 В. Первая пара также соединена с чипом ATmega16U2, отвечающим за подключение через USB к компьютеру.
  • Широтно-имульсная модуляция (ШИМ/PWM): контакты 2–13. Дают возможность выдавать аппаратный шим с разрешением 8 бит (256 градаций).
  • SPI - отдельная группа контактов 2×3. На Arduino Due используется только для общения по SPI-интерфейсу с другими устройствами. Он не может быть использован для программирования контроллера, как на других Arduino. По расположению он в точности совпадает с расположением на , Arduino Mega 2560, Arduino Leonardo, а следовательно даёт возможность работы с платами расширения его использующими, таких как Ethernet Shield.
  • CAN-шина: контакты CANRX и CANTX. Позволяют использовать Arduino Due в автомобильных сетях. Поддержка с программной стороны пока не реализована производителем.
  • Встроенный светодиод: контакт 13 (L). Для простой индикации. В отличии от Arduino Uno и Mega, он поддерживает ШИМ.
  • Шины TWI/I²C: 20(SDA)/21(SCL), SDA1/SCL1. Для общения с периферией по синхронному протоколу, через 2 провода.
  • Аналоговые входы: контакты A0–A11. Принимают сигнал до 3,3 В. Большее напряжение может вывести процессор из строя. Аналоговые входы предоставляют разрешение до 12 бит (4096 градаций), хотя по умолчанию настроены на разрешение в 10 бит для совместимости со скетчами для других моделей Arduino.
  • Цифро-аналоговый преобразователь: контакты DAC1 и DAC2. Позволяют выдавать настоящий аналоговый сигнал с 12-битным разрешением (4096 градации), например, для устройств, связанных с обработкой звука.
  • Сброс процессора: RESET. Позволяет аппаратно перезагружать плату.
  • Входное напряжение: Vin. Выдаёт напряжение, поданное внешним источником, либо может являться входом для внешнего питания.
  • Стабилизированные 5 В: контакт 5V. Позволяет получать ровные 5 В и ток до 800 мА.
  • Стабилизированные 3,3 В: контакт 3.3V. Позволяет получать ровные 3,3 В и ток до 800 мА.
  • Общая земля: GND.
  • Опорное напряжение для плат расширения: IOREF. Платы расширения должны «советоваться» с этим контактом, чтобы правильно определять родное напряжение родительской платы. Arduino Due выдаёт на IOREF 3,3 В.

Память Arduino Due

  • На борту SAM3X - 2 блока по 256 Кб флеш-памяти для хранения программы
  • Загрузчик (bootloader) располагается в отдельной памяти только для чтения и прошит на заводе Atmel
  • Оперативная SRAM-память поделена на 2 банка: 64 и 32 Кб

Любая память доступна для последовательной адресации из программы. Содержимое флеш-памяти (программа) может быть очищено зажатием на несколько секунд кнопки Erase на плате.

Коммуникация

Arduino Due позволяет взаимодействовать с компьютером, другими Arduino, микроконтроллерами и различными устройствами вроде телефонов, планшетов, фотоаппаратов. Для этого плата предоставляет три аппаратных последовательных порта (UART/USART), две шины TWI/I²C, интерфейс SPI и USB-порт.

Один USB-порт (programming) используется для прошивки Arduino Due. Он подключён к чипу ATmega16U2 на плате, который является мостом между USB и аппаратным портом SAM3X, используемым для программирования процессора и связи с компьютером.

Второй USB-порт (native) может использоваться для связи с другими устройствами как в режиме slave (эмуляция мыши, клавиатуры), так и в режиме host (приём данных с фотоаппаратов, управление мышью, клавиатурой, телефоном).

Совместимость

Платформа по своему форм-фактору полностью совпадает с Arduino Mega 2560. Это означает механическую совместимость со всеми платами расширения для Arduino Mega, Arduino Uno, Arduino Leonardo.

Однако, в силу того, что родным является напряжение в 3,3 В, а не 5 В, как на других моделях, стоит обязательно удостоверяться в возможности подключения платы расширения к Arduino Due.

Питание, защита USB и принципы взаимодействия аналогичны другим моделям Arduino.

Габариты Arduino Due

Размер платы составляет 10,16 × 5,3 см (против 6,9 × 5,3 см базовой модели). Гнёзда для внешнего питания и USB выступают на пару миллиметров за обозначенные границы. На плате предусмотрены места для крепления на шурупы или винты. Расстояние между контактами составляет 0,1” (2,54 мм), но в случае 7-го и 8-го контакта - расстояние: 0,16”.

Где купить Arduino

Наборы Arduinoможно купить на официальном сайте и в многочисленных интернет-магазинах.

Наиболее привлекательные цены, постоянные спецпредложения и бесплатная доставка на сайтах китайских магазинов

Первая плата Arduino на основе 32-битного микроконтроллера с ARM ядром на базе процессора Atmel SAM3X8E ARM Cortex-M3. Обладая тактовой частотой 84 МГц и 32-битной архитектурой, позволяет выполнять большинство операций над целыми числами в 4 байта за один такт. На плате предусмотрено 54 цифровых вход/выхода (из них 12 можно задействовать под выходы ШИМ), 12 аналоговых входов, 4 UARTа (аппаратных последовательных порта), связь по USB с поддержкой OTG, 2 ЦАП (цифро-аналоговых преобразователя), 2 TWI, разъем питания, разъем SPI, разъем JTAG, кнопка сброса и кнопка стирания.

Подключение и настройка

Для работы с платформой Arduino Due в операционной системе Windows скачайте и установите на компьютер интегрированную среду разработки Arduino - Arduino IDE.

Добавление платформы

Элементы платы

Микроконтроллер Atmel SAM3X8E ARM Cortex-M3

Сердцем платы Arduino Due является 32-битное ARM ядро AT91SAM3X8E с тактовой частотой 84 МГц, 512 КБ флеш-памяти и 96 ОЗУ, превосходящее по производительности обычные 8-битные микроконтроллеры.

Микроконтроллер ATmega16U2

Микроконтроллер ATmega16U2 создает порт программирования для связи микроконтроллера SAM3X с USB-портом компьютера. При подключении к ПК Arduino Due определяется как виртуальный COM-порт. Перепрошивка микросхемы 16U2 производится через ICSP разъём используя стандартные драйвера USB-COM.

Пины питания

    VIN: Напряжение от внешнего источника питания (не связано с 5 В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, когда устройство запитано от внешнего адаптера.

    5V: На вывод поступает напряжение 5 В от стабилизатора напряжения на плате, независимости от того, как запитано устройство: от адаптера (7–12 В), от USB (5 В) или через вывод VIN (7–12 В). Питать устройство через вывод 5V не рекомендуется - в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.

    3.3V: 3,3 В от стабилизатора напряжения платы. Максимальный ток - 800 мА. Cтабилизатор также обеспечивает питание микроконтроллера SAM3X.

    GND: Выводы земли.

    IOREF: Этот вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера. В зависимости от напряжения на нём, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5 В, так и с 3,3 В устройствами.

Порты ввода/вывода

Внимание! В отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое могут выдержать вход/выходы составляет 3,3 В. Подав напряжение, например 5 В, на выводы Arduino Due, можно вывести плату из строя.

    Цифровые входы/выходы: пины 0 – 53
    Логический уровень единицы - 3,3 В, нуля - 0 В. Максимальный ток выхода - 3 или 15 мА в зависимости от вывода микроконтроллера, или ток входа - 6 или 9 мА. К контактам подключены подтягивающие резисторы 100 кОм, которые по умолчанию выключены, но могут быть включены программно.

    ШИМ: пины 2 – 13
    Позволяют выводить аналоговые значения в виде ШИМ-сигнала. Разрешение ШИМ позволяет менять функция analogWriteResolution().

    АЦП: пины A0 – A11
    12 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 12-битного числа (4096 значений). По умолчанию выставлена разрядность - 10 бит, для совместимости с другими платами. Разрешение АЦП можно менять с помощью функции analogReadResolution(). Аналоговые входы платы производят измерения от 0 до максимального значения 3,3 В. Если подать на вход напряжения свыше 3,3 В - это вызовет повреждение кристалла SAM3X.

    TWI/I²C: пины 20(SDA) , 21(SCL) и TWI 2/I²C 2: SDA1 и SCL1
    Для общения с периферией по синхронному протоколу, через 2 провода. Для работы используйте библиотеку Wire .

    SPI: Пины SPI выведены на центральный 6-контактный разъем, совместимый с Uno, Leonardo и Mega2560.
    Для коммутации по интерфейсу SPI используйте библиотеку SPI .

    UART: Serial: пины 0(RX) и 1(TX) ; Serial1: пины 19(RX1) и 18(TX1) ;Serial2: пины 17(RX2) и 16(TX2) ; Serial3: пины 15(RX3) и 14(TX3) .
    Эти выводы используются для получения (RX) и передачи (TX) данных по последовательному интерфейсу. Выводы 0(RX) и 1(TX) соединены с соответствующими выводами микросхемы ATmega16U2 , выполняющей роль преобразователя USB-UART. Для связи Arduino Due с компьютером через порт программирования, используйте класс Serial.

    DAC1/DAC2: На выводах ЦАП DAC1 и DAC2 доступны аналоговые выходы с 12-битным разрешением (4096 уровней) при помощи функции analogWrite(). Данные выводы можно использовать в качестве аудиовыхода, используя библиотеку Audio.

Светодиодная индикация

Разъём Programming USB

Разъём предназначен для прошивки платформы Arduino Due с помощью компьютера. Для использования этого порта выберите в Arduino IDE в качестве вашей платы "Arduino Due (Programming Port)". При этом также производится стирание предыдущей прошивки. Аппаратное стирание более надежно, чем «программное стирание», которое происходит на собственном USB порте, и будет работать даже при повреждении главного микропроцессора. В программное обеспечение Arduino входит монитор последовательной шины, который дает возможность компьютеру обмениваться простыми текстовыми сообщениями с платой подключенной через Programming USB посредством контроллера ATmega16U2.

Разъём Native USB

Чтобы использовать этот порт, выберите в Arduino IDE тип вашей платы "Arduino Due (Native USB Port)". Native USB port подключен к SAM3X, тем самым осуществляя последовательную связь (CDC) посредством USB обеспечивая подключение к монитору последовательной шины, или другим приложениям на вашем компьютере. Открытие и закрытие собственного порта при скорости передачи 1200 бит в секунду запускает процедуру «программного стирания»: флеш-память стирается и плата перезапускается с помощью загрузчика. Также это дает Due возможность эмулировать USB мышь или клавиатуру.

Native USB может также работать как USB хост для подключенных периферийных устройств: мыши, клавиатуры и прочего.

Разъём для внешнего питания

Разъём для подключения внешнего питания от 7 В до 12 В.

ICSP-разъём для ATmega2560

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega2560. Также с применением библиотеки SPI данные выводы могут осуществлять связь с платами расширения по интерфейсу SPI. Линии SPI выведены на 6-контактный разъём, а также продублированы на цифровых пинах 50(MISO) , 51(MOSI) , 52(SCK) и 53(SS) .

ICSP-разъём для ATmega16U2

ICSP-разъём для внутрисхемного программирования микроконтроллера ATmega16U2.

Распиновка

Ардуино Нано (Arduino Nano) представляет из себя плату с микроконтроллером, через которую вы сможете программировать, чтобы управлять всевозможными внешними устройствами.

Она взаимодействует с большинством устройств внешнего мира через:

  • датчики,
  • двигатели,
  • светодиоды,
  • динамики.

Существует много разновидностей микроконтроллеров, но Arduino наиболее популярен благодаря именно тому, что во всемирной сети очень активно выкладываются и обсуждаются самые разные проекты с его применением. Самостоятельное изучение ардуино - это не столь долгий процесс, как может показаться вначале.

– это одноплатный контроллер с открытыми начальными кодами, который возможно использовать во множестве различных приложений. Это - самый простой и наиболее дешевый вариант из микроконтроллеров для различных любителей, студентов и профессиональных разработчиков проектов на основе микроконтроллера.

В платах Arduino используются либо микроконтроллеры Atmel AVR , либо его ближайший собрат микроконтроллер Atmel ARM, а в некоторых из версий имеется интерфейс USB. Обладают шестью или более выводами аналоговых входов и четырнадцатью или более выводами цифровых входов и выходов, использующихся для возможности подключения к микроконтроллеру датчиков, различных приводов и иных периферийных схем. Стоимость платы Arduino в зависит от набора функций - от семи до сорока пяти долларов.

Программное обеспечение, применяемое для программирования Arduino, представлено разработкой Arduino IDE. IDE - Java приложение, работающее на множестве разных платформ, включая столь известные системы как PC, Mac и Linux. Разрабатывалась для начинающих, не знакомых со всеми тонкостями программированием. Включает редактор, компилятор и загрузчик. В IDE предусмотрены библиотеки кодов для применения периферии, последовательных портов и разных типов экранов. Программы для Arduino называют «скетчами».

Большинство плат Нано Arduino подключается к компьютеру при помощи USB кабеля. Это соединение позволит загрузить скетчи на вашу плату Arduino.

Преимущества и недостатки Ардуино Нано

  • Цена. Arduino Nano возможно купить менее чем за 1000 руб.
  • Кроссплатформенность. Программное обеспечение Arduino осуществляет работу на большинстве известных программ Windows, Macintosh OS X, Linux, являясь открытым приложением работающим на Java.
  • Простая среда программирования. Программная оболочка является достаточно простой в применении для новичков, но весьма гибкой для большинства продвинутых пользователей, чтобы оптимально быстро достичь нужного вам результата. Особенно комфортно в образовательной среде, где студенты достаточно легко разберутся с платформой, а преподаватели смогут разработать учебный курс.
  • Открытый исходный код. Язык может расширяется с помощью C++ библиотек, значительно более продвинутых, там специалисты могут самостоятельно создать свой собственный эксклюзивный инструментарий для Arduino на основе инновационного компилятора AVR C.
  • Открытые спецификации и схемы оборудования. Arduino основан на микроконтроллерах Atmel ATMEGA8 и ATMEGA168. Схемы модулей публикуются под лицензией Creative Commons, из-за этого опытные схемотехники могли создавать свои собственные версии модуля. Даже весьма неопытные пользователи смогут делать макетную версию данного модуля, чтобы понимать, каким же образом он осуществляет работу и экономит деньги.

Из недостатков отмечаем:

  • довольно убогую программную оболочку;
  • достаточно низкую частоту имеющегося процессора;
  • довольно малое количество «дисковой» флэш-памяти для создания программ.

Мощности Нано Ардуино будет явно недостаточно для того, чтобы самостоятельно собрать какое-либо сложное изобретение, но может быть вполне достаточно для различных простейших систем, которые помогут потребителям быстро разобраться со всеми сложностями на пользовательском уровне.

Ардуино Нано - это микроконтроллеры, которые могут позволить самостоятельно заниматься робототехникой, а их основное преимущество - отсутствие необходимости докупать еще что-либо.

Ещё одно готовое устройство от Arduino для конструкторов электронных игрушек, оригинальных и полезных конструкций, малых систем автоматизации. Примечательна установленным 32-битным микроконтроллером SAM3X8E ARM Cortex-M3. Оценим её возможности и возможные сферы применения.
Вид платы сверху


Разъёмы и выводы
  • 0-52. Расположены сверху и справа. Каждый из выводов может быть запрограммирован в качестве дискретного входа или выхода. Уровень напряжения выводов 3,3 В, ток в выходных цепях 3-15 мА, а во входных 6-9 мА.
  • Выводы (communication) 0, 19, 17, 15 (Rx) и 1, 18, 16, 14 (Tx) могут быть запрограммированы для обмена данными по последовательному интерфейсу с уровнем напряжения TTL (3,3 В) (RX – приём, TX – передача). На плате установлен преобразователь USB-UART, выполненный на микросхеме ATMega16U2, выводы которой подключены к выводам 0 и 1 платы. Интерфейс является USB-портом для программирования.
  • Выводы (PWM) со 2 по 13 можно сконфигурировать как аналоговые выходы с невысоким 8-битным разрешением. Вид выходного сигнала – ШИМ, а значит для подключения исполнительных устройств потребуется дополнительная согласующая схема.
  • Штыревой разъём SPI справа от микроконтроллера. Особенность этого интерфейса в том, что его нельзя использовать для внутрисхемного программирования, а исключительно для связи с другими устройствами.
  • Выводы CANRX, CANTX в самом низу, справа. Линии обмена данными по протоколу CAN. Протокол широко используется в бортовых сетях автомобилей, промышленной электронике.
  • Интерфейс связи TWI/I 2 C может быть подключен к выводам 20 (SDA), 21(SCL). Отметим, что к выводам на плате подключены подтягивающие резисторы 100 кОм, по умолчанию отключенные. Необходимо подключать резисторы при организации сетевого обмена.
  • Выводы А0–А11 внизу – аналоговые входы. Обрабатывающий сигналы с этих входов АЦП 12-битный, а значит входы могут использоваться в достаточно серьёзных приложениях. Стоит отметить, что конфигурация по умолчанию 10 бит, смена разрешения выполняется программным способом. Ещё одно замечание – для использования вывода AREF следует удалить из схемы резистор BR1.
  • На плате всего 2 полноценных 12-битных аналоговых выхода DAC1 и DAC2.
  • Вывод RESET при подаче низкого уровня инициирует перезагрузку контроллера.
  • Вверху, слева от вывода 13, расположен вывод AREF – опорное напряжение АЦП и выводы SDA1, SCL1 для интерфейса TWI1/I 2 C1.
В выводы могут устанавливаться платы расширения (шилды). Подключать можно весь спектр устройств Arduino: дисплеи, Ethernet-модули, клавиатуры и т.д. Создавая плату, компания обеспечила совместимость с устройствами расширения для других серий. Правда есть одно НО. Уровень напряжения на выводах не должен превышать 3,3 В. Информацию о рабочем уровне напряжения для плат расширения выдаёт выход IOREF, а подключаемая плата должна задействовать встроенный преобразователь уровня. Обращайте на это внимание при выборе шилда, если уровень 3,3 В не поддерживается, то подключать к Arduino Due устройство не рекомендуется.
Раз уж затронули тему уровней напряжения, то давайте разберёмся с питанием платы. Во-первых, внешнее питание на плату может быть подано либо от внешнего источника, либо от USB. Напряжение питание должно лежать в диапазоне 6-20 В, оптимальное – 7-12 В.
Выводы питающих напряжений находятся внизу, чуть левее микроконтроллера.
  • VIN – линия «+» внешнего источника питания.
  • 5V – напряжение +5 В, выдаваемое стабилизатором напряжения, максимальный ток Iмакс = 800 мА.
  • 3.3V - напряжение +3,3 В от того же стабилизатора, максимальный ток Iмакс = 800 мА.
  • GND – земля.
На плате установлены 2 USB-порта, предназначенные для обмена данными с компьютером или подключения поддерживающих интерфейс USB периферийных устройств.
Память
На плате размещены микросхемы оперативной памяти (SRAM) объёмом 96 кб, и флэш-памяти программ 512 кб. Адресное пространство единое для всей памяти. Стоит учесть, что есть возможность подключить внешнюю SD-карту, используя интерфейс TWI1/I 2 C1 и картридер.
Органы управления
На плате установлена кнопка Reset для стирания программы, записанной в ПЗУ.
Габаритные размеры
Плата имеет размеры 10,2х5,4 см, три крепёжных отверстия.

Сфера применения

Применение такого устройства будет оправдано:
  • Для обучения работе с микроконтроллерами школьников и студентов.
  • Для построения разнообразных роботов, квадрокоптеров или иных умных устройств конструкторами-любителями.
  • Для создания систем «Умного дома». Возможность создания локального пульта управления (на сенсорном дисплее или обычном и клавиатуре), достаточное количество входов-выходов для подключения датчиков и исполнительных устройств, возможность организации удалённого управления через Интернет – всё есть для реализации такого решения. В пользу его говорят и завышенные цены на готовые системы «умного дома». Можем посоветовать тем, кто решит использовать Arduino Due в этих целях, обратить внимание на бесплатную систему контроля и мониторинга Tesla Scada для ПК и мобильных устройств. Использование в качестве концентратора датчиков и интеллектуального устройства в системе интернета вещей (IoT). Готовые решения для Arduino есть у IBM. Это и библиотеки для Arduino IDE – Arduino Client for MQQT , и брокер для тестирования Mosquitto , и платформа IBM Internet of Things Foundtation .
Однако, стоит рассмотреть и ядро платы – 32-битный микроконтроллер, ведь именно он является главной «изюминкой» Arduino Due.

Как уже упоминалось выше, работа с платой возможна из-под Atmel IDE, но есть и собственная среда разработки IDE . Кроме того, необходимо разобраться как подключиться и отлаживать устройство.
Первый нюанс заключается в том, что для заливки новой прошивки требуется стереть старую во флэш-памяти.
Второй в используемом для загрузки USB-порте. На приведённом в начале статьи рисунке, слева можно увидеть 2 порта. Для программирования следует использовать нижний.
В остальном процесс создания проекта и отладки стандартен для устройств Arduino. Необходимыми предпосылками для успешной работы с устройством будет:
  • Формулировка задачи. Требуется определить какое устройство будет получено на выходе, какими функциями оно будет обладать.
  • Определение необходимых плат расширения. Для расширения функциональности и повышения удобства работы с готовым устройством могут потребоваться специальные шилды – дисплеи, внешняя память, модули связи и т.п. Помните про совместимость по уровню напряжения!
  • Состав оборудования определён, теперь необходимо всё увязать в единое устройство. Для этого, возможно, потребуется изготовить электронные платы сопряжения, подготовить шлейфы для связи, изготовить или купить конструкцию для размещения электронной начинки.
  • Подбор датчиков и исполнительных устройств, разработка подвижной конструкции. Для случаев летающих, ездящих, шагающих или плавающих устройств задача может быть очень нетривиальной.
  • Написание программы, загрузка её в плату, тестирование, отладка и удовлетворение от качественно проделанной работы.

    Arduino Nano входит в тройку самых популярных плат ардуино. Она позволяет создавать компактные устройства, использующие тот же контроллер, что и в Arduino Uno. В этой статье мы рассмотрим плату поближе: разберемся с распиновкой платы, узнаем особенности подключения и сделаем краткий обзор шилдов и плат расширения для Nano.

    Nano – одна из самых миниатюрных плат Ардуино. Она является полным аналогом Arduino Uno – так же работает на чипе ATmega328P (хотя можно еще встретить варианты с ATmega168), но с меньшим форм-фактором. Из-за своих габаритных размеров плата часто используется в проектах, в которых важна компактность. На плате отсутствует вынесенное гнездо внешнего питания, Ардуино работает через USB (miniUSB или microUSB). В остальном параметры совпадают с моделью Arduino Uno.

    Технические характеристики Arduino Nano:

    • Напряжение питания 5В;
    • Входное питание 7-12В (рекомендованное);
    • Количество цифровых пинов – 14, из них 6 могут использоваться в качестве выходов ШИМ;
    • 8 аналоговых входов;
    • Максимальный ток цифрового выхода 40 мА;
    • Флэш- память 16 Кб или 32 Кб, в зависимости от чипа;
    • ОЗУ 1 Кб или 2 Кб, в зависимости от чипа;
    • EEPROM 512 байт или 1 Кб;
    • Частота 16 МГц;
    • Размеры 19 х 42 мм;
    • Вес 7 г.

    Питание платы может осуществляться двумя способами:

    1. Через mini-USB или microUSB при подключении к компьютеру;
    2. Через внешний источник питания, имеющий напряжение 6-20 В с низким уровнем пульсаций.

    Стабилизация внешнего источника выполняется при помощи схемы LM1117IMPX-5.0 на 5В. При подключении через кабель от компьютера подключение к стабилизатору происходит через диод Шоттки. Схемы обоих типов питания приведены на рисунке.

    При подключении двух источников напряжения плата выбирает с наибольшим питанием.

    Имеются ограничения по напряжению и току на входы и выходы платы. Все цифровые и аналоговые контакты работают в диапазоне от 0 до 5 В. При подаче питания, выходящего за рамки этих значений, напряжение будет ограничиваться защитными диодами. В этом случае сигнал должен подключаться через резистор, чтобы не вывести контроллер из строя. Наибольшее значение втекающего или вытекающего тока не должно превышать значение 40 мА, а общий ток контактов должен быть не более 200 мА.

    На плате имеются 4 светодиода, которые показывают состояние сигнала. Они обозначены как TX, RX, PWR и L. На первых двух светодиод загорается, когда уровень сигнала низкий, и показывает, что сигнал TX или RX активен. Светодиод PWR загорается при напряжении в 5 В и показывает, что подключено питание. Последний светодиод – общего назначения, загорается, когда подается высокий сигнал.

    На настоящий момент выпускается несколько видов Arduino Nano. Есть версии 2.X, 3.0., которые отличаются только чипом, на котором они работают. В версии 2.Х. используется чип ATmega168 с меньшим объемом памяти (флэш, энергонезависимой) и пониженной тактовой частотой, версия 3.0. работает на чипе ATmega328.


    Распиновка Arduino Nano

    Плата Ардуино Нано имеет 14 цифровых контактов, которые помечаются буквой D (цифровой, digital). Контакты используются как входы и выходы, у каждого имеется подтягивающий резистор.


    Аналоговые пины обозначаются буквой А и используются как входы. У них отсутствую подтягивающие резисторы, они измеряют поданное на них напряжение и возвращают значение при помощи функции analogRead().

    На некоторых цифровых пинах можно увидеть значок ~. Такие контакты можно использовать в качестве выходов ШИМ. Ардуино нано оснащена шестью такими контактами – это пины D3, D5, D6, D9, D10, D11. Чтобы использовать ШИМ, создана специальная функция analogWrite().

    Распиновка Arduino Nano

    1 пин – TX (передача данных UART), D0.

    2 – RX (прием данных UART), D1. RX и TX могут использоваться для связи по последовательному интерфейсу или как обычные порты данных.

    3, 29 – сброс.

    4, 29 – земля.

    5 – D2, прерывание INT0.

    6 – D3, прерывание INT1 / ШИМ / AIN0.

    7 – A4, счетчик T0 / шина I2C SDA / AIN1. AIN0 и AIN1 – входы для быстродействующего аналогового компаратора.

    8 – A5, счетчик T1 / шина I2C SCL / ШИМ.

    9 – 16 – порты D6-D13, из которых D6 (9й), D9 (12й), D10 (13й) и D11 (14й) используются как выходы ШИМ. D13 (16й пин) – светодиод. Также D10 – SS, D11 – MOSI, D12 – MISO, D13 – SCK используются для связи по интерфейсу SPI.

    18 – AREF, это опорное напряжение для АЦП микроконтроллера.

    19 – 26: аналоговые входы A0… A7. Разрядность АЦП 10 бит. A4 (SDA), A5 (SCL) – используются для связи по шине I2C. Для создания используется специальная библиотека Wire.

    Микроконтроллеры обладают большими функциональными возможностями, но у них есть один недостаток – это ограниченное число выводов. Поэтому на этапе составления схемы устройства следует продумать, каким образом можно максимально упростить проект, чтобы сократить число нужных для подключения контактов.

    Подключение Arduino Nano

    Установка драйвера для CH340

    Микросхема CH340 часто используется в платах Ардуино со встроенным USB-to-Serial преобразователем. Она позволяет уменьшить затраты на производство плат, не влияя на ее работоспособность. При помощи этого программатора можно легко прошивать платы Ардуино. Для того, чтобы начать работать с этой микросхемой, нужно установить драйвер на компьютер.

    Установка выполняется в несколько этапов:

    • Скачивание архива с драйвером для нужной операционной системы. Для Windows, MacOS и Linux загрузить драйверы можно по ссылке http://iarduino.ru/file/230.html
    • Распаковка архива.
    • Поиск файла SETUP.EXE, его запуск.
    • На мониторе появится окно, в котором нужно нажать кнопку Install. Установка драйвера начнется, после чего можно начинать работу со схемой.

    Настройка Arduino IDE

    Стандартная среда разработки Arduino IDE используется для работы всех видов Ардуино с компьютером. Чтобы начать работу, нужно сначала скачать Arduino IDE с официального сайта и установить ее. Удобнее скачивать Windows Installer, особенно если среда разработки будет установлена на постоянном рабочем компьютере. Если скачан архив, то его нужно распаковать и запустить файл Arduino.exe.

    Как только среда установлена, нужно ее запустить. Для этого нужно подключить к компьютеру саму плату Ардуино через USB. Затем перейти в меню Пуск >> Панель управления >> Диспетчер устройств, найти там Порты COM и LPT. В списке появится установленная плата и указан номер порта, к которому подключается плата. После этого нужно запустить Arduino IDE, перейти в меню Инструменты >> Порт, и указать порт, к которому присоединена Ардуино. В меня Инструменты>> Платы нужно выбрать модель подключенной платы, в данном случае Arduino Nano. На этом установка и настройка закончены, и можно создавать программу. Важно помнить, что если к компьютеру будет подключаться другая плата, настройки снова нужно будет поменять на соответствующее устройство.

    Примеры проектов с Arduino Nano

    Подключение светодиодов к Arduino Nano

    В качестве тестовой программы, проверяющей работу платы, можно использовать мигание светодиодом. На плате имеется встроенный светодиод L, но можно подключить и внешний к выходу D13. Светодиод обязательно подключать через резистор, чтобы не сжечь его и не повредить плату. Анод светодиода подключается к резистору, который присоединяется к выходу D13. Катод светодиода – к земле.

    В Arduino IDE есть пример, который включает мигание светодиода. Для этого нужно перейти в меню Файл>>Образцы>>1. Basics>> Blink и загрузить пример. После выгрузки пода Ардуино будет выполнять программу, мигая светодиодом раз в секунду.

    Подключение LCD 1602 к Arduino Nano

    Экран LCD 1602 достаточно распространенный, для него существует разнообразные виды шилдов, но также его можно подключить напрямую к Ардуино. Для подключения дисплея к плате нужны Arduino Nano, макетная плата, экран LCD 1602 и соединительные провода.

    Выбор пинов, к которым нужно подключать дисплей, может быть любым. Для примера будет выбрана такая конфигурация: контакт RW с дисплея подключается к земле, 4й контакт дисплея – к А0 на Ардуино, 6-й контакт – к Е (Enable), с 11-го по 14-й подключаются к D4-D7. Экран подключен. Для того, чтобы началь писать код, нужно подключить библиотеку LiquidCrystal. В ней также имеется тестовый скетч, который позволит проверить работоспособность установки. Код находится по адресу Arduino\libraries\LiquidCrystal\examples\HelloWorld\HelloWorld.ino, в скетче нужно только поменять номера контактов, к которым подключен экран. Если все подключено правильно, на мониторе загорится надпись.

    Подключение nrf24l01 к Arduino Nano

    Радиомодуль nrf24l01 используется в случаях, когда нужно получать данные от датчиков, которые расположены на удалении от управляющего устройства. Модуль прост в использовании и легко подключается к Ардуино.

    Подключение к Ардуино Нано изображено на рисунке. Земля с платы соединяется с землей модуля, напряжение – на 3,3В, 3й контакт (CE) – к D9, с 4 по 7й – к D10-D12. Для 3го контакта и 4-го можно использовать любые пины, главное указать это потом в коде.

    К радиомодулю может быть также припаян конденсатор между выходами земля и питание, который позволит уменьшить шумы, и сделает работу устройства более стабильной.

    Для работы с модулем существует несколько библиотек. Наиболее распространенные библиотеки – это RF24 и Mirf. Выбор той или иной библиотеки определяется удобством использования.

    Обзор популярных шилдов для Arduino Nano

    Платы расширения (или arduino shield, шилд) используются для решения различных задач и упрощения проектов. На плате расширения устанавливаются все нужные электронные компоненты, а взаимодействие с другими контроллерами осуществляется через стандартные контакты Ардуино.

    Nano Uno shield – это шилд, который позволяет превратить плату Нано в Уно. Платформа имеет различные колодки для подключения, кнопку перезагрузки и гнездо питания.



    Arduino Nano Ethernet Shield – используется для обеспечения работы с сетью через Ethernet. Аналогичен такому же шилду для Arduino Uno, но имеет меньшие размеры и гораздо удобнее в реальных проектах.

    Arduino Nano Motor Shield – шилд, который используется в робототехнических проектах для подключения моторов и двигателей к плате Ардуино. Его основная задача – обеспечение управления устройствами, которые потребляют большой (по сравнению с Ардуино) ток. Также с помощью шилда можно управлять мощностью мотора и менять его направление вращения. Моделей плат Motor Shield существует множество, у всех имеется в схеме мощный транзистор, теплоотводящие компоненты, схемы для подключения внешнего источника напряжения и разъемы ля подключения двигателей.

    Arduino Nano Sensor Shield – самая распространенная платформа. Шилд прост – основной его задачей является обеспечение удобного подключения к плате Ардуино других устройств. На шилде расположены дополнительные разъемы питания и земли, разъемы для подключения внешнего источника напряжения, светодиод и кнопка перезагрузки.

    Arduino Data Logging Shield – шилд, который позволяет писать лог. Также он используется как файловое хранилище или часы реального времени. Для работы с шилдом существует специальная библиотека, которая позволяет логировать информацию на карту памяти.

    Arduino Proto Shield – платформа для быстрого прототипирования или создания своего шилда. На этих платах расположены площадки для монтажа нужных компонентов, выведена кнопка сброса, 2 светодиода и разъем для внешнего питания. С их помощью можно повысить компактность устройства.



    Где купить Arduino Nano

    Традиционно самые низкие цены предлагают зарубежные интернет-магазины. В России цены почти всегда будут выше на 20-200 процентов, но не придется ждать заказа около месяца.

    Приведем ссылки на надежных поставщиков Aliexpress:
    Arduino Nano 3.0 контроллер с микросхемой CH340 и без кабеля – от 130 рублей. Один из самых популярных магазинов

    Итоги

    Контроллеры Ардуино используются для реализации различных проектов электроники, автоматизации и робототехники. Ардуино позволяет проектировать и создавать новые устройства. Сегодня можно найти в магазинах несколько версий платы Ардуино, различающихся по размерам и некоторым характеристикам. Arduino Nano – один из самых лучших вариантов для создания реальных проектов. Это плата довольно компактная, удобная и обладает всеми возможностями “большой Uno”. Можно рекомендовать ее к использованию даже начинающим ардуинщикам.