Программирование NAND FLASH. Сравнение типов флеш-памяти NAND

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

Продолжаем обсуждать устройство и принцип работы запоминающих устройств на нашем сайте. В прошлый раз мы обсуждали Flash-память (), а сегодня сконцентрируем внимание на одном из типов уже упомянутой Flash-памяти, а именно на NAND-памяти. Частично мы уже разобрались с устройством и работой NAND, так что перейдем к рассмотрению основных алгоритмов, способов подключения и некоторых тонкостей, о которых нельзя забывать, работая с NAND.

Начнем с того, что рассмотрим два типа NAND-памяти – а именно SLC-(single-level cell ) и MLC-(multi-level cell ) устройства. В SLC приборах одна ячейка памяти хранит один бит информации – именно такие устройства мы обсуждали в предыдущей статье. Возможно только два состояния ячейки памяти (полевого транзистора с плавающим затвором). Первое состояние соответствует заряженному затвору, а второе, соответственно, разряженному. Тут все просто – подаем пороговое напряжение и по наличию или отсутствию тока стока можем определить, какой бит записан в данную ячейку памяти.

MLC приборы отличаются тем, что одна элементарная ячейка может хранить несколько бит информации, чаще всего два бита. В таких устройствах различают 4 уровня заряда плавающего затвора, что соответствует 4 возможным сохраненным состояниям:

Для чтения информации из такой ячейки, в отличии от SLC-устройств, необходимо следить за током стока при нескольких разных значениях порогового напряжения на затворе транзистора.

MLC-память имеет меньшее количество максимально возможных циклов перезаписи по сравнению с SLC. Кроме того, SLC быстрее – то есть операции чтения/записи/стирания выполняются за меньшее количество времени. А поскольку для определения состояния ячейки памяти используется только одно пороговое значение напряжения, при использовании SLC-памяти меньше вероятность возникновения ошибки. Но это не значит, что MLC хуже. MLC-память, во-первых позволяет сохранять большее количество информации, а во-вторых дешевле. То есть с точки зрения отношения цена/качество MLC, в принципе, выглядит предпочтительнее.

Переходим к структуре NAND-памяти 😉

Как мы помним, в отличие от NOR-памяти, при использовании NAND мы не имеем доступа к произвольной ячейке памяти. Все ячейки объединены в страницы. А страницы объединены в логические блоки. Каждая страница помимо сохраненной пользователем информации содержит некоторые дополнительные данные – информация о “плохих” блоках, дополнительная служебная информация для коррекции ошибок.

Сложность при работе с NAND заключается в том, что невозможно получить доступ к какой-то конкретной ячейке информации. Запись данных можно производить только постранично, то есть если мы хотим изменить какой-то бит, то нам нужно перезаписать все страницу целиком. А стирать данные и вовсе можно только блоками. Вот для примера характеристики микросхемы NAND-памяти NAND128W3A: размер страницы – 512 байт + 16 байт дополнительной служебной информации, размер блока – 16 кБайт, то есть 32 страницы.

Еще одной проблемой при использовании NAND является то, что количество циклов перезаписи не бесконечно. Таким образом, если запись всегда будет производиться в одну и ту же страницу, она рано или поздно окажется поврежденной. И для того, чтобы обеспечить равномерный износ всех ячеек памяти, контроллер NAND-памяти ведет учет количества циклов записи в каждый отдельный блок памяти. Если контроллер видит, что блок “плохой”, то он может пропустить его и произвести запись в следующий блок. Благодаря этому срок службы носителей информации значительно увеличивается. Если мы хотим записать большой массив данных, то внутри микросхемы памяти все данные будут перемешаны по блокам (работает алгоритм записи в наименее изношенные блоки), а когда встает задача чтения этих данных, контроллер NAND-памяти упорядочит данные и выдаст их нам в первозданном виде.

Со структурой разобрались, напоследок я бы еще хотел немного рассказать о том, как осуществляется подключение микросхем NAND-памяти.

А для этого используется параллельная шина передачи данных, Ширина шины – 8 или 16 байт, в зависимости от конкретного устройства. Линии данных объединены с линиями адреса, что позволяет уменьшить количество занятых выводов. Вот тут хорошо описаны управляющие сигналы и их назначение:

Если мы хотим подключить память к микроконтроллеру, то лучше всего выбрать контроллер, в котором есть аппаратная поддержка передачи данных по параллельному интерфейсу. Например, многие STM32 оснащены модулем FSMC, который позволяет подключить внешнее устройство памяти. Но в это мы сейчас не будем углубляться, лучше оставим эту тему до будущих статей 😉 Возможно, в ближайшее время как раз и попробуем соорудить небольшой пример для STM32, в котором будем записывать и считывать данные из NAND-памяти, так что до скорых встреч!)

Флэш-память NAND использует логический элемент NOT AND, и, как и многие другие типы памяти, хранит данные в большом массиве клеток, где каждая ячейка содержит один или несколько битов данных.

Любой вид памяти может подвергаться влиянию внутренних и внешних факторов, таких как износ, физическое повреждение, ошибки аппаратного обеспечения и прочие. В таких случаях мы рискуем расстаться со своими данными на совсем. Что же делать в таких ситуациях? Не стоит волноваться, поскольку существуют программы восстановления данных , которые восстанавливают данные легко и быстро, без необходимости покупать дополнительное оборудование или, в крайнем случае, начинать работу над утерянными документами заново. Рассмотрим NAND флэш-память детальнее.

Как правило, массив NAND делится на множество блоков. Каждый байт в одном из этих блоков может быть индивидуально написан и запрограммирован, но один блок представляет наименьшую стираемую часть массива. В таких блоках каждый бит имеет двоичное значение 1. Например, монолитное устройство NAND флэш-памяти объемом 2 Гб обычно состоит из блоков по 2048 Б (128 КБ) и 64 на каждый блок. Каждая страница вмещает 2112 Б, и состоит из 2048 байт данных и дополнительной зоны в 64 байта. Запасные области обычно используется для ECC, информации об износе ячеек и другие накладные функции программного обеспечения, хотя физически он не отличается от остальной части страницы. NAND устройства предлагаются с 8-битным или 16-битным интерфейсом. Узел данных подключен к NAND памяти через двунаправленную шину данных 8 или 16 бит. В 16-битном режиме команды и адреса используют 8 бит, остальные 8 бит приходятся на использование во время циклов передачи данных.

Типы флэш-памяти NAND

Флэш-память NAND, как мы уже отмечали, бывает двух типов: одноуровневая (SLC) и многоуровневая (MLC). Одноуровневая флэш-память – SLC NAND (single level cell) хорошо подойдет для приложений, которые требуют высокую и среднюю плотность. Это простейшая в использовании и удобная технология. Как описано выше, SLC NAND хранит один бит данных в каждой ячейке памяти. SLC NAND предлагает относительно высокую скорость чтения и записи, хорошую производительность и алгоритмы коррекции простых ошибок. SLC NAND может быть дороже других технологий NAND в расчете на один бит. Если приложению требуется высокая скорость чтения, например, высокопроизводительная медиа карта, некоторые гибридные диски, твердотельные устройства (SSD) или другие встроенные приложения — SLC NAND может стать единственным подходящим выбором.

Многоуровневая флэш-память – MLC NAND (multilevel cell) предназначена для приложений более высокой плотности и с медленным циклом.

В отличие от SLC NAND многоуровневые ячейки MLC NAND хранят два или больше бит на одну ячейку памяти. Чтобы определить место для каждого бита, применяется напряжение и ток. В устройствах SLC требуется только один уровень напряжения. Если ток обнаружен, то значение бита равно 1; если ток не обнаружен, то бит обозначается как 0. Для устройства MLC для определения значений битов используются три разных уровня напряжения.

Как правило, MLC NAND предлагает объем в два раза больше, чем SLC NAND для одного устройства и стоит также дешевле. Поскольку SLC NAND в три раза быстрее, чем MLC NAND и предлагает производительность выше, более чем в 10 раз; но для многих приложений, MLC NAND предлагает правильное сочетание цены и производительности. В самом деле, MLC NAND представляет почти 80% от всех поставок флэш-памяти NAND. И флэш-память MLC NAND доминирует по выбору потребителя по классу SSD потому, как их производительность превосходит магнитные жесткие диски.

Срок службы твердотельного накопителя зависит от количества байтов, которые были записаны в NAND флэш-память. Большинство устройств на базе MLC имеют гарантию сроком в один-три года. Однако важно понимать, как именно будет использоваться устройство, поскольку SSD на базе MLC могут прослужить меньше если предполагается множественная перезапись на диск. С другой стороны решения на базе SLC прослужат дольше предполагаемых трех лет даже при тяжелых PE циклах.

История NAND-флэш

Флэш-память NAND – это энергонезависимый твердотельный накопитель, что внес значительные изменения в индустрии хранения данных, возраст которой на сегодняшний момент составляет уже 26 лет. Флэш-память была изобретена доктором Фуджио Масуока (Fujio Masuoka) во время работы в компании Toshiba приблизительно в 1980 году. По словам Toshiba имя «флэш» было предложено коллегой доктора Масуока, г-ном Шо Цзи Аризуми (Sho-ji Ariizumi), в виду того, что процесс стирания содержимого памяти напомнил ему вспышку камеры.

Копания Toshiba поставила NAND флэш-память на коммерческую ногу в 1987 году; многое изменилось с тех пор. Рынок NAND флэш-памяти вырос быстро при продажах, в восемь раз превышающих объемы продаж памяти DRAM (Dynamic random access memory — динамическая память с произвольным доступом). NAND память стала высокопрочным устройством хранения данных и выбором многих пользователей. Такая память сегодня используется в различных картах памяти и USB-накопителях, облачных хранилищах встречается у многих пользователей, как в промышленности и предпринимательстве, так и в домашних устройствах. Устройства Apple’s iPhone, iPod и iPad, а также телефоны и планшеты на базе Android также широко используют NAND флэш-память. С тех времен это нововведение пробилось в новую эпоху, в которой потребители могут всегда воспользоваться своими файлами: видео, музыкой, книгами и документами, где бы Вы ни находились.

Высококачественная NAND запрограммирована на чтение информации небольшими блоками, или страницами, в то время, как флэш-память типа NOR считывает и записывает данные по 1 байту за раз. NOR флэш-память более предпочтительна для устройств, которые хранят и запускают коды, обычно небольших объемов.

Введение твердотельной NAND флэш-памяти и устройств хранения данных в дополнение к обычным магнитным жестким дискам дало предприятиям новые возможности для запуска их сервера и хранения ключевых бизнес-приложений. Поскольку такая память не имеет движущихся частей, NAND флэш может обрабатывать и перемещать данные из одного места в другое значительно быстрее благодаря отличной скорости чтения и записи. Приложения, использующиеся в финансовых услугах, розничной торговле и облачных веб-сервисах, часто эксплуатируют серверы, оснащенные NAND флэш-памятью.

Флэш-память хранит информацию в массиве, состоящем из ячеек памяти и транзисторов с плавающим затвором. В устройствах с ячейками одного уровня (SLC), каждая ячейка хранит только один бит информации. Некоторые более новые типы флэш-памяти, известные как устройства многоуровневых ячеек (MLC), могут хранить больше, чем один бит на ячейку, выбирая между несколькими уровнями электрического заряда с целью применить к транзистору с плавающим затвором и его ячейкам.

Ключевые факты, касающиеся NAND Flash

Эволюция типов флэш-памяти впечатляет. StorageNewsletter.com, уважаемый и общепризнанный источник ежедневных электронных новостей для промышленности, следит за развитием NAND флэш-памяти довольно продолжительное время и имеет целый архив данных по существованию этой технологии.

Флэш-чипы: увеличение объемов и более низкая цена флэш-памяти и твердотельных накопителей напрямую зависят от процесса производства микросхем флэш-памяти NAND. SanDisk и Toshiba теперь предлагают линию MLC на 128 ГБ и чип с ячейкой в 3 бита каждая. Среди крупных мировых производителей флэш-памяти находятся такие компании, как: Intel, Samsung, Seagate, Nvidia, LSI, Micron и Western Digital.

Флэш-ключи (или флэшки): первые USB-флэш были разработаны в конце 1990-х годов компанией M-Systems, которая позже была приобретена компанией SanDisk. В 2001 году в США компания IBM начала производить версию памяти объемом в 8 Мб, называемую «память ключей». Сейчас объем такой памяти достигает 128 ГБ и цены были значительно снижены.

Та же компания M-Systems стала первым производителем SSD в 1995 году. С 1999, SN.com зафиксировали 590 разных моделей, запущенных в производство 97 компаниями. Среди остальных, BiTMICRO Networks в 1999 выпустили модель E-Disk SNX35 размером в 3.5 дюйма и объемами от 128MB до 10GB, временем доступа в 500 мс и со скоростью чтения и записи в 4MБ/с с помощью интерфейса SCSI-2. В следующий год M-Systems произвели FFD SCSI объемом в 3 ГБ, 2,5 дюймовый SSD с максимальной скоростью чтения в 4 МБ/с и записи в 3 МБ/с.

Сегодня же можно получить память объемом 16 ТБ (PCIe SSD от компании OCZ) со скоростью чтения до 4 ГБ/с и записи до 3,8 ГБ/с. Компания OCZ также объявила в 2012 году о максимально малом времени записи и чтения информации: 0.04 мс для чтения и 0.02 мс для операций записи.

Мы часто можем попасть в ситуацию, когда данные удаляются или повреждаются вследствие различных ошибок, как в системе, так и ошибок самого человека. О том, как восстановить данные с карты памяти можно узнать .

Критерии выбора устройства с NAND-флэш

Итак, когда дело доходит до выбора устройства (на примере SSD) с технологией NAND-флэш необходимо учитывать несколько критериев выбора:

Убедитесь в том, что SSD устройство, операционная и файловая система поддерживает TRIM, особенно, если карта использует контроллер жёсткого диска, что усложняет процесс сбора «мусора», ненужных данных:

— узнайте о том, поддерживает ли Ваша ОС трим можно узнать в любом источнике информации; — существуют приложения, которые способствуют добавлению трим-технологии для Вашей ОС, если такова не поддерживается. Но прежде узнайте, не повредит ли это общей производительности устройства. SSD с памятью NAND станет отличным выбором, когда нужна высокая производительность, отсутствие шума, устойчивость к внешним факторам влияния или малое потребление энергии: — непоследовательное считывание даст возможность увеличить производительность по сравнению с HDD; — узнайте о максимально возможной производительности устройства, чтобы не превысить пределы; Для лучшего выполнения операций и круглосуточного их проведения лучше выбирать SLC, чем MLC: — SSD на базе NAND отлично ускоряет работу серверов, но помните, что для этого также понадобиться запасное место для «мусора» и/или трим. — Система RAID с SSD даст высокие показатели производительности и устойчивости, но используйте специально разработанные для SSD рэйд-контроллеры, иначе накопиться столько «мусора», что не справиться даже трим или система сбора. Устройства SSD с большими показателями выносливости, конечно же, прослужат дольше: — Например, выбирайте устройство объемом в 100 ГБ вместо 128 ГБ, 200 ГБ вместо 256 ГБ и так далее. Тогда Вы будете точно знать, что 28 или 56 и так далее гигабайт памяти это, возможно, зарезервированное место для расчета износа, реорганизации файлов и дефектных ячеек памяти. Для использования в промышленности, на производстве или в офисах, лучше выбирать устройства бизнес-класса, например, PCI Express (PCIe) SSD устройство:

Карты PCIe со специально настроенным контроллером SSD может дать очень высокую производительность ввода-вывода данных и хорошую выносливость.

Потребность в энергонезависимой флэш-памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе флэш-памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в флэш-памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, флэш-память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR и NAND. Структура NOR (рис.1) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис.2) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

рис.1 Структура NOR рис.2 Структура NAND

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR. Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-флэш ниже, чем в других технологиях флэш-памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Основные отличия в параметрах флэш-памяти, изготовленной по различным технологиям, приведены в таблице 1.

Таблица 1. Сравнительные характеристики модулей памяти на основе ячеек NAND и NOR

Параметр NAND NOR
Емкость ~ 1 Гбит (2 кристалла в корпусе) ~ 128 Мбит
Напряжение питания 2.7 – 3.6 В 2.3 – 3.6 В
Ввод/вывод х8 / х16 х8 / х16
Время доступа 50 нС (цикл последовательного доступа)
25 мкС (случайный доступ)
70 нС (30 пФ, 2.3 В)
65 нС (30 пФ, 2.7 В)
Скорость программирования (типовая) -
200 мкС / 512 байт
8 мкС / байт
4.1 мС / 512 байт
Скорость стирания (типовая) 2 мС / блок (16 кБ) 700 мС / блок
Совокупная скорость
программирования и стирания (типовая)
33.6 мС / 64 кБ 1.23 сек / блок (основной: 64 кБ)

Ведущим лидером в производстве NAND-флэш микросхем является фирма Hynix. Она производит несколько разновидностей микросхем памяти, различающихся по следующим ключевым параметрам:

  • емкость (256 Мбит, 512 Мбит и 1 Гбит);
  • ширина шины, 8 или 16 бит (х8, х16);
  • напряжение питания: от 2.7 до 3.6 В (3.3 В устройства) или от 1.7 до 1.95 В (1.8 В устройства);
  • размер страницы: в х8 устройствах (512 + 16 запасных) байт, в 16х – (256 + 8 запасных) слов;
  • размер блока: в х8 устройствах (16 К + 512 запасных) байт, в 16х – (8 К + 256 запасных) слов;
  • время доступа: случайный доступ 12 мкС, последовательный 50 нС;
  • время программирования страницы 200 мкС;

Все микросхемы NAND-флэш от Hynix характеризуются типичным временем стирания блока 2 мС, имеют аппаратную защиту данных при переходных процессах по питанию и позволяют выполнять 100000 циклов записи/стирания. Гарантированное время сохранности данных составляет 10 лет. Важной особенностью микросхем памяти Hynix является их повыводная совместимость вне зависимости от емкости. Это позволяет очень легко улучшать потребительские характеристики конечного изделия. В таблице 2 приведены базовые параметры всех микросхем NAND-флэш фирмы Hynix.

Таблица 2. Сравнительный перечень микросхем NAND-флэш фирмы Hynix

Об"ем Тип Организаця Напряжение
питания
Диапазон
рабочих
температур*
Сккорость
(ns)
Корпус
256Mbit 32Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
512Mbit 64Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
1Gb 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA

* - Диапазоны температур
C - Коммерческий диапазон рабочих температур 0...+70°C
E - Расширенный диапазон рабочих температур -25...+85°C
I - Индустриальный диапазон рабочих температур -40...+85°C

Более детально особенности микросхем памяти Hynix можно рассмотреть на примере кристаллов серии HY27xx(08/16)1G1M. На рис.3 показана внутренняя структура и назначение выводов этих приборов. Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Для увеличения жизненного цикла NAND-флэш устройств настоятельно рекомендуется применять код корректировки ошибок (ECC). Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.


Рис.3 Внутренняя организация микросхем NAND-флэш Hynix

Для оптимальной работы с дефектными блоками доступна команда «Copy Back». Если программирование какой-либо страницы оказалось неудачным, данные по этой команде могут быть записаны в другую страницу без их повторной отправки.

Микросхемы памяти Hynix доступны в следующих корпусах:

  • 48-TSOP1 (12x20x1.2 мм) – рис.4;
  • 48-WSOP1 (12х12х0.7 мм)
  • 63-FBGA (8.5х15х1.2 мм, 6х8 массив шаровых контактов, 0.8 мм шаг)


Рис.4 NAND-флэш Hynix

Массив памяти NAND-структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис.5). Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC), программных флагов и идентификаторов негодных блоков (Bad Block) основной области. В устройствах х8 страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В устройствах х16 страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.


Рис.5 Организация массива NAND-памяти

NAND-флэш устройства со страницами 528 байт / 264 слова могут содержать негодные блоки, в которых может быть одна и более неработоспособных ячеек, надежность которых не гарантируется. Помимо этого, дополнительные негодные блоки могут появиться в ходе эксплуатации изделия. Информация о плохих блоках записывается в кристалл перед отправкой. Работа с такими блоками выполняется по процедуре, детально описанной в справочном руководстве по микросхемам памяти Hynix.

При работе с микросхемами памяти выполняются три основных действия: чтение (рис.6), запись (рис.7) и стирание (рис.8).

Процедура чтения данных


Рис.6 Диаграмма процедуры чтения

Процедуры чтения данных из NAND-памяти могут быть трех типов: случайное чтение, постраничное чтение и последовательное построчное чтение. При случайном чтении для получения одной порции данных нужна отдельная команда.

Чтение страницы выполняется после доступа в режиме случайного чтения, при котором содержимое страницы переносится в буфер страницы. О завершении переноса информирует высокий уровень на выход «Чтение/занят». Данные могут быть считаны последовательно (от выбранного адреса столбца до последнего столбца) по импульсу сигнала на Read Enable (RE).

Режим последовательного построчного чтения активен, если на входе Chip Enable (CE) остается низкий уровень, а по входу Read Enable поступают импульсы после прочтения последнего столбца страницы. В этом случае следующая страница автоматически загружается в буфер страниц и операция чтения продолжается. Операция последовательного построчного чтения может использоваться только в пределах блока. Если блок изменяется, должна быть выполнена новая команда чтения.

Процедура записи данных


Рис.7 Диаграмма процедуры записи

Стандартной процедурой записи данных является постраничная запись. Главная область массива памяти программируется страницами, однако допустимо программирование части страницы с необходимым количеством байт (от 1 до 528) или слов (от 1 до 264). Максимальное число последовательных записей частей одной и той же страницы составляет не более одной в главной области и не более двух в резервной области. После превышения этих значений необходимо выполнить команду стирания блока перед любой последующей операцией программирования этой страницы. Каждая операция программирования состоит из пяти шагов:

  1. Один цикл на шине необходим для настройки команды записи страницы.
  2. Четыре шинных цикла требуются для передачи адреса.
  3. Выдача данных на шину (до 528 байт / 264 слов) и загрузка в буфер страниц.
  4. Один цикл на шине необходим для выдачи команды подтверждения для старта контроллера PER.
  5. Выполнение контроллером PER записи данных в массив.

Процедура стирания блока


Рис.8 Диаграмма процедуры стирания

Операция стирания выполняется за один раз над одним блоком. В результате её работы все биты в указанном блоке устанавливаются в «1». Все предыдущие данные оказываются утерянными. Операция стирания состоит из трех шагов (рис.8):

  1. Один цикл шины необходим для установки команды стирания блока.
  2. Только три цикла шины нужны для задания адреса блока. Первый цикл (A0-A7) не требуется, поскольку верны только адреса с А14 по А26 (старшие адреса), А9-А13 игнорируются.
  3. Один цикл шины необходим для выдачи команды подтверждения для старта контроллера PER.

Помимо Hynix микросхемы NAND-памяти выпускаются еще несколькими производителями, среди которых весьма большую номенклатуру и объем продаж изделий имеет компания Samsung. Она производит две базовые линейки микросхем памяти NAND Flash и One NAND™. Модули памяти семейства One NAND™ представляют собой одиночный кристалл памяти со стандартным интерфейсом NOR-флэш, основанный на массиве ячеек NAND-флэш.

Ассортимент выпускаемых компанией Samsung изделий более широк, чем у Hynix. Представлены модули емкостью от 4 Мбит до 8 Гбит, работающие в коммерческом и индустриальном температурных диапазонах. Доступны как 8-ми, так и 16-разрядные модификации на разные диапазоны питающих напряжений: 1,65…1,95 В или 2,7…3,6 В. Выпускаемые Samsung изделия имеют развитые аппаратные возможности защиты данных: защиту от записи для BootRAM, защитный режим для Flash-массива и защиту от случайной записи при включении и выключении.

В остальном устройство микросхем памяти Hynix и изделий семейства NAND Flash от Samsung практически идентично. В этой ситуации предпочтительным для потребителя вариантом является продукция того производителя, рыночная стоимость изделий которого наиболее приемлема.

Высокое быстродействие при считывании последовательных потоков данных предопределяет широкую сферу применимости NAND-флэш. Весьма популярным и перспективным рынком для памяти такого типа является рынок твердотельных накопителей для шины USB. В таблице 3 отражены возможности производимых в настоящее время микросхем NAND-флэш применительно к этой сфере. Помимо этого, наиболее выгодным оказывается использование такой памяти в MP3-плеерах, цифровых фотоаппаратах, компьютерах - наладонниках и в другом подобном оборудовании.

Таблица 3. Преимущества и недостатки использования NAND-флэш в твердотельных накопителях

Категория Содержимое
Возможности Преимущества Хранилище данных, которые могут быть переданы через USB
Малый размер, легкость создания портативных устройств
Нет ограничений в объеме памяти
Безопасное хранение данных, физически более надежное в сравнении в HDD
Поддержка функции «горячей» установки Plug&Play
Быстрая скорость передачи:
USB 1.1: максимум до 12 Мбод, USB 2.0: максимум 480 Мбод
Превосходная совместимость со стандартизованным USB интерфейсом
Возможность питания от USB порта (500 мА, 4,5…5,5 В)
Недостатки Необходимость в программном обеспечении в операционной системе хост-контроллера
Необходимость в использовании чипсета USB-хоста
Высокая стоимость в сравнении с HDD сравнимой емкости
Емкость продукта От 16 Мбит до 8 Гбит
Скорость передачи Запись До 13 Мб/с под USB 2.0 у карты CF от SanDisk
Чтение До 15 Мб/с под USB 2.0 у SanDisk
Применение ПК (настольные, переносные), DVC,PDA, сотовые телефоны и пр.
Ведущие производители, использующие флэш-память M-Systems, Lexar Media, SanDisk и др.
Ассоциации USB-IF (форум конструкторов USB), UTMA (ассоциация универсальной транспортабельной памяти)

Простой способ ускорить работу вашего компьютера - установка на него SSD накопителя. Про мы уже говорили в одной из предыдущих статей. Эти накопители бывают нескольких типов и я бы хотел сегодняшнюю статью посвятить именно этому. Первый - SATA твердотельный диск, обычно он бывает в форм-факторе 2,5" и является универсальным решением с очень хорошей скоростью и достаточно приемлемой ценой.

Он подходит для любого компьютера, практически для любого ноутбука (бывают исключения, как например модели SONY, где используется диск форм-фактора 1,8"). Далее по списку у нас идет PCI, особенно обратите внимание на SSD PCI 3.0 - они обладают просто сумасшедшей скоростью и вы можете быть удивлены той производительностью, которую получаете с такими накопителями.

Но, у них, как и у всего хорошего, есть одни минус - достаточно высокая цена, которая зачастую в 2, а то и в 3 раза выше, чем у обычных SSD SATA 2,5 дисков. Еще существуют mSATA (на картинке ниже), что является сокращением от «mini SATA», они чаще всего используются в ноутбуках, однако, по скорости такие накопители ничем не отличаются от обычных SATA 2, то есть это тоже самое, но в более маленьком форм-факторе.

Посмотрите - насколько меньше mSATA SSD диск (зеленая печатная плата сверху) по сравнению с обычным 2,5" жестким диском

Примечательно, что существуют SSD исключительно для Apple (они и тут остались обособленными «личностями»), и они стоят еще дороже, хотя по производительности ничем не отличаются от тех же самых PCI SSD. Скорость записи тут может составлять 700 Мб/с - что является шикарным показателем.

Если вы хотите купить SSD себе, то вам в любом случае придется выбирать между SATA и PCI версиями, и тут уже вопрос цены. Если вы проводите за своим компьютером очень много времени, то обязательно попробуйте PCI версию накопителя. Потому что он сам по себе идет в RAID-массиве (это когда 2 жестких диска соединяются в один, грубо говоря), в этом случае информация считывается сразу с двух устройств, что ускоряет работу системы ровно в 2 раза.

PCI SSD - устанавливается внутрь системного блока компьютера

То есть, к примеру, та же Windows устанавливается сразу на 2 флеш-накопителя (2 разных чипа) и считывается с них одновременно, что является поистине великолепным решением для увеличения производительности компьютера, однозначно рекомендую к покупке.

Если же вы просто хотите хоть как то ускорить свой старый компьютер, который, возможно, в скором времени планируете поменять на что-нибудь более производительное, или просто первый раз хотите попробовать твердотельный накопитель в работе - однозначно рекомендую взять всем привычный и проверенный временем SATA 2,5 SSD.

Исходя из устройства твердотельного жесткого диска (в нем нет вращающихся магнитных дсков, как в HDD, например), видно, что его скорость работы и вообще, сам факт его работы - напрямую зависят от двух параметров: модели контроллера и разновидности чипов NAND памяти . Причем, даже два разных накопителя могут содержать в себе один и тот же контроллер, но, при этом, скорость работы их будет отличаться (все зависит от прошивки). Контроллер условно делит всю память на ячейки, в которые потом будет записываться информация.

И вот тут-то как раз и заключаются фундаментальные отличия различных типов памяти SSD. То есть, не важно - какая модель памяти используется в самом накопителе, контроллер в любом случае должен сначала поделить ее на так называемые ячейки. А вот сколько бит информации помещается в одну ячейку - определяет как раз тип NAND памяти. В настоящее время применяется всего три разновидности: SLC, MLC, TLC (как разновидность MLC).

SLC

SLC (Single Level Cell) - позволяет сохранять в одну ячейку только 1 бит информации - ноль или единица. Это самый дорогой вид NAND-микросхем. Дороговизна определяется сложностью в производстве таких накопителей. Кроме цены, к недостаткам еще можно отнести низкую емкость - порядка 60 Гб, например.

Однако, такой накопитель будет быстрее и надежнее всех других, за счет того, что ячейка будет перезаписываться намного реже, что, как известно, существенно продлевает ресурс самого устройства. До 100 000 раз можно перезаписывать одну ячейку, по уверениям производителей. Кроме того, технология SLC обеспечивает наибольшую скорость чтения/записи информации, и такие накопители самые быстрые.

На данный момент рынок SLC-решений сформирован крайне слабо. До недавнего времени одним из известных таких накопителей был Intel X25-E, который имел емкость всего лишь 64 Гб. Стоил он порядка 20000 рублей - что крайне дорого, ведь за эти же самые деньги можно с легкостью купить SSD диск емкостью около 1 терабайта (1000 Гб), правда - с MLC памятью.

MLC

MLC (Multi-Level Cell) - многоуровневая ячейка, позволяет записывать сразу два бита информации, что теоретически снижает ее ресурс ровно вдвое. Однако, по факту ресурс MLC SSD диска еще ниже. Изначально накопители предлагали до 10000 циклов перезаписи, затем этот показатель упал до 5000, а затем стал таким, как указано в таблице.

Тем не менее, на сегодняшний день является самым распространенным типом памяти на рыке твердотельных накопителей . Моделей такого типа просто огромное количество, их емкость уже существенно выше, чем у SLC моделей, и может достигать до 1 Тб и даже выше. Кроме того, цена MLC-накопителей той же емкости будет существенно ниже, чем в случае с SLC. Как видно из таблицы, быстродействие MLC тоже несколько хуже.

Существует еще подвид MLC - eMLC (enterprise MLC), из достоинств: увеличенный срок службы чипов, за счет большего количества возможных циклов записи/перезаписи. Мало кто знает, но у компании Samsung, например, имеется уникальная технология под названием «3D V-NAND», которая позволяет разместить ячейки вертикально, значительно расширяя объем памяти без удорожания производства.

TLC

TLC (Triple Level Cell) - угадайте, сколько бит информации может хранить такая TLC-ячейка? Все правильно, целых три. То есть, как вы уже поняли, все эти сокращения говорят нам о плотности хранения информации в NAND-чипах. Получается, самая «экономная» память будет именно TLC. Похожие (TLC) чипы применяются во флешках, где срок службы (количество циклов перезаписи) не является столь важным параметром. Кроме того, технология TLC очень дешева в производстве.

Я бы порекомендовал использовать TLC - как жесткий диск (не путать с HDD диском) для установки на него игр, например. А что, скорость чтения с него будет в разы выше, чем даже у самого быстрого HDD, а стоимость TLC твердотельных накопителей самая низкая из всех, на сегодняшний день (но все равно дороже, чем HDD). А для установки ОС лучше использовать накопитель с MLC, так как она более надежная и долговечная, нежели TLC.

ONFi и Toggle Mode

Накопители (твердотельные диски) с MLC делятся на два вида в соответствии с используемым интерфейсом. Обе эти аббревиатуры обозначают не просто разные интерфейсы, но и объединения (альянсы) разных производителей флеш-памяти, выпускающейся по определенному стандарту. Например, Intel, Micron, Spectec, Hynix относятся к «ONFI». А Samsung, Toshiba, SanDisk - соответственно к «Toggle Mode».

Оба интерфейса бывают разных версий, версии определяют пропускную способность для каждого канала NAND. Кроме того, ONFI делится на асинхронный и синхронный, последний - обеспечивает быстродействие, но при этом нехило повышает цену девайса. Ну а асинхронный, соответственно - дешевле, но медленней. При прочих равных память Toggle Mode «на бумаге» выглядит несколько быстрее ONFi в операциях «последовательная запись» и «случайное чтение».

Как определить тип памяти SSD?

Попробовать узнать его программным путем можно, например, с помощью программы «SSD-Z». Ну а еще эту информацию можно поискать в обзорах накопителей, либо на специальных сайтах (чаще всего англоязычных) - сборниках характеристик моделей SSD.