Программирование raspberry pi 2 на c. GPIO-пины Raspberry Pi и их использование из Python

Программирование Raspberry Pi 3 - это как раз то, для чего большинство людей и берет этот одноплатный компьютер. Здесь сразу же следует отметить, что в этом материале не будет изложено инструкций, подробно раскрывающих, как и что нужно делать - таких в «сети» полно. Однако, рекомендуется читать официальную документацию и специализированные формы. Вместо этого в статье будут рассмотрены основные моменты, из которых станет понятно, что на Raspberry Pi программирование не отличается сложностью.

Python - это основной язык Raspberry Pi

Почти все владельцы Raspberry Pi понимают, что означает первое слово в названии одноплатника - "малина". Однако второе многие интерпретируют неверно.

Некоторые считают, что оно означает "Пи" (3,14…), другие думают, что это первые две буквы слова Pie (пирог, и в этом есть смысл - "малиновый пирог"). Однако на деле все иначе.

Pi - это сокращение от Python, только с заменой y на i. Так часто делают в программировании. Взять, например, хотя бы KDE, где во многих программах вместо С написано K (в угоду стилю): Konsole (правильно - Console), Konqueror (Conqueror) и т. д.

То есть, как не трудно догадаться, в Raspberry основным языком является "Пайтон". Поэтому владельцу "Малины", который пока не знает никакого ЯП, рекомендуется изучать именно этот. Причин, почему Raspberry Pi 3 программирование на Python наиболее лучшее решение, существует множество.

Вот лишь некоторые из них:

  • работа из коробки в Raspbian;
  • наличие обширной, хорошо документированной официальной библиотеки, которая уже включена в пакет;
  • простота языка и т. д.

Здесь по понятным причинам не будем рассказывать о языке и особенностях программирования на нем - это можно и нужно делать на официальных ресурсах (или, если не позволяет плохое знание английского - на специализированных).

Вместо этого будет рассмотрено, насколько легко можно программировать "Малину". Для примера возьмем Raspberry Pi 3 GPIO программирование. Сделаем предположение, что в наличии имеется все необходимое: провода, светодиод, резистор и прочее, а также присутствует понимание распиновки - нумерации пинов. Также предположим, что светодиод подключен к 11 порту.

Написанный ниже код включает лампочку на 5 секунд, а затем выключает ее:

# вначале подключим необходимую библиотеку

import RPi.GPIO as GPIO

# также понадобится библиотека, которая отвечает за ожидание (она нужна, чтобы установить интервал включения и выключения лампочки)

# чтобы запустить GPIO, понадобится выполнить следующую функцию

GPIO.setmode(GPIO.BOARD)

# теперь Python знает о GPIO, и ему можно указать на то, с каким портом нужно будет работать и что он должен делать (в данном случае - 11-м и он будет работать на выход)

GPIO.output(11, 1)

# теперь выключим (0 - значит false)

GPIO.output(11, 0)

Указанный код можно скопировать, вставить в документ и сохранить его с расширением.py, расположив, например, в домашней директории. Затем его нужно запустить командой: python ~./имя_файла.py.

Если все работает, то оборудование исправно.

Следует отметить, что, если вы плохо понимаете вышеуказанный код, обратитесь к документации и изучите основы программирования на Python, а также библиотеку GPIO. А если у вас есть хотя бы базовое понимание любого ЯП, то осознаете, что приведенный пример предельно прост.

Программирование на других языках под Raspberry

Программирование на C для Raspberry Pi или на других языках программирования почти ничем не отличается от того, что предполагает написание кода под другими платформами. Единственное - необходимы специальные библиотеки.

Библиотека WiringPi для работы с GPIO

Если интересует Raspberry Pi программирование на C/С++ и работа с GPIO, то требуется установить в систему непосредственно сам gcc, а затем библиотеку wiringPi - ее можно найти на GitHub. В описании к ней присутствует мануал по использованию.

Следует отметить, что для установки библиотек из GitHub, требуется утилита GIT. Если в системе ее нет, понадобится поставить из репозитория (полное имя: git-core).

Программирование "Малины" при помощи Java

Желающие программировать Raspberry Pi на Java, должны обратить внимание на Pi4J - библиотеку, которая предназначена специально для работы с "Малиной". Загрузить и узнать о ее особенностях можно на официальном сайте проекта.

Интересно то, что изначально "Малина" разрабатывалась непосредственно для обучения детей программированию. Создатель этого устройства заметил, что уровень понимания функционирования компьютеров у современных студентов значительно ниже, чем у тех, кто учился в 90-х. Он связал это с тем, что вычислительные устройства стали предельно просты: если раньше увлеченным электроникой детям и подросткам приходилось разбираться в командах терминала и даже самостоятельно писать код, теперь все делается посредством нажатия на пару кнопок.

Поэтому, естественно, предусмотрено визуальное программирование Raspberry Pi. В частности, для этого применяется язык Scratch со специальным сервером - GPIOSERVER. В Сети существует множество мануалов, которые помогают освоиться с соответствующими программами, поэтому рассматривать их смысла нет.

Перечисленными языками не ограничиваются возможности "Малинки". С ней можно взаимодействовать в том числе и при помощи PHP, Ruby, Perl и прочих ЯП. Почти под каждый популярный язык существуют хоть и не официальные, но зато рабочие и достаточно функциональные библиотеки. Однако опять следует упомянуть, что лучше для программирования Raspberry использовать именно "Пайтон".

В 2011 году одноплатный компьютер Raspberry Pi был выпущен для тех, кто устал искать готовые решения и решил творить технологическое окружение самостоятельно. В то время как Arduino – это игрушка в большей степени для любителей работать руками, «малиновый» продукт – разминка мозга для программистов.

Всего за 6 лет под Raspberry были адаптированы почти все популярные языки программирования. Какие-то имеют существенные ограничения, какие-то работают на полную катушку. Рассмотрим 9 представителей второй категории.

Scratch

Официальный сайт предлагает пользователям Raspberry первый делом обратиться к Scratch. Исходники языка уже включены в стандартную операционную систему Raspbian. Начать создание IoT с помощью Scratch может как взрослый специалист, так и совсем ещё ребёнок. Недаром он всего за 10 лет выбился в топ-20 языков по числу запросов в поисковиках.

Python

Возможно для вас это будет сюрпризом, но Pi в названии – это не математическая константа, а отсылка к Python. IDLE, стандартная среда разработки программ на Raspberry, работает как раз на змеином языке. На официальном сайте в разделе документация вы найдёте базовое руководство . Кроме того, благодаря Python Games и их исходникам, вы познакомитесь с возможностями языка.

HTML5 и CSS3

Компьютеры Raspberry Pi подходят для создания систем IoT, а встроенный браузер Epiphany - подходящий клиентский интерфейс. Это значит, что без языков веба не обойтись. HTML5 и CSS3 позволят вам решить вопрос создания виртуальной оболочки умного дома с минимальными затратами времени и незначительными ограничениями.

JavaScript

JavaScript - динамическая сила Raspberry Pi. Вы сможете поработать с ним благодаря платформе Node.js, позволяющей вам создавать десктопные и веб-приложения. Не стоит забывать про библиотеку jQuery, которая работает в любом браузере, и наполняет его привычными динамическими функциями.

Java

Возможность запустить Java-код на любой платформе – главная концепция языка. И эта концепция особенно полезна для таких платформ, как Raspberry Pi. Вы сначала отладите код на «большой» ОС, а потом перенесёте на Raspbian. При этом разработка приложений на Java внутри «малиновой» системы затруднительна - здесь нет полноценной среды для этого языка.

С

Так как Raspbian – ОС на базе Unix, в качестве базового языка здесь выступает С. С его помощью вы получите максимальную производительность без использования машинных команд. Это особенно важно для серверных систем в составе IoT. Надмножество языка, Objective-C, используется для написания приложений для iPhone и iPad, что также может пригодиться вам с «малиной».

C++

С++ пригодится там, где нужны и скорость, и безопасность, и чёткость работы. Спектр задач при этом невероятно широк – от работы непосредственно с железом до организации взаимодействия устройств и клиентов. С++ переменит на «малиновую» сторону опытных разработчиков из прошлого века и тех, кто до этого писал код лишь для микроконтроллеров.

Perl

Perl постепенно сдаёт позиции в мире больших машин, но в Raspberry Pi это пока один из основных инструментов. Он поставляется «из коробки», имеет множество расширений и дополнений, с его помощью можно организовать сбор информации или переписать Си-программу. Это ударит по быстродействию, зато работать с таким кодом на порядок проще.

Erlang

Erlang - язык программирования для создания сложных систем. Допустим вы разрабатываете на своем одноплатном друге атомную электростанцию или нейронно-вычислительную сеть. C++ или другой прикладной язык не подойдёт. А вот Erlang позволит вам минимизировать ошибки и извлечь максимум возможностей из Raspberry Pi. Конечно, если вы дорастете до этого уровня.

Как вы поняли, язык разработки для Rasberry Pi имеет третьестепенное значение. Выбор зависит от вкусовых предпочтений, от типа решаемой задачи и вашего опыта. А значит, Rasberry Pi станет вашим верным спутником в программировании, какой бы путь вы ни выбрали.

До сих пор Raspberry Pi остается одним из самых популярных технологических гаджетов.На эту плату Вы можете установить практически любую операционную систему. Но сегодня мы поговорим о том, как писать программы для этой платы без операционной системе, пользуясь лишь аппаратными средствами.

В чем подвох?

На первый взгляд задача кажется тривиальной: скачиваем keil, создаем проект… Но все не так просто. Все среды программирования(keil, IAR, Atolic) поддерживают максимум ARM9.У нас же ARM11. Это связано с негласным правилом, что на голом железе пишут до ARM9, а после на Линуксе. Но все-таки есть одна лазейка: arm-none-eabi-gcc поддерживает любой ARM.
Вторая проблема заключается в том, что под данный процессор(BCM2835) нет никаких конфигурационных файлов, header"ов и т.д. Здесь нам на помощь придет загрузчик Raspberry Pi. И ничего, что он пропритетарный. Он выполняет две функции: инициализирует процессор и его периферию, а также передает управление ядру kernel.img. Мы просто замаскируем свою программу под ядро и загрузчик её запустит.

Что нам понадобится?

1) Сама Raspberry Pi, карта памяти к ней и питание.
2) Даташит на процессор
3) Компьютер с установленным Linux (но может быть можно и на Винде. Не знаю, не пробовал).
4) Кросскомпилятор, установленный на компьютере из пункта 3. Я использую arm-none-eabi-gcc
5) Содержимое этой папочки.

Приготовления.

Нам нужно отформатировать карту памяти в FAT16 и закинуть на нее содержимое этой папки . Это загрузчик плюс ядро. Затем удаляем оттуда файлы kernel.img и kernel_emergency.img. Это ядро Linux, а оно нам не нужно.

Первая программа.

Теперь мы можем приступить к написанию первой программы. Создаем файл main.c и пишем следующий код
int main (void) { while(1) { } } void exit (void) { while(1) { } }
Как видите, эта программа ничего не делает. Функция exit зачем-то нужна компилятору.
Теперь соберем её.
arm-none-eabi-gcc -O2 -mfpu=vfp -mfloat-abi=hard -march=armv6zk -mtune=arm1176jzf-s -nostartfiles main.c -o kernel.elf
arm-none-eabi-objcopy kernel.elf -O binary kernel.img

Полученный файл kernel.img кидаем на карту памяти. Готово!

GPIO

Вряд ли Вас устроит программа, которая не будет делать абсолютно ничего. Сейчас попробуем зажечь лампочку.
Для начала объявим адрес, по которому лежит GPIO(это можно прочитать в даташите).
#define GPIO_BASE 0x20200000UL

И объявим переменную, которая определяют, что порт настроен на выход (GPIO_GPFSEL1) и переменную, подающую низкий уровень(то есть лампочка горит) на порт (GPIO_GPCLR0).
#define GPIO_GPFSEL1 1
#define GPIO_GPCLR0 10

Ну и наконец модифицируем главную функцию для зажигания лампочки:
volatile unsigned int* gpio; int main(void) { gpio = (unsigned int*)GPIO_BASE; gpio |= (1 << 16); gpio = (1 << 16); while(1) { } }

Собираем, прошиваем и радуемся.

В следующей части попробуем поиграться с таймерами и прерываниями.

Raspberry PI - это устройство имеющее достаточную производительность для того чтобы на его основе могли быть построены роботы способные распознавать образы, выполнять работу людей и прочие подобные устройства для автоматизации и выполнения сложных вычислительных действий. Т.к. тактовая частота процессора Raspberry PI 3 м.б. 1.2 ГГц а его разрядность 32 бита то Raspberry PI 3 значительно превосходит обычное Arduino у которого тактовая частота как правило 16 МГц а разрядность микроконтроллера 8 бит, Arduino безусловно занимает своё место в выполнении операций не требующих большой производительности но когда её уже не хватает Raspberry PI "приходит на помощь" и перекрывает такой большой диапазон возможных применений что можно быть абсолютно уверенным в целесообразности приобретения данного одноплатного компьютера Raspberry PI 3 (можно заказать по ссылке) . Т.к. Raspberry PI - это компьютер то для того чтобы его использовать нужно на него установить операционную систему (хотя существуют обходные пути но всё же лучше и проще установить операционную систему (ос далее)). Существует много ос которые можно установить на Raspberry Pi но одной из самых популярных (для использования с Raspberry Pi), наиболее подходящих для начинающих является ос Raspbian. Для того чтобы установить ос на Raspberry Pi понадобиться micro sd карта с расширителем для того чтобы её можно было вставить в обычный компьютер и записать на неё ос. Sd карта должна иметь не менее 4Гб памяти при установке полной версии Raspbian и не менее 8Гб для установки минимальных версий Raspbian. Минимальные версии могут не иметь (и скорее всего не имеют) графического интерфейса и много всего остального что может считаться лишним и занимает место. Для избежания проблем с отсутствием необходимых файлов, можно поставить полную версию. Можно использовать SD карту 10го класса и с 32Гб памяти (проверено работает (как см. видео ниже)). После приобретения карты памяти её надо вставить в компьютер в соответствующий разъём, после этого посмотреть с какой буквой появился диск в разделе "мой компьютер" и запомнить, потом надо скачать ос с официального сайта https://www.raspberrypi.org/downloads/raspbian/ нажав кнопку "Download ZIP" под "RASPBIAN JESSIE" для скачивания полной версии или под "RASPBIAN JESSIE LITE" для скачивания облегчённой но, для начинающих, лучше выбрать "RASPBIAN JESSIE" т.е. полную версию. После скачивания архива "RASPBIAN JESSIE" его нужно разархивировать, потом скачать программу (или от сюда https://yadi.sk/d/SGGe1lMNs69YQ), установить её, открыть, далее нужно в правом верхнем углу указать букву диска (запомненную ранее), найти разархивированный образ ос

И нажать кнопку "write".

После чего выведется окно с предупреждением и в этом окне надо нажать кнопку "Yes",

После того как запись закончиться и появится окно сообщающее об успешной записи (Write Successful) нужно нажать кнопку "Ok" в этом окне.

Потом закрыть программу, вытащить SD карту безопасным способом и вставить в Raspberry Pi.

Далее можно подключить к Raspberry Pi usb клавиатуру (или ps2 через переходник), usb мышь и монитор или телевизор через hdmi кабель или можно подключить ethernet кабель (но это для опытных пользователей поэтому далее рассмотрим первый вариант). После этого надо подключить питание через micro usb например от зарядного устройства от смартфона. После подключения питания начнётся установка операционной системы. Как правило в новых (на момент написания данной статьи) версиях ос уже настроена возможность связи с Raspberry Pi по SSH и поэтому для того чтобы настроить связь с Raspberry Pi 3 по wifi достаточно настроить только wifi, Для этого в правом верхнем углу экрана есть значёк на который нужно нажать и выбрать wifi,

После чего вписать пароль от данного wifi в появившееся текстовое поле,

После этих действий wifi на Raspberry Pi 3 будет настроен и дальше можно будет не используя провода программировать Raspberry Pi 3 удалённо по wifi. После настройки Raspberry Pi 3 можно выключить вписав в командной строке (в программе LXTerminal которую можно открыть двойным кликом по иконке программы) команду sudo halt или нажав соответствующие кнопки выключения в графическом режиме, после окончательного выключения можно отключить питание и при следующей подаче питания Raspberry Pi 3 включиться с wifi. Теперь чтобы программировать Raspberry Pi 3 по wifi нужно выяснить какой у него ip адрес. Для того чтобы это сделать надо подать питание на Raspberry Pi 3, дождаться окончания загрузки ос, зайти в веб интерфейс маршрутизатора (вписав в строке браузера 192.168.1.1 или то что надо для входа в веб интерфейс, ввести логин и пароль), найти вкладку DHCP Leases или что то подобное, найти там строку с raspberry и ip адрес Raspberry Pi 3.

Далее нужно открыть программу PuTTY (если её нет то перед этим скачать (или ) и установить) поставить порт 22, соединение по SSH, вписать в поле "Host Name (or IP Adress)" ip адрес Raspberry Pi 3,

После чего нажать кнопку "Open" внизу окна, далее появиться чёрное окно с предложением ввести логин. По умолчанию логин "pi" - его надо ввести и нажать enter. Далее надо ввести пароль, по умолчанию "raspberry". При вводе пароля он не отображается - это нормально. После того как пароль введён невидимыми буквами нужно нажать enter и если всё было сделано правильно то мы получим доступ к Raspberry Pi 3 если нет то нужно повторить действия. После того как получен доступ к Raspberry Pi 3 можно его программировать, для начала нужно войти в папку "pi" для этого надо вписать команду

И нажать enter (после cd обязательно пробел).
Теперь можно открыть текстовый редактор nano. Nano - это специальный текстовый редактор который есть на большинстве ос на подобии Linux и в котором можно написать программу для Raspberry Pi. Для открытия этого редактора и одновременно с этим создания файла с названием "first" и расширением "py" нужно вписать команду

И нажать enter. Откроется редактор nano и можно заметь что его интерфейс немного отличается но в основном - это то же чёрное поле в которое надо вписывать команды. Т.к. мы хотим управлять портами ввода вывода общего (GPIO) то прежде чем запустить программу по управлению этими портами, нужно подключить к ним какое нибудь устройство чтобы можно было видеть что управление получилось. Надо также отметить что пины настроенные как выходы у Raspberry Pi могут выдавать очень небольшой ток (предполагаю что до 25мА) и учитывая что Raspberry Pi это всё таки не самое дешёвое устройство то настоятельно рекомендуется позаботиться от том чтобы нагрузка на выводы не была слишком большой. Маломощные индикаторные светодиоды, как правило, могут использоваться с Raspberry Pi т.к. им для того чтобы светиться достаточно небольшого тока. Для первого раза можно сделать приспособление с разъёмом, двумя встречно параллельно включёнными светодиодами и резистором с сопротивлением 220Ом включённым последовательно со светодиодами. Т.к. сопротивление резистора 220Ом, ток обязательно проходит через этот резистор и нет параллельных путей его прохода, напряжение на выводах 3.3В то ток не будет больше чем 3.3/220=0.015А=15мА. Подключить это можно к свободным GPIO например к 5 и 13 как на схеме

(распиновка взята с https://en.wikipedia.org/wiki/Raspberry_Pi), выглядеть это может примерно так:

После того как всё аккуратно и правильно подключено и есть уверенность в том что ничего не сгорит можно скопировать в редактор NANO первую простенькую программу на языке Python

Import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.output(13, True)
GPIO.output(5, False)
time.sleep(1)
GPIO.output(13, False)
GPIO.output(5, True)
time.sleep(1)
GPIO.cleanup()

Потом нажать

После выхода из редактора NANO можно ввести команду

Sudo python first.py

После чего светодиоды помигают некоторое количество раз. Т.е. получилось управлять портами ввода вывода общего назначения по wifi! Теперь давайте рассмотрим программу и выясним как это получилось.
Строка:

Import RPi.GPIO as GPIO

Это подключение библиотеки "GPIO" для управления выводами.
Строка:

Это подключение библиотеки "time" для задержек.
Далее идёт установка режима GPIO:

GPIO.setmode(GPIO.BCM)

Конфигурация выводов 5 и 13 как выходы:

GPIO.setup(13, GPIO.OUT)
GPIO.setup(5, GPIO.OUT)

Установка логической единицы на выводе 13, установка логического нуля на выводе 5:

GPIO.output(13, True)
GPIO.output(5, False)

Задержка

Установка логического нуля на выводе 13, установка логической единицы на выводе 5:

GPIO.output(13, False)
GPIO.output(5, True)

Переводит все выводы в исходное состояние и программа завершается. Т.о. можно управлять любыми свободными пинами по wifi и если сделать питание 5В от аккумулятора то уже можно сделать какого нибудь автономного робота или устройство не привязанное проводами к чему либо стационарному. Язык программирования Python (питон) отличается от си подобных языков, например вместо точки с запятой, для завершения команды, в питоне используется перевод строки, вместо фигурных скобок используется отступ от левого края который делается клавишей Tab. В общем Python это очень интересный язык на котором получается легко читаемый простой код. После того как работа (или игра) с Raspberry PI 3 закончена можно его выключить командой

И после полного выключения убрать питание. При подаче питания Raspberry PI 3 включается и с ним снова можно работать (или играть). Заказать Raspberry pi 3 можно по ссылке http://ali.pub/91xb2 . О том как делается настройка Raspberry PI 3 и управление его пинами можно посмотреть на видео:

После успешного мигания светодиодами можно приступить к полномасштабному изучению данного компьютера и созданию проектов используя возможностями Raspberry PI 3 которые ограничены лишь вашим воображением!

В этой статье описаны эксперименты с GPIO (General Purpose Input/Output, Входы/Выходы общего назначения) контактами Raspberry Pi. Я попробовал работать с ними тремя способами: Python, Bash и C. В этой статье будет описаны все три способа. Но для начала немного информации о настройке и подготовке.

Подключение к GPIO контактам RPi: Я использовал старый IDE шлейф от флоппи дисковода. Он имеет 34 контакта, а RPi имеет только 26 контактов, поэтому часть разъема не используется. На другом конце шлейфа припаяны BLS штырьки, которые вставлены в макетную плату и до сих пор очень хорошо работают.

Подключение выводов: По ссылкам есть таблица с значением выводов и схема их расположения. Выводы считаются слева на право, сверху вниз начиная с вывода 3.3В. Вот как использованы контакты у меня:
Вывод 2: 5В
Вывод 3: "GPIO0". К нему подключен один из выводов выключателя, другой его вывод подключен к GND. Этот вывод GPIO имеет внутренний подтягивающий pull-up резистор. Это означает, что когда переключатель не замкнут, на выходе высокий уровень, а когда замкнут – низкий.
Вывод 6: GND (этот вывод подключен к GND макетной платы)
Вывод 7: "GPIO4". К нему подключается анод светодиода через резистор 220 Ом.

Во всех следующих примерах будет использовано такое подключение. Различные библиотеки используют различные выводы, создавая путаницу, поэтому я постараюсь избавиться от неё. Также отметим, что всё это делается в режиме SSH, поэтому монитор не подключен.

Важное примечание: В RPi Wiki написано, что GPIO выводы небуферизованны и незащищены, поэтому короткое замыкание представляет опасность для всего RPi, поэтому будьте осторожны! Разрабатывается новая версия платы с защитой.

Важное примечание: Все программы, которые обращаются к GPIO контактам должны быть запущены с правами администратора, иначе вы получите сообщение об ошибке.

Python

Это один из моих любимых языков, поэтому я решил попробовать его. Во-первых, установите pip (Python package installer, пакет установки Python):

sudo curl https://raw.github.com/pypa/pip/master/contrib/get-pip.py | python

Затем установите RPi.GPIO модуль для Python:

sudo pip install rpi.gpio

Теперь вы можете войти в интерпретатор Python (sudo python), и делать такие вещи:

import RPi.GPIO as GPIO
GPIO.setup(7, GPIO.OUT)
GPIO.output(7, True)
GPIO.output(7,False)

Bash

Я всегда любил Unix за то, что основной его идеей является то, что все является файлом. GPIO контакты Raspberry Pi также являются файлами! С применением нашей макетной платы мы можем зажигать и гасить светодиод.

sudo su -
echo "4" > /sys/class/gpio/export
echo "4" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio4/direction
echo "1" > /sys/class/gpio/gpio4/value
echo "0" > /sys/class/gpio/gpio4/value

Для чтения входов используйте команду "cat" и путь файла.

echo "0" > /sys/class/gpio/export
echo "in" > /sys/class/gpio/gpio0/direction
cat /sys/class/gpio/gpio0/value

C

Старый добрый C. Базовый пример для C действительно сложный, но, к счастью Гордон написал Arduino подобную библиотеку , но для Raspberry Pi! Итак, вот что нужно сделать:

Загрузите и установите библиотеку:

cd /tmp
wget http://project-downloads.drogon.net/files/wiringPi-1.tgz
tar xfz wiringPi-1.tgz
cd wiringPi/wiringPi
make
sudo make install

В системе вашего Raspberry Pi теперь установлена библиотека wiringPi, поэтому мы можем написать небольшую программу с использованием её.

cd ~
nano blink.c

Скопируйте код данной программы:

/* * blink.c: * Simple test program to blink an LED on pin 7 */ #include #include int main (void) { int pin = 7; printf("Raspberry Pi wiringPi blink test\n"); if (wiringPiSetup() == -1) exit (1); pinMode(pin, OUTPUT); for (;;){ printf("LED On\n"); digitalWrite(pin, 1); delay(250); printf("LED Off\n"); digitalWrite(pin, 0); delay(250); } return 0; }

Компилируем код:

gcc -o blink blink.c -L/usr/local/lib -lwiringPi

И запускаем:

sudo ./blink

У вас должен получиться мигающий светодиод. Теперь можно сделать что-то более интересное:

/* * buttonLED.c: * Simple test program to change the blinking rate of an LED when a button is pressed */ #include #include int main (void) { int pin_LED = 7; // GPIO7 / header pin 7 int pin_switch = 8; // SDA0 / header pin 3 int del = 250; printf ("Raspberry Pi wiringPi button LED test\n") ; if (wiringPiSetup() == -1) exit (1); pinMode(pin_LED, OUTPUT); pinMode(pin_switch, INPUT); for (;;){ if (digitalRead (8) == 0){ // button pressed del = 100; } else { del = 250; } digitalWrite(pin_LED, 1); delay(del); digitalWrite(pin_LED, 0); delay(del); } return 0 ; }

А как же функция analogRead? К сожалению, в отличие от Arduino, RPi не имеет встроенного АЦП (аналого-цифрового преобразователя). Но некоторые из разрабатываемых плат будут включать в себя АЦП, например