Работа рентгеновской трубки. Устройства рентгеновской трубки. Принципы получения рентгеновских лучей

Открыв « - лучи», Рентген тщательными опытами выяснил условия их образования. Он установил, что эти лучи возникают в том месте трубки, где летящие электроны, составляющие катодный пучок, задерживаются, ударяясь о стенку трубки. Исходя из этого обстоятельства, Рентген сконструировал и построил специальную трубку, удобную для получения рентгеновских лучей. В своих существенных чертах конструкция трубки Рентгена сохранилась и до нашего времени.

На рис. 302 изображена современная рентгеновская трубка. Катодом служит толстая накаливаемая вольфрамовая нить, испускающая интенсивный поток электронов (см. г. II, § 100), которые ускоряются приложенным электрическим напряжением. Катод снабжен колпачком из тантала, фокусирующим электроны, так как электроны вылетают перпендикулярно поверхности катода. Мишенью служит пластинка из вольфрама, платины или другого тяжелого металла, впрессованная в анод (зеркало анода), который для отвода тепла изготовляется из красной меди. Ударяясь о поверхность мишени, электроны задерживаются и дают рентгеновские лучи. Напряжение между катодом и анодом достигает нескольких десятков тысяч вольт. Для того чтобы электроны могли беспрепятственно достигать мишени, рентгеновскую трубку откачивают до высокого вакуума. Анод обычно охлаждают водой.

Рис. 302. Современная рентгеновская трубка; цепь накала катода не показана

Действуя на газы, рентгеновские лучи способны вызвать их ионизацию (см. т. II, § 92). Так, поместив около рентгеновской трубки заряженный электроскоп, мы обнаружим, что он быстро разряжается, если трубка приведена в действие (рис. 303). Причина потери заряда электроскопом состоит в том, что окружающий воздух ионизуется действием рентгеновских лучей и становится проводником. Ионизующее действие рентгеновских лучей также используется для их обнаружения и регистрации.

Рис. 303. Ионизующее действие рентгеновских лучей: 1 - рентгеновская трубка, 2 - электроскоп. Опыт удается как с положительно, так и отрицательно заряженным электроскопом. Под действием рентгеновских лучей в воздухе создаются ионы обоих знаков

Рис. 1. Терапевтическая, рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.

Рентгеновская трубка - электровакуумный прибор, предназначенный для получения рентгеновского излучения. Рентгеновское излучение возникает при торможении ускоренных электронов на экране антикатода (анода), изготовленного из тяжелого металла (например, вольфрама). Получение электронов, их ускорение и торможение осуществляется в самой рентгеновской трубке, представляющей вакуумированный стеклянный баллон, в который впаяны металлические электроды: катод (см.) - для получения электронов и анод (см.) - для их торможения (рис. 1). Для ускорения электронов к электродам подводится высокое напряжение.

Вильгельм Конрад Рентген
(Wilhelm Conrad Rontgen)

Первая рентгеновская трубка, с которой В. К. Рентген сделал свое открытие, была ионной. Рентгеновская трубка этого типа (хрупкие и трудноуправляемые) в настоящее время полностью вытеснены более совершенными электронными трубками. В них электроны получаются путем накаливания катода. Регулируя ток в цепи накала рентгеновской трубки, а следовательно, и температуру катода, можно изменять количество испускаемых катодом электронов. При низком напряжении не все испускаемые катодом электроны участвуют в создании анодного тока и у катода образуется так называемое электронное облако. При повышении напряжения электронное облако рассасывается и, начиная с определенного напряжения (напряжения насыщения), все электроны достигают анода. Через трубку при этом течет максимальный ток (ток насыщения). Напряжение на рентгеновской трубке обычно выше напряжения насыщения, поэтому возможно раздельно регулировать напряжение и ток Р. т.. Это означает, что жесткость излучения, определяемая напряжением, регулируется независимо от интенсивности, которая обусловлена анодным током.
Анод рентгеновской трубки обычно выполняется в виде массивного медного чехла, обращенного к катоду скошенным торцом, чтобы выходящее рентгеновское излучение было перпендикулярно оси трубки. В толщу анода впаяна вольфрамовая пластинка в 2- (зеркало анода).
Катод электронной рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама, которая выполнена в виде цилиндрической или плоской спирали и окружена металлическим стаканчиком для фокусирования пучка электронов на зеркале анода (фокусе рентгеновской трубки). В двухфокусных рентгеновских трубках катод содержит две нити накала.
При работе рентгеновской трубки на аноде выделяется большое количество тепла. Чтобы предохранить анод от перегрева и повысить мощность рентгеновской трубки, используются охлаждающие анод устройства: воздушное радиаторное, масляное, водяное охлаждение, охлаждение лучеиспусканием. В качестве материала оболочки рентгеновской трубки обычно применяют стекло, которое позволяет прикладывать к электродам достаточно высокое напряжение, пропускает рентгеновское излучение без заметного ослабления (для получения букки-лучей делают бериллиевые окна), достаточно прочно и непроницаемо для газов (вакуум в рентгеновской трубке 10-6- 10-7 мм рт. ст.). Диагностические рентгеновские трубки работают при максимальных напряжениях до 150 кв, терапевтические - до 400 кв.

Рис. 2. Линейчатый фокус диагностической рентгеновской трубки; 1 - зеркало анода; 2 - действительный фокус; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.

Рис. 4. Фокус трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - развертка действительного фокуса; 3 - мгновенный фокус; 4 - ось трубки; 5 — катод; 6 - оптический фокус; 7 - анод.

Резкость рентгеновского изображения обусловлена величиной фокуса. Основное требование к диагностическим рентгеновским трубкам - большая мощность при малом фокусе. Современные рентгеновские трубки имеют линейчатый фокус размером 10-40 мм2, но практическое значение имеет не действительная величина фокуса, а его видимая проекция в направлении пучка, т. е. размеры эффективного оптического фокуса (рис. 2). При угле наклона анода 19° площадь эффективного фокуса в 3 раза меньше действительного, что позволяет увеличить мощность рентгеновской трубки в два раза. Дальнейшее увеличение мощности достигнуто в трубках с вращающимся анодом (рис. 3 и 4).
В настоящее время выпускают рентгеновские трубки различного назначения, отличающиеся как конструктивно, так и мощностью, способами охлаждения, защиты от излучения и высокого напряжения. Условное обозначение рентгеновской трубки представляет собой комбинацию букв и цифр. Первая цифра - мощность трубки в киловаттах; второй знак определяет род защиты (Р - защитная от излучения, Б - защитная от излучения и высокого напряжения, отсутствие буквы указывает на отсутствие защиты); третий знак
определяет назначение рентгеновской трубки (Д - диагностика, Т - терапия); четвертый - указывает способ охлаждения (К - воздушное радиаторное, М-масляное, В - воздушное, отсутствие буквы означает охлаждение лучеиспусканием); пятая цифра указывает максимальное анодное напряжение в киловольтах. Так, например, 6-РДВ-110 - шестикиловаттная защитная диагностическая трубка с водяным охлаждением на 110 кв; трубка 1-Т-1-200-терапевтическая, без защиты, охлаждение лучеиспусканием, мощностью 1 кет на напряженно 200 кв (условный номер 1).

Рис. 3. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр - ротор электродвигателя.

Каждую новую трубку перед пуском в работу необходимо проверить на вакуум, не включая накала. Если при этом появится розовое свечение или искра, рентгеновская трубка потеряла вакуум и к работе непригодна. Трубку, сохранившую вакуум, подвергают тренировке: устанавливают ток 1-2 ма при высоком напряжении порядка 1/3 от номинального и в течение 30- 60 мин. напряжение и ток постепенно повышают до значений длительного режима, указанного в паспорте рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

Рентгеновская трубка - это электровакуумное устройство, применяемое для генерирования рентгеновых лучей путем эмиссии электронов с катода, фокусировки
и ускорения их в электрическом поле высокого напряжения с последующим торможением электронного потока на зеркале анода. В результате торможения потока электронов на аноде рентгеновской трубки выделяется большое количество тепла и лишь незначительное количество этой энергии трансформируется в энергию рентгеновского излучения (см.).
Со времени открытия Рентгеном икс-лучей и до начала первой мировой войны для рентгенодиагностики и рентгенотерапии применялись так называемые ионные газосодержащие Р. т. (рис. 1), хрупкие и трудноуправляемые. Лилиенфельд (L. Lilienfeld) предложил более совершенную Р. т. с промежуточным электродом, накаливаемым катодом и водяным охлаждением (рис. 2). Однако высоковакуумная двухэлектродная Р. т., предложенная американцем Кулиджем (W. D. Coolidge), постепенно вытеснила все другие Р. т. и применяется в разных модификациях до настоящего времени.
Современная рентгеновская трубка представляет собой высоковольтный вакуумный диод (с двумя электродами - катодом и анодом). Катод Р. т. содержит тугоплавкую нить накала, обычно из вольфрама. В двухфокусных диагностических рентгеновских трубках, предназначенных для разных режимов работы, катод содержит две нити накала для каждого из фокусов. Нити накала, как правило, выполнены в виде цилиндрической или плоской спирали (рис. 3, 1 и 2) соответственно для линейчатого или круглого фокуса.
Анод рентгеновской трубки обычно выполнен в виде массивного медного чехла, обращенного к катоду скошенным торцом, в толщу которого впаяна вольфрамовая пластинка толщиной 2-2,5 мм (зеркало анода), являющаяся мишенью, куда фокусируется поток электронов с катода, и представляющая, таким образом, рентгенооптический фокус трубки. Имеются Р. т. для специальных целей, например для внутриполостной рентгенотерапии (рис. 4), в которых анод является дном полого цилиндра, вводимого в соответствующую полость.
С целью повышения разрешающей способности современных диагностических трубок фокусу рентгеновской трубки уделяется большое внимание, так как чем острее фокус, тем резче рентгеновское изображение.
При оценке рентгенооптических свойств Р. т. следует учитывать, что решающее значение имеет не величина действительного фокуса на зеркале анода, а видимая проекция фокусного пятна в направлении центрального луча, т. е. размеры эффективного оптического фокуса. Уменьшение размеров оптического фокуса достигается уменьшением угла скашивания анода по отношению к центральному лучу.
В отличие от терапевтических Р. т. (рис. 5), снабженных круглым или в форме эллипса оптическим фокусом, современные диагностические трубки имеют так называемый линейчатый фокус (рис. 6). В трубках с линейчатым фокусом площадь эффективного фокуса, имеющего форму квадрата, примерно в 3 раза меньше площади действительного фокуса, имеющего форму прямоугольника. При одинаковых рентгенооптических свойствах мощность рентгеновской трубки с линейчатым фокусом примерно в 2 раза больше, чем у Р. т. с круглым фокусом.
Дальнейшее повышение мощности диагностических Р. т. достигнуто в трубках с вращающимся анодом (рис. 7 и 8). В этих рентгеновских трубках массивный вольфрамовый анод с линейчатым фокусом, растянутым по всей окружности, укреплен на оси, вращающейся в подшипниках, а катод трубки смещен относительно ее оси так, чтобы фокусированный пучок электронов попадал всегда на скошенную поверхность зеркала анода. При вращении анода пучок фокусированных электронов попадает на меняющийся участок фокуса анода, эффективная величина которого, т. е. оптический фокус, имеет благодаря этому весьма малые размеры (порядка 1X1 мм, 2,5X2,5 мм). Так как скорость вращения анода достаточно велика (анод является продолжением оси двигателя, вращающегося с угловой скоростью 2500 об/мин), мощность трубки при выдержках в 0,1 сек. может достигать 40-50 кВт.
Значительное количество тепла, образующегося на аноде работающей трубки, требует ее охлаждения путем отвода тепла с анода в окружающую среду. Это достигается путем воздушного радиаторного охлаждения (рис. 9), водяного охлаждения (рис. 10 и 11) или масляного охлаждения (рис. 12); масло является одновременно и изолирующей средой; масляное охлаждение обычно применяется в так называемых блок-аппаратах (см. Рентгенотехника).
В связи с многообразными запросами рентгенодиагностики и рентгенотерапии в настоящее время выпускаются рентгеновские трубки самого различного назначения, отличающиеся как конструктивным оформлением, так и величиной, мощностью, способами охлаждения и защиты от неиспользуемого излучения. Условные обозначения различных типов трубок состоят из комбинаций цифр и букв. Первая цифра - предельно допустимая мощность трубки (в кВт); первая буква определяет защиту от излучения (Р - самозащитная; Б - в защитном кожухе; отсутствие буквы означает отсутствие защиты); вторая буква определяет назначение Р. т. (Д - диагностика; Т - терапия); третья буква указывает систему охлаждения (К - воздушное радиаторное охлаждение, М - масляное, В - водяное, отсутствие буквы означает охлаждение лучеиспусканием); последняя цифра соответствует предельно допустимому анодному напряжению в киловольтах. Так, например, 3-БДМ-2-100 - трехкиловаттная диагностическая трубка с масляным охлаждением (радиаторным) на 100 кв для работы в защитном кожухе (условный номер типа - 2); трубка - 1-Т-1-200 - терапевтическая без защиты с охлаждением лучеиспусканием, мощностью 1 кет на напряжение 200 кв (условный номер типа - 1).
Независимо от типа рентгеновской трубки общий принцип их работы состоит в следующем. Накал катода Р. т. вызывает термоэлектронную эмиссию с образованием у катода так называемого электронного облака. С включением высокого напряжения на электродах Р. т. свободные электроны под действием электрического поля устремляются к аноду, тормозятся на его зеркале, причем часть энергии торможения преобразуется в рентгеновское излучение.
При повышении напряжения на рентгеновской трубке эмиссионный ток вначале круто возрастает за счет постепенного уменьшения плотности электронного облака. Когда же число электронов, образующихся на катоде, становится равным числу электронов, достигающих анода, дальнейшее повышение напряжения не вызывает увеличения тока, проходящего через Р. т., а лишь увеличивает кинетическую энергию электронов, достигающих анода. Режим работы Р. т., при котором происходит использование всех электронов, образующихся на катоде, а дальнейшее повышение напряжения не вызывает увеличения анодного тока, называется током насыщения. Практически ток насыщения i достигается в диагностических рентгеновских трубках при разности потенциалов? порядка 10-20 кв (рис. 13). Поэтому обычно Р. т. большей частью работают в режиме тока насыщения. При необходимости увеличить анодный ток следует соответственно увеличить ток накала катода и, подняв напряжение, снова создать режим тока насыщения.
В процессе промышленного производства из Р. т. удаляют газ до остаточного давления 10-6 -10-7 мм рт. ст. При этой степени вакуума прохождение тока через Р. т. практически обусловлено только термоэлектронной эмиссией с катода. Однако при чрезмерном нагреве деталей трубки, а также при включении ее после длительного перерыва в работе в ней может появиться газ; при этом возникает эффект ионизации; рентгеновская трубка начинает пропускать ток в обоих направлениях. Измерительные приборы на пульте управления обнаруживают резкие колебания анодного тока. Если такую «газящую» Р. т. включить под высокое напряжение без накала катода, в ней создается устойчивый газовый разряд, сопровождающийся характерным свечением трубки. Такая трубка к работе непригодна и подлежит замене.
Каждую новую Р. т. перед пуском в работу необходимо проверить на вакуум под высоким напряжением, не включая накала, затем подвергнуть «тренировке». Для этого при анодном напряжении порядка 1/3 от номинального устанавливают ток 1-2 мА. Затем в течение 30-60 мин. напряжение и ток постепенно повышают до номинальных значений длительного режима в соответствии с паспортом Р. т. При эксплуатации Р. т. необходимо строго придерживаться режимов работы, указанных в ее паспорте.
См. также Рентгеновские аппараты, Рентгеновское излучение.

Рис. 1. Ионная рентгеновская трубка с воздушным охлаждением и газовым регенератором.
Рис. 2. Рентгеновская трубка Лилиенфельда.
Рис. 3. Катоды двухфокусных электронных рентгеновских трубок: 1 - с двумя цилиндрическими спиралями нити накала; 2 - с двумя плоскими спиралями нити накала.
Рис. 4. Безопасная рентгеновская трубка для внутриполостной рентгенотерапии: 1 - катод; 2 - анодная трубка; 3 - окно выхода рентгеновых лучей; 4 - анодный цоколь; 5 - водяная рубашка; 6 - патрубки охлаждения.
Рис. 5. Терапевтическая рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.
Рис. 6. Схематическое изображение линейчатого фокуса диагностической рентгеновской трубки: 1 - зеркало анода; 2 - действительный фокус ; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.
Рис. 7. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр-ротор асинхронного электродвигателя.
Рис. 8. Схематическое изображение фокуса трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - его развертка; 3 - мгновенный фокус; 4 - ось трубки; 5 - катод ; 6 - оптический фокус; 7 - анод.
Рис. 9. Трубка с радиаторным воздушным охлаждением.
Рис. 10. Анод трубки с водяным охлаждением: 1 - стержень анода; 2 - резервуар с охлаждающей водой.
Рис. 11. Анод трубки, охлаждаемой проточной водой: 1 - соединительные трубки водяного охлаждения.
Рис. 12. Миниатюрная рентгеновская трубка с масляным охлаждением для рентгенографии зубов.
Рис. 13. Анодные характеристически электронной рентгеновской трубки: S’- при токе накала 3,8 a; S-при токе накала 3,4 а.

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лабораторная работа №1

Руководитель: профессор кафедры ММС

Кульков Сергей Николаевич

Студенты группы 4Б21:

Кондратенко А.И.

Проскурников Г.В.

Дронов А.А.

Томск, 2015

Цель: познакомиться, изучить, а так же получить навыки в рентгенографическом анализе порошков.

Устройство рентгеновского апарата

Одним из наиболее эффективных методов изучения строения кристаллических веществ является рентгенография.

Рентгенография делится на 2 типа:

1. рентгеноструктурный анализ (РСтА);

2. рентгенофазовый анализ (РФА).

Первый метод является наиболее общим и информативным и позволяет однозначно определить все детали кристаллической структуры (координаты атомов и т.д.). Объектом исследования в РСтА является монокристалл. Второй метод позволяет идентифицировать вещество и определить некоторые параметры кристаллической структуры. Объектами исследования РФА являются поликристаллические образцы.

Рентгеновский аппарат предназначается для превращения электроэнергии в рентгеновское излучение. Устройство рентгеновского аппарата зависит от его функции, но в целом он состоит из источника излучения, блока питания, системы управления и периферии.

Как работает рентгеновский аппарат

Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать – при низкой мощности аппарата). Генератор излучения – это рентгеновская трубка, одна или несколько.

Система управления – это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения. Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель – кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа. В излучение при этом переходит не более 1% подаваемой на трубку энергии, остальное превращается в тепло, прежде всего греется анод. Для того чтобы избежать его повреждения от перегрева, либо используются тугоплавкие материалы (вольфрам, молибден), либо конструируется специальная система охлаждения (водное охлаждение, вращающийся анод). Современные рентгеновские установки снабжаются специальными устройствами для стабилизации тока и защиты излучателя от перегрузки. Кроме того, устанавливается система защиты окружающих от избыточного излучения (а также от тока высокого напряжения).

Рентгеновская трубка устройство

Рентгеновская трубка - электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Высоковольтное напряжение для разогревакатода подается через минусовой высоковольтный кабель с накального трансформатора, который находится вгенераторном устройстве. Накаленная спираль катода, при прикладывание к рентгеновской трубке высокого напряжения,начинает выбрасывать ускоряющийся потокэлектронов, а затем они резко тормозятся на вольфрамовой пластинке анода, что и приводит к появлениюрентгеновских лучей.

Принцип работы рентгеновской трубки

Рисунок 1 - Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 – окна из бериллия для выхода рентгеновского излучения; 3 – термоэмиссионный катод; 4 – стеклянная колба, изолирующая анодную часть трубки от катодной; 5 – выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 – электростатическая система фокусировки электронов; 7 – ввод (антикатод); 8 – патрубки для ввода и вывода проточной воды, охлаждающей вводный стакан.

Площадь анода, на которую попадают электроны, называют фокусом. В современных рентгеновских трубках обычно имеется два фокуса: большой и малый. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается.

Рентгенодиагностическую трубку размещают в просвинцованном кожухе, который заполнентрансформаторным маслом. В кожухе имеются отверстиядля подсоеденения высоковольтных кабелей и выходное окно, через которое выводится пучок излучения. Для минимизации дозы рентгеновского излучения в современных рентгеновских аппаратах, например ФМЦ на выходном окне крепится устройство колимации. Для того, чтоб исключить появление на аноде рентгеновской трубки повреждений, последний должен вращаться, для этого внизу кожуха рентгеновской трубки размещается устройство вращения анода.

Тема: Физико-технические основы рентгенологии. Методы исследования. Принцип искусственного контрастирования.

Введение.

Современные технологии лучевой диагностики в настоящее время представлены следующими методами:

  1. Рентгенологический метод.
  2. Рентгеновская компьютерная томография (РКТ).
  3. Магнитно-резонансная томография (МРТ).
  4. Ультразвуковое исследование (УЗИ).
  5. Радионуклидное исследование (РНИ).

При рентгенологическом методе и рентгеновской компьютерной томографии используется ионизирующее (рентгеновское) излучение, при радиоизотопном методе ионизирующее (гамма-излучение), соответственно при проведении вышеперечисленных методов, пациент получает лучевую нагрузку, что делает нежелательным использование их в детском возрасте; они абсолютно противопоказаны во время беременности.

При ультразвуковом исследовании и магнитно-резонансной томографии применяется неионизирующие излучения (пациент не получает лучевую нагрузку), следовательно, данные методы могут широко использоваться в педиатрии и во время беременности (I триместр беременности является относительным противопоказанием к проведению МРТ).

Открытие В.К.Рентгеном нового вида излучения.

В истории медицины нет более ярких примеров определяющего влияния на его развитие вновь открытых явлений из других областей познания мира, подобных открытию рентгеновских лучей. Это выдающееся открытие, совершившее переворот не только в медицине, но и во многих отраслях науки и техники, состоялось 8 ноября 1895 года. Сделал его профессор физики Вюрцбургского университета в Германии Вильгельм Конрад Рентген.

Изучая волновую природу катодных лучей, Рентген обнаружил неизвестное до этого явление – флюоресценцию кристаллов солей бария на расстоянии 2 метров от катодной трубки. В. К. Рентген сделал вывод об излучении катодной трубкой неизвестных науке лучей, обладающих высокой проникающей способностью и вызывающих свечение кристаллов сернокислого бария. Эти лучи Рентген назвал Х-лучами, а весь мир после его сообщения о сделанном открытии стал называть новый вид излучения рентгеновскими лучами.

В.К. Рентген сделал свое сообщение об открытии Х-лучей 23.01.1896г. на заседании Вюрцбургского физико-медицинского общества, где продемонстрировал первые рентгеновские снимки.

В.К. Рентген не извлек никаких материальных выгод из своего открытия. Он отказался от патента на свое изобретение, заявив: «В соответствии со славными традициями немецких университетских профессоров я считаю, что мое открытие принадлежит человечеству и ему не должны ни в коей мере мешать патенты, лицензии, контракты или контроль какой-либо группы людей».


Благодарное человечество навсегда увековечило память о В.К.Рентгене в названии науки, медицинской специальности и диагностических исследований.

Физические основы рентгенологического метода и принципы работы аппаратуры.

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением, представляет собой поток квантов (фотонов), двигающихся со скоростью света – 300.000 км/с. Электрического заряда кванты не имеют, масса их пренебрежительно мала.

Свойства рентгеновских лучей:

1) Проникающая способность - проходят через объекты, не пропускающие видимый свет, т.е. с их помощью можно увидеть внутреннюю структуру объекта;

2) Флюоресцирующее - вызывают свечение некоторых химических соединений; на этом основана методика рентгеновского просвечивания (рентгеноскопия);

3) Фотохимическое действие - разлагают некоторые химические соединения, в частности, галоидные соединения серебра, применяемые в фотоэмульсиях (на этом основана рентгенография).

4) Ионизирующее действие - рентгеновское излучение способно вызывать распад нейтральных атомов на положительные и отрицательные ионы.

5) Биологическое действие – изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии ионизирующего излучения. В 1986 г. русский физиолог И.Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Поэтому проводимые рентгеновские обследования строго учитываются, суммарная доза полученного облучения не должна превышать определенных границ. Многочисленные исследования показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Устройство рентгеновской трубки.

Рентгеновская трубка (излучатель) представляет собой стеклянную колбу, в концы которой впаяны электроды – анод и катод. Катод представляет собой спираль, анод – диск со скошенной поверхностью в месте контакта с попадающими на него электронами. Катод нагревается сильным током низкого напряжения и начинает испускать свободные электроны, которые формируют вокруг него так называемое электронное облако. При подаче на электроды высокого напряжения (десятки и сотни киловольт) электроны от поверхности катода отрываются (это явление называется электронной эмиссией), устремляются к аноду и ударяются о его поверхность. Анод вращается с огромной скоростью, на его скошенную поверхность попадает поток электронов, при этом их высокая кинетическая энергия преобразуется в энергию электромагнитных волн с различной частотой, большая часть которой рассеивается в виде теплового излучения. И только около 1% от всей энергии, образованной вследствие торможения электронов об анод, покидает рентгеновскую трубку в виде рентгеновского излучения. Скошенная поверхность анода, на которую направлен поток электроном, определяет направление рентгеновского излучения перпендикулярно к оси их движения в рентгеновской трубке. Благодаря вращению анода поток электронов в разные моменты времени ударяется о разные участки его поверхности, что предохраняет анод от перегревания (рис. 1).

Рисунок 1. Схема строения рентгеновской трубки: 1 – катод, 2 – анод, 3 – поток электронов, 4 – рентгеновское излучение.

Таким образом, по своим физическим характеристикам рентгеновское излучение является тормозным электромагнитным излучением. Источника постоянного излучения (радиоактивного вещества) рентгеновская трубка не содержит, следовательно, пребывание рядом с неработающей рентгеновской трубкой безопасно, человек не подвергается облучению.

Выделяют два основных метода рентгенологического исследования: рентгенография и рентгеноскопия (просвечивание). Каждый из этих методов имеет свои преимущества и недостатки, часто они используются вместе.

Преимущества рентгеноскопии:

§ Метод прост и экономичен (так как часто не затрачивается серебросодержащая рентгеновская пленка);

§ Позволяет исследовать пациента при постепенных поворотах (многоосевое исследование);

§ Возможность полипозиционного исследования;

§ Позволяет наблюдать внутренние органы в их динамике (сердечные сокращения, сосудистая пульсация, перистальтика ЖКТ);

§ Возможность рентгенопальпации.

Преимущества рентгенографии:

§ Главное преимущество заключается в том, что на рентгенограмме выявляется большее количество деталей рентгеновского изображения;

§ Рентгеновский снимок – это объективный документ, пригодный для демонстрации, для прослеживания процесса в динамике и т.д.;

§ Рентгенография – объективный метод исследования, в то время как, рентгеноскопия – субъективный, проводить описание снимков, выполненных в ходе рентгеноскопии имеет право только тот врач, который проводил исследование;

§ Меньше лучевая нагрузка на пациента (так как меньше время воздействия рентгеновского излучения: при рентгенографии – секунды или доли секунд, при рентгеноскопии – минуты).

В большинстве случаев рентгенография на заключительном этапе включает в себя получение традиционного рентгеновского снимка на пленке. После выполнения снимка пленку подвергают специальной обработке: проявке, фиксации, промывке, сушке. Это может выполняться как вручную, так и автоматически в проявочных машинах.

Почернение рентгеновской пленки происходит при восстановлении металлического серебра в ее экспонированном эмульсионном слое. То есть чем больше рентгеновского излучения попадет на данный участок пленки, тем в большей степени она почернеет. И наоборот, если расположенный перед пленкой объект плохо пропускает рентгеновские лучи, то участок пленки, «экранированный» этим объектом, останется светлым.

Существует еще очень важная особенность получения рентгеновс­кого изображения, которая заключается в его суммационном характере. Что это такое? Проходя через исследуемый объект (тело человека), рентгеновский луч пересекает не одну, а огромное множество точек, каждая из которых обладает собственными свойствами по взаимодействию с рентгеновским лучом. Соответственно на любой точке рентгенограммы получится суммарное изображение всего множества проецирующихся друг на друга точек реального объекта, расположен­ных по ходу каждого рентгеновского луча.

Следовательно, на рентгенограмме определяется проекция объекта на плоскость. Судить о глубине расположения того или иного фрагмента исследуемого объекта по одной рентгенограмме нельзя.

Чтобы точно определить, где расположен интересующий объект, надо выполнять рентгенограммы в нескольких проекциях (прямой и боковой).

Основные рентгенологические симптомы:

§ Затемнение – участок более высокой плотности по сравнению с окружающими тканями, на рентгенограммах выглядит как более светлый участок (костные структуры, тела металлической плотности, обызвествления, конкременты).

§ Просветление – область повышенной прозрачности, которая выглядит на рентгенограммах как более темный участок (легочная ткань, воздушные полости, газ в кишке, мягкие ткани).

§ Дефект наполнения – образуется, когда какая-либо ткань препятствует заполнению просвета полого органа контрастным веществом, например, при заполнении мочевого пузыря контрастным веществом камень имеет вид дефекта наполнения (опухоли, конкременты, инородные тела).

Рентгеновская трубка - это электровакуумный прибор, предназначенный для получения рентгеновского излучения. Рентгеновское излучение возникает при торможении ускоренных на экране антикатода (анода), изготовленного из тяжелого металла (например, вольфрама). Получение электронов, их ускорение и торможение осуществляется в самой рентгеновской трубке, представляющей вакуумированный стеклянный баллон, в который впаяны металлические электроды: катод (см.) - для получения электронов и анод (см.) - для их торможения (рис. 1). Для ускорения электронов к электродам подводится высокое напряжение.

Рис. 1. Терапевтическая, рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.


Вильгельм Конрад Рентген
(Wilhelm Conrad Röntgen)

Первая рентгеновская трубка, с которой В. К. Рентген сделал свое открытие, была ионной. Рентгеновская трубка этого типа (хрупкие и трудноуправляемые) в настоящее время полностью вытеснены более совершенными электронными трубками. В них электроны получаются путем накаливания катода. Регулируя ток в цепи накала рентгеновской трубки, а следовательно, и температуру катода, можно изменять количество испускаемых катодом электронов. При низком напряжении не все испускаемые катодом электроны участвуют в создании анодного тока и у катода образуется так называемое электронное облако. При повышении напряжения электронное облако рассасывается и, начиная с определенного напряжения (напряжения насыщения), все электроны достигают анода. Через трубку при этом течет максимальный ток (ток насыщения). Напряжение на рентгеновской трубке обычно выше напряжения насыщения, поэтому возможно раздельно регулировать напряжение и ток рентгеновской трубки. Это означает, что жесткость излучения, определяемая напряжением, регулируется независимо от интенсивности, которая обусловлена анодным током.

Анод рентгеновской трубки обычно выполняется в виде массивного медного чехла, обращенного к катоду скошенным торцом, чтобы выходящее было перпендикулярно оси трубки. В толщу анода впаяна вольфрамовая пластинка в 2- (зеркало анода).

Катод электронной рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама, которая выполнена в виде цилиндрической или плоской спирали и окружена металлическим стаканчиком для фокусирования пучка электронов на зеркале анода (фокусе рентгеновской трубки). В двухфокусных рентгеновских трубках катод содержит две нити накала.

При работе рентгеновской трубки на аноде выделяется большое количество тепла. Чтобы предохранить анод от перегрева и повысить мощность рентгеновской трубки, используются охлаждающие анод устройства: воздушное радиаторное, масляное, водяное охлаждение, охлаждение лучеиспусканием. В качестве материала оболочки рентгеновской трубки обычно применяют стекло, которое позволяет прикладывать к электродам достаточно высокое напряжение, пропускает рентгеновское излучение без заметного ослабления (для получения букки-лучей делают бериллиевые окна), достаточно прочно и непроницаемо для газов (вакуум в рентгеновской трубке 10 -6 - 10 -7 мм рт. ст.). Диагностические рентгеновские трубки работают при максимальных напряжениях до 150 кв, терапевтические - до 400 кв.


Рис. 6. Схематическое изображение линейчатого фокуса диагностической рентгеновской трубки: 1 - зеркало анода; 2 - действительный фокус; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.


Рис. 8. Схематическое изображение фокуса трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - его развертка; 3 - мгновенный фокус; 4 - ось трубки; 5 - катод; 6 - оптический фокус; 7 - анод.

Резкость рентгеновского изображения обусловлена величиной фокуса. Основное требование к диагностическим рентгеновским трубкам - большая мощность при малом фокусе. Современные рентгеновские трубки имеют линейчатый фокус размером 10-40 мм 2 , но практическое значение имеет не действительная величина фокуса, а его видимая проекция в направлении пучка, т. е. размеры эффективного оптического фокуса (рис. 2). При угле наклона анода 19° площадь эффективного фокуса в 3 раза меньше действительного, что позволяет увеличить мощность рентгеновской трубки в два раза. Дальнейшее увеличение мощности достигнуто в трубках с вращающимся анодом (рис. 3 и 4).

В настоящее время выпускают рентгеновские трубки различного назначения, отличающиеся как конструктивно, так и мощностью, способами охлаждения, защиты от излучения и высокого напряжения. Условное обозначение рентгеновской трубки представляет собой комбинацию букв и цифр. Первая цифра - мощность трубки в киловаттах; второй знак определяет род защиты (Р - защитная от излучения, Б - защитная от излучения и высокого напряжения, отсутствие буквы указывает на отсутствие защиты); третий знак определяет назначение рентгеновской трубки (Д - диагностика, Т - терапия); четвертый - указывает способ охлаждения (К - воздушное радиаторное, М-масляное, В - воздушное, отсутствие буквы означает охлаждение лучеиспусканием); пятая цифра указывает максимальное анодное напряжение в киловольтах. Так, например, 6-РДВ-110 - шестикиловаттная защитная диагностическая трубка с водяным охлаждением на 110 кв; трубка 1-Т-1-200-терапевтическая, без защиты, охлаждение лучеиспусканием, мощностью 1 кет на напряженно 200 кв (условный номер 1).


Рис. 3. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр - ротор асинхронного электродвигателя.

Каждую новую трубку перед пуском в работу необходимо проверить на вакуум, не включая накала. Если при этом появится розовое свечение или искра, рентгеновская трубка потеряла вакуум и к работе непригодна. Трубку, сохранившую вакуум, подвергают тренировке: устанавливают ток 1-2 ма при высоком напряжении порядка 1/3 от номинального и в течение 30-60 мин. напряжение и ток постепенно повышают до значений длительного режима, указанного в паспорте рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

Рентгеновская трубка - это электровакуумное устройство, применяемое для генерирования рентгеновых лучей путем эмиссии электронов с катода, фокусировки и ускорения их в электрическом поле высокого напряжения с последующим торможением электронного потока на зеркале анода. В результате торможения потока электронов на аноде рентгеновской трубки выделяется большое количество тепла и лишь незначительное количество этой энергии трансформируется в энергию рентгеновского излучения (см.).

Со времени открытия Рентгеном икс-лучей и до начала первой мировой войны для рентгенодиагностики и рентгенотерапии применялись так называемые ионные газосодержащие рентгеновские трубки (рис. 1), хрупкие и трудноуправляемые. Лилиенфельд (L. Lilienfeld) предложил более совершенную рентгеновскую трубку с промежуточным электродом, накаливаемым катодом и водяным охлаждением (рис. 2). Однако высоковакуумная двухэлектродная рентгеновская трубка, предложенная американцем Кулиджем (W. D. Coolidge), постепенно вытеснила все другие рентгеновские трубки и применяется в разных модификациях до настоящего времени.


Рис. 1. Ионная рентгеновская трубка с воздушным охлаждением и газовым регенератором.

Рис. 2. Рентгеновская трубка Лилиенфельда.

Современная рентгеновская трубка представляет собой высоковольтный вакуумный диод (с двумя электродами - катодом и анодом). Катод рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама. В двухфокусных диагностических рентгеновских трубках, предназначенных для разных режимов работы, катод содержит две нити накала для каждого из фокусов. Нити накала, как правило, выполнены в виде цилиндрической или плоской спирали (рис. 3, 1 и 2) соответственно для линейчатого или круглого фокуса.


Рис. 3. Катоды двухфокусных электронных рентгеновских трубок: 1 - с двумя цилиндрическими спиралями нити накала; 2 - с двумя плоскими спиралями нити накала.

Анод рентгеновской трубки обычно выполнен в виде массивного медного чехла, обращенного к катоду скошенным торцом, в толщу которого впаяна вольфрамовая пластинка толщиной 2-2,5 мм (зеркало анода), являющаяся мишенью, куда фокусируется поток электронов с катода, и представляющая, таким образом, рентгенооптический фокус трубки. Имеются рентгеновские трубки для специальных целей, например для внутриполостной рентгенотерапии (рис. 4), в которых анод является дном полого цилиндра, вводимого в соответствующую полость.


Рис. 4. Безопасная рентгеновская трубка для внутриполостной рентгенотерапии: 1 - катод; 2 - анодная трубка; 3 - окно выхода рентгеновых лучей; 4 - анодный цоколь; 5 - водяная рубашка; 6 - патрубки охлаждения.

С целью повышения разрешающей способности современных диагностических трубок фокусу рентгеновской трубки уделяется большое внимание, так как чем острее фокус, тем резче рентгеновское изображение.

При оценке рентгенооптических свойств рентгеновской трубки следует учитывать, что решающее значение имеет не величина действительного фокуса на зеркале анода, а видимая проекция фокусного пятна в направлении центрального луча, т. е. размеры эффективного оптического фокуса. Уменьшение размеров оптического фокуса достигается уменьшением угла скашивания анода по отношению к центральному лучу.

В отличие от терапевтических рентгеновских трубок (рис. 5), снабженных круглым или в форме эллипса оптическим фокусом, современные диагностические трубки имеют так называемый линейчатый фокус (рис. 6). В трубках с линейчатым фокусом площадь эффективного фокуса, имеющего форму квадрата, примерно в 3 раза меньше площади действительного фокуса, имеющего форму прямоугольника. При одинаковых рентгенооптических свойствах мощность рентгеновской трубки с линейчатым фокусом примерно в 2 раза больше, чем у рентгеновской трубки с круглым фокусом.

Дальнейшее повышение мощности диагностических рентгеновских трубок достигнуто в трубках с вращающимся анодом (рис. 7 и 8). В этих рентгеновских трубках массивный вольфрамовый анод с линейчатым фокусом, растянутым по всей окружности, укреплен на оси, вращающейся в подшипниках, а катод трубки смещен относительно ее оси так, чтобы фокусированный пучок электронов попадал всегда на скошенную поверхность зеркала анода. При вращении анода пучок фокусированных электронов попадает на меняющийся участок фокуса анода, эффективная величина которого, т. е. оптический фокус, имеет благодаря этому весьма малые размеры (порядка 1X1 мм, 2,5X2,5 мм). Так как скорость вращения анода достаточно велика (анод является продолжением оси двигателя, вращающегося с угловой скоростью 2500 об/мин), мощность трубки при выдержках в 0,1 сек. может достигать 40-50 кВт.

Значительное количество тепла, образующегося на аноде работающей трубки, требует ее охлаждения путем отвода тепла с анода в окружающую среду. Это достигается путем воздушного радиаторного охлаждения (рис. 9), водяного охлаждения (рис. 10 и 11) или масляного охлаждения (рис. 12); масло является одновременно и изолирующей средой; масляное охлаждение обычно применяется в так называемых блок-аппаратах (см. Рентгенотехника).


Рис. 9. Трубка с радиаторным воздушным охлаждением.


Рис. 10. Анод трубки с водяным охлаждением: 1 - стержень анода; 2 - резервуар с охлаждающей водой.


Рис. 11. Анод трубки, охлаждаемой проточной водой: 1 - соединительные трубки водяного охлаждения.


Рис. 12. Миниатюрная рентгеновская трубка с масляным охлаждением для рентгенографии зубов.

В связи с многообразными запросами рентгенодиагностики и рентгенотерапии в настоящее время выпускаются рентгеновские трубки самого различного назначения, отличающиеся как конструктивным оформлением, так и величиной, мощностью, способами охлаждения и защиты от неиспользуемого излучения. Условные обозначения различных типов трубок состоят из комбинаций цифр и букв. Первая цифра - предельно допустимая мощность трубки (в кВт); первая буква определяет защиту от излучения (Р - самозащитная; Б - в защитном кожухе; отсутствие буквы означает отсутствие защиты); вторая буква определяет назначение рентгеновской трубки (Д - диагностика; Т - терапия); третья буква указывает систему охлаждения (К - воздушное радиаторное охлаждение, М - масляное, В - водяное, отсутствие буквы означает охлаждение лучеиспусканием); последняя цифра соответствует предельно допустимому анодному напряжению в киловольтах. Так, например, 3-БДМ-2-100 - трехкиловаттная диагностическая трубка с масляным охлаждением (радиаторным) на 100 кв для работы в защитном кожухе (условный номер типа - 2); трубка - 1-Т-1-200 - терапевтическая без защиты с охлаждением лучеиспусканием, мощностью 1 кет на напряжение 200 кв (условный номер типа - 1).

Независимо от типа рентгеновской трубки общий принцип их работы состоит в следующем. Накал катода рентгеновской трубки вызывает термоэлектронную эмиссию с образованием у катода так называемого электронного облака. С включением высокого напряжения на электродах рентгеновской трубки свободные электроны под действием электрического поля устремляются к аноду, тормозятся на его зеркале, причем часть энергии торможения преобразуется в рентгеновское излучение.

При повышении напряжения на рентгеновской трубке эмиссионный ток вначале круто возрастает за счет постепенного уменьшения плотности электронного облака. Когда же число электронов, образующихся на катоде, становится равным числу электронов, достигающих анода, дальнейшее повышение напряжения не вызывает увеличения тока, проходящего через рентгеновскую трубку, а лишь увеличивает кинетическую энергию электронов, достигающих анода. Режим работы рентгеновской трубки, при котором происходит использование всех электронов, образующихся на катоде, а дальнейшее повышение напряжения не вызывает увеличения анодного тока, называется током насыщения. Практически ток насыщения i достигается в диагностических рентгеновских трубках при разности потенциалов σ порядка 10-20 кв (рис. 13). Поэтому обычно рентгеновские трубки большей частью работают в режиме тока насыщения. При необходимости увеличить анодный ток следует соответственно увеличить ток накала катода и, подняв напряжение, снова создать режим тока насыщения.


Рис. 13. Анодные характеристически электронной рентгеновской трубки: S"- при токе накала 3,8 a; S-при токе накала 3,4 а.

В процессе промышленного производства из рентгеновских трубок удаляют газ до остаточного давления 10 -6 -10 -7 мм рт. ст. При этой степени вакуума прохождение тока через рентгеновскую трубку практически обусловлено только термоэлектронной эмиссией с катода. Однако при чрезмерном нагреве деталей трубки, а также при включении ее после длительного перерыва в работе в ней может появиться газ; при этом возникает эффект ионизации; рентгеновская трубка начинает пропускать ток в обоих направлениях. Измерительные приборы на пульте управления обнаруживают резкие колебания анодного тока. Если такую «газящую» рентгеновскую трубку включить под высокое напряжение без накала катода, в ней создается устойчивый газовый разряд, сопровождающийся характерным свечением трубки. Такая трубка к работе непригодна и подлежит замене.

Каждую новую рентгеновскую трубку перед пуском в работу необходимо проверить на вакуум под высоким напряжением, не включая накала, затем подвергнуть «тренировке». Для этого при анодном напряжении порядка 1/3 от номинального устанавливают ток 1-2 мА. Затем в течение 30-60 мин. напряжение и ток постепенно повышают до номинальных значений длительного режима в соответствии с паспортом рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

См. также Рентгеновские аппараты, Рентгеновское излучение.