Простой блок питания с защитой от кз. Технологии защиты в ATX-блоках питания. Сравнение сигналов с помощью компаратора

Добрый день. В этой заметке я хочу предложить вашему вниманию блок питания дополнительного усилителя мощности для портативной радиостанции «Веда-ЧМ» . Выходное напряжение блока питания 24В, номинальный ток нагрузки – 3,5А, порог тока срабатывания защиты от короткого замыкания – 5,5А, ток короткого замыкания – 0,06А.

Общий вид комплекта показан на фото 1.

Схема блока питания представлена на рисунке 1.

Силовой трансформатор блока – перемотанный сетевой трансформатор от старого телевизора ТС-90-1, в качестве первичной обмотки — используются все витки сетевой обмотки трансформатора. Новая вторичная обмотка содержит 2×65 витков провода ПЭТВ-2 диаметром 1,25мм. При отсутствии провода данного диаметра, можно на каждой из катушек намотать по 130 витков проводом диаметром 0,9мм. При этом катушки потом соединяют синфазно параллельно при сохранении схемы мостового выпрямителя. Если эти катушки соединить последовательно, то от двух диодов можно избавиться (Рис.2).

Схема стабилизатора собрана навесным монтажом (1 на фото 2). Конденсаторы С3 и С4 у меня находятся в корпусе усилителя мощности. Цифрой два обозначен дополнительный регулируемый стабилизатор напряжения для питания «Веда-ЧМ», собранного на микросхеме КРЕН12А. Меняя напряжение питания самой радиостанции, можно менять в некоторых пределах выходную мощность излучения усилителя. Схему этого стабилизатора можно найти в рубрике «Блоки питания» — «Стабилизатор напряжения на КР142ЕН12А». Индикатор перегрузки работает следующим образом. Напряжение на конденсаторах фильтра выпрямителя С1и С2 примерно равно 37 вольт, учитывая, что выходное напряжение – 24В, напряжение между точками 1 и 2 будет находиться в районе13 вольт, которого не хватит для пробоя стабилитронов VD5, VD6, так как их суммарное напряжение стабилизации равно 15В. При «коротыше» напряжение между этими точками возрастет, через стабилитроны потечет ток и светодиод HL1 загорится, а светодиод HL2 – погаснет. Обратите внимание на то, что на «земле» находятся коллектора мощных транзисторов, что, ну просто очень удобно, размещая транзисторы непосредственно на корпусе изделия. Блок питания и усилитель мощности висят на стене чердака под антенной, что значительно уменьшает потери мощности в кабеле. До свидания. К.В.Ю.

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания , переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.


Второй транзистор тоже не критичен, в моем случае использован высоковольтный биполярный транзистор серии MJE13003, но выбор большой. Ток защиты подбирается исходя из сопротивления шунта — в моем случае 6 резисторов по 0,1Ом параллельно, защита срабатывает при нагрузке 6-7 Ампер. Более точно можно настроить вращением переменного резистора, таким образом я настроил ток срабатывания в районе 5 Ампер.



Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.
Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.




Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.
Если все работает как нужно, то приступаем дальше. Собираем схему индикатора.

Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² R; P = 10 10 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье « ». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

Схема электронного предохранителя

В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Преобразователь ток — напряжения

В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Компаратор напряжения

На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.

Начиниющие радиолюбители, которых большинство, для сборки регулированного блока питания выбирают схемы попроще. Такую схемку решил сделать и я, так как возможностей достать дорогие детали и настроить сложный БП вряд-ли получится.

Самое основное для любой конструкции корпус. Тут мне повезло досать нерабочий БП ATX от компьютера, куда и будет помещён будущий блок питания.


Разъёмы сзади для сети 220В оставил, а на место кулера прикрутил обычную розетку, так как их постоянно не хватает для массы моих электронных устройств. Короче лишней она не будет.


Печатная плата блока питания простейшая и изготовить её будет легко даже начинающим. В крайнем случае можно вырезать дорожки резаком, а не травить. Для защиты по максимальному току - а это обязательно должно быть в радиолюбительском блоке питания, выбрал схему электронного предохранителя с индикацией перегрузки на светодиоде.


Передняя панель блока питания изготавливается из пластика, текстолита или даже фанеры - кто на что богат. На ней будут крепиться стрелочные индикаторы - вольтметр и амперметр (как впоследствии стало понятно, что это намного лучше и удобней цифровой индикации), регулятор напряжения и кнопки включения и переключения режимов защиты. Я выбрал 0,1 и 1А, но можно расчитать резистор токовой защиты на любое значение.


Ещё на передней панели блока питания будут две клеммы для подключения проводов выхода БП.


Получается вот что-то уже похожее на блок питания. Трансформатор выбираем такой, чтоб он поместился в корпус. Так что если вы идёте его покупать на радиобазаре - сначала замеряйте габариты коробки.


Корпус обклеиваем самоклеющейся плёнкой или красим лаком.


Зелёный светодиод будет светиться при включении БП в сеть, а красный сигнализирует о срабатывании защиты от токовой перегрузки.


Здесь написано как рассчитать шунт для стрелочных индикаторов. А чтоб нанести на шкалу новые значения вольт и ампер, придётся раскрыть их корпуса и аккуратно наклеить бумажки с новыми значениями поверх старых.


Вот и всё. Отличный простой блок питания из подручных материалов полностью готов. Работа с ним в течении нескольких месяцев показала его высокую надёжность и простоту эксплуатации. Материал предоставил in_sane.

Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

Термином «короткое замыкание» в электротехнике называют аварийный режим работы источников напряжения. Он возникает при нарушениях технологических процессов передачи электроэнергии, когда на действующем генераторе или химическом элементе выходные клеммы замыкаются накоротко (закорачиваются).

При этом вся мощность источника мгновенно прикладывается к закоротке. Через нее протекают огромные токи, способные сжечь оборудование и нанести электрические травмы близкорасположенным людям. Для прекращения развития подобных аварий используются специальные защиты.

Какие бывают виды коротких замыканий

Природные электрические аномалии

Они проявляются во время грозовых разрядов, сопровождающихся .

Источниками их образования являются высокие потенциалы статического электричества различных знаков и величин, накопленные облаками при их перемещении ветром на огромные расстояния. В результате естественного охлаждения при подъеме на высоту пары влаги внутри облака конденсируются, образуя дождь.

Влажная среда обладает низким электрическим сопротивлением, которое создает пробой воздушной изоляции для прохождения тока в виде молнии.


Электрический разряд проскакивает между двумя объектами, обладающими разными потенциалами:

  • на приближающихся облаках;
  • между грозовой тучей и землей.

Первый вид молнии опасен для летательных аппаратов, а разряд на землю способен разрушить деревья, здания, промышленные объекты, воздушные линии электропередач. Для защиты от него устанавливают молниеотводы, которые последовательно выполняют функции:

1. приема, притяжения потенциала молнии на специальный улавливатель;

2. пропускания полученного тока по тоководу к контуру заземления здания;

3. отвода высоковольтного разряда этим контуром на потенциал земли.

Короткие замыкания в цепях постоянного тока

Гальванические источники напряжения либо выпрямители создают на выходных контактах разность положительных и отрицательных потенциалов, которые в нормальных условиях обеспечивают работу схемы, например, свечение лампочки от батарейки, как показано на рисунке ниже.

Электрические процессы, происходящие при этом описывает математическое выражение .


Электродвижущая сила источника распределяется на создание нагрузки во внутреннем и внешнем контурах за счет преодоления их сопротивлений «R» и «r».

В аварийном режиме между клеммами батарейки «+» и «-» возникает закоротка с очень низким электрическим сопротивлением, которая практически исключает протекание тока во внешней цепи, выводя эту часть схемы из работы. Поэтому по отношению к номинальному режиму можно считать, что R=0.

Весь ток циркулирует только во внутреннем контуре, обладающим маленьким сопротивлением, и определяется по формуле I=E/r .

Поскольку величина электродвижущей силы не изменилась, то значение тока очень резко возрастает. Такое короткое замыкание протекает по закорачиваемому проводнику и внутреннему контуру, вызывает внутри них огромное выделение тепла и последующее нарушение конструкции.

Короткие замыкания в цепях переменного тока

Все электрические процессы здесь тоже описываются действием закона Ома и происходят по аналогичному принципу. Особенности на их прохождение налагают:

    применение схем однофазных или трехфазных сетей различной конфигурации;

    наличие контура заземления.

Виды коротких замыканий в схемах переменного напряжения

Токи КЗ могут возникнуть между:

    фазой и землей;

    двумя разными фазами;

    двумя разными фазами и землей;

    тремя фазами;

    тремя фазами и землей.

Для передачи электроэнергии по воздушным ЛЭП системы электроснабжения могут использовать разную схему подключения нейтрали:

1. изолированную;

2. глухозаземленную.

В каждом из этих случаев токи коротких замыканий будут формировать свой путь и иметь разную величину. Поэтому все перечисленные варианты сборки электрической схемы и возможности возникновения в них токов коротких замыканий учитываются в создании конфигурации токовых защит для них.

Внутри потребителей электроэнергии, например, электродвигателя тоже может возникнуть короткое замыкание. У однофазных конструкций потенциал фазы может пробить слой изоляции на корпус или нулевой проводник. В трехфазном электрооборудовании дополнительно может возникнуть неисправность между двумя или тремя фазами либо между их сочетаниями с корпусом/землей.

Во всех этих случаях, как и при КЗ в цепях постоянного тока, через образовавшуюся закоротку и всю подключенную к ней до генератора схему будет протекать ток короткого замыкания очень большой величины, вызывающий аварийный режим.

Для его предотвращения используют защиты, которые осуществляют автоматическое снятие напряжение с оборудования, подвергшегося действию повышенных токов.

Как выбирают границы срабатывания защиты от короткого замыкания

Все электрические приборы рассчитаны на потребление определенной величины электроэнергии в своем классе напряжения. Рабочую нагрузку принято оценивать не мощностью, а током. Его проще замерять, контролировать и создавать на нем защиты.

На картинке представлены графики токов, которые могут возникнуть в разных режимах работы оборудования. Под них подбираются параметры настройки и наладки защитных устройств.


На графике коричневым цветом показана синусоида номинального режима, который выбирается в качестве исходного при проектировании электрической схемы, учете мощности электропроводки, подборе токовых защитных устройств.

Частота промышленной синусоиды при этом режиме всегда стабильна, а период одного полного колебания происходит за время 0,02 секунды.

Синусоида рабочего режима на картинке показана синим цветом. Она обычно меньше номинальной гармоники. Люди редко полностью используют все резервы отведенной им мощности. Как пример, если в комнате висит пятирожковая люстра, то для освещения часто включают одну группу лампочек: две или три, а не все пять.

Чтобы электроприборы надежно работали при номинальной нагрузке, создают небольшой запас по току для настройки защит. Величину тока, на который их настраивают для отключения, называют уставкой. При ее достижении выключатели снимают напряжение с оборудования.

В интервале амплитуд синусоид между номинальным режимом и уставкой электросхема работает в режиме небольшого перегруза.

Возможная временна́я характеристика аварийного тока показана на графике черным цветом. У нее амплитуда превышает уставку защит, а частота колебаний резко изменилась. Обычно она имеет апериодический характер. Каждая полуволна изменяется по величине и частоте.


Любая защита от короткого замыкания включает в себя три основных этапа работы:

1. постоянное отслеживание состояния синусоиды контролируемого тока и определение момента возникновения неисправности;

2. анализ создавшейся ситуации и выдача логической частью команды на исполнительный орган;

3. снятие напряжения с оборудования коммутационными аппаратами.

Во многих устройствах используется еще один элемент - ввод задержки времени на срабатывание. Его используют для обеспечения принципа селективности в сложных, разветвленных схемах.

Поскольку синусоида достигает своей амплитуды за время 0,005 сек, то этого периода, как минимум, необходимо для ее замера защитами. Следующие два этапа работы тоже не совершаются мгновенно.

Общее время работы самых быстрых токовых защит по эти причинам чуть меньше периода одного колебания гармоники 0,02 сек.

Конструктивные особенности защит от короткого замыкания

Электрический ток, проходя по любому проводнику, вызывает:

    термический нагрев токопровода;

    наведение магнитного поля.

Эти два действия приняты за основу конструирования защитных аппаратов.

Защиты на основе принципа термического воздействия тока

Тепловое действие тока, описанное учеными Джоулем и Ленцем, используется для защиты предохранителями.

Защита предохранителями

Она основана на установке внутри пути тока плавкой вставки, которая оптимально выдерживает номинальную нагрузку, но перегорает при ее превышении, разрывая цепь.

Чем выше величина аварийного тока, тем быстрее создается разрыв схемы - снятие напряжения. При небольшом превышении тока отключение может произойти через длительный промежуток времени.


Предохранители успешно работают в электронных устройствах, электрооборудовании автомобилей, бытовой техники, промышленных устройствах до 1000 вольт. Отдельные их модели эксплуатируются в цепях высоковольтного оборудования.

Защиты на основе принципа электромагнитного воздействия тока

Принцип наведения магнитного поля вокруг проводника с током позволил создать огромный класс электромагнитных реле и защитных автоматов, использующих катушку отключения.


Ее обмотка расположена на сердечнике - магнитопроводе, в котором складываются магнитные потоки от каждого витка. Подвижный контакт механически связан с якорем, являющимся качающейся частью сердечника. Он прижимается к стационарно закрепленному контакту усилием пружины.

Ток номинальной величины, проходящий по виткам катушки отключения, создает магнитный поток, который не может преодолеть усилие пружины. Поэтому контакты постоянно находятся в замкнутом состоянии.

При возникновении аварийных токов якорь притягивается к стационарной части магнитопровода и разрывает цепь, созданную контактами.

Один из видов автоматических выключателей, работающих на основе электромагнитного снятия напряжения с защищаемой схемы, показан на картинке.


В нем используется:

    автоматическое отключение аварийных режимов;

    система гашения электрической дуги;

    ручное или автоматическое включение в работу.

Цифровые защиты от короткого замыкания

Все рассмотренные выше защиты работают с аналоговыми величинами. Кроме них в последнее время в промышленности и особенно в энергетике начинают активно внедряются цифровые технологии на основе работы и статических реле. Такие же приборы с упрощенными функциями выпускаются для бытовых целей.

Замер величины и направления тока, проходящего по защищаемой схеме, выполняет встроенный понижающий трансформатор тока высокого класса точности. Замеренный им сигнал подвергается оцифровке посредством наложения по принципу амплитудной модуляции.

Затем он поступает на логическую часть микропроцессорной защиты, которая работает по определенному, заранее настроенному алгоритму. При возникновении аварийных ситуаций логика устройства выдает команду исполнительному отключающему механизму на снятие напряжения с сети.

Для работы защиты используется блок питания, берущий напряжение от сети или автономных источников.

Цифровые защиты от коротких замыканий обладают большим количеством функций, настроек и возможностей вплоть до регистрации предаварийного состояния сети и режима ее отключения.