Радиосвязь. Структура системы радиосвязи

Долгое время радиоприёмники возглавляли список самых значимых изобретений человечества. Первые такие устройства сейчас реконструированы и изменены под современный лад, однако в схеме их сборки мало что поменялось - та же антенна, то же заземление и колебательный контур для отсеивания ненужного сигнала. Бесспорно, схемы сильно усложнились со времён создателя радио - Попова. Его последователями были разработаны транзисторы и микросхемы для воспроизведения более качественного и энергозатратного сигнала.

Почему лучше начинать с простых схем?

Если вам понятна простая то можете быть уверены, что большая часть пути достижения успеха в сфере сборки и эксплуатации уже осилена. В этой статье мы разберём несколько схем таких приборов, историю их возникновения и основные характеристики: частоту, диапазон и т. д.

Историческая справка

7 мая 1895 года считается днём рождения радиоприёмника. В этот день российский учёный А. С. Попов продемонстрировал свой аппарат на заседании Русского физико-химического общества.

В 1899 году была построена первая линия радиосвязи длиной 45 км между и городом Котка. Во время Первой мировой войны получили распространение приёмник прямого усиления и электронные лампы. Во время военных действий наличие радио оказалось стратегически необходимым.

В 1918 году одновременно во Франции, Германии и США учёными Л. Левви, Л. Шоттки и Э. Армстронгом был разработан метод супергетеродинного приёма, но из-за слабых электронных ламп широкое распространение этот принцип получил только в 1930-х годах.

Транзисторные устройства появились и развивались в 50-х и 60-х годах. Первый широко используемый радиоприёмник на четырёх транзисторах Regency TR-1 был создан немецким физиком Гербертом Матаре при поддержке промышленника Якоба Михаэля. Он поступил в продажу в США в 1954 году. Все старые радиоприёмники работали на транзисторах.

В 70-х начинается изучение и внедрение интегральных микросхем. Сейчас приёмники развиваются с помощью большой интеграции узлов и цифровой обработки сигналов.

Характеристики приборов

Как старые радиоприёмники, так и современные обладают определёнными характеристиками:

  1. Чувствительность - способность принимать слабые сигналы.
  2. Динамический диапазон - измеряется в Герцах.
  3. Помехоустойчивость.
  4. Селективность (избирательность) - способность подавлять посторонние сигналы.
  5. Уровень собственных шумов.
  6. Стабильность.

Эти характеристики не меняются в новых поколениях приёмников и определяют их работоспособность и удобство эксплуатации.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Терминология

Колебательным контуром в простейшем виде называются катушка и конденсатор, замкнутые в цепь. С помощью них из всех поступающих сигналов можно выделить нужный за счёт собственной частоты колебаний контура. Радиоприемники СССР, как, впрочем, и современные устройства, основаны на этом сегменте. Как все это функционирует?

Как правило, питание радиоприёмников происходит за счёт батареек, количество которых варьируется от 1 до 9. Для транзисторных аппаратов широко используются батареи 7Д-0.1 и типа "Крона" напряжением до 9 В. Чем больше батареек требует простая схема радиоприёмника, тем дольше он будет работать.

По частоте принимаемых сигналов устройства делятся на следующие типы:

  1. Длинноволновые (ДВ) - от 150 до 450 кГц (легко рассеиваются в ионосфере). Значение имеют приземлённые волны, интенсивность которых уменьшается с расстоянием.
  2. Средневолновые (СВ) - от 500 до 1500 кГц (легко рассеиваются в ионосфере днём, но ночью отражаются). В светлое время суток радиус действия определяется приземлёнными волнами, ночью - отражёнными.
  3. Коротковолновые (КВ) - от 3 до 30 МГц (не приземляются, исключительно отражаются ионосферой, поэтому вокруг приёмника существует зона радиомолчания). При малой мощности передатчика короткие волны могут распространяться на большие расстояния.
  4. Ультракоротковолновые (УКВ) - от 30 до 300 МГц (имеют высокую приникающую способность, как правило, отражаются ионосферой и легко огибают препятствия).
  5. - от 300 МГц до 3 ГГц (используются в сотовой связи и Wi-Fi, действуют в пределах видимости, не огибают препятствия и распространяются прямолинейно).
  6. Крайневысокочастотные (КВЧ) - от 3 до 30 ГГц (используются для спутниковой связи, отражаются от препятствий и действуют в пределах прямой видимости).
  7. Гипервысокочастотные (ГВЧ) - от 30 ГГц до 300 ГГц (не огибают препятствий и отражаются как свет, используются крайне ограниченно).

При использовании КВ, СВ и ДВ радиовещание можно вести, находясь далеко от станции. УКВ-диапазон принимает сигналы более специфично, но если станция поддерживает только его, то слушать на других частотах не получится. В приёмник можно внедрить плейер для прослушивания музыки, проектор для отображения на удалённые поверхности, часы и будильник. Описание схемы радиоприёмника с подобными дополнениями усложнится.

Внедрение в радиоприёмники микросхемы позволило значительно увеличить радиус приёма и частоту сигналов. Их главное преимущество в сравнительно малом потреблении энергии и маленьком размере, что удобно для переноса. Микросхема содержит все необходимые параметры для понижения дискретизации сигнала и удобства чтения выходных данных. Цифровая обработка сигнала доминирует в современных устройствах. были предназначены только для передачи аудиосигнала, лишь в последние десятилетия устройство приёмников развилось и усложнилось.

Схемы простейших приёмников

Схема простейшего радиоприёмника для сборки дома была разработана ещё во времена СССР. Тогда, как и сейчас, устройства разделялись на детекторные, прямого усиления, прямого преобразования, супергетеродинного типа, рефлексные, регенеративные и сверхрегенеративные. Наиболее простыми в восприятии и сборке считаются детекторные приёмники, с которых, можно считать, началось развитие радио в начале 20-ог века. Наиболее сложными в построении стали устройства на микросхемах и нескольких транзисторах. Однако если вы разберетесь в одной схеме, другие уже не будут представлять проблемы.

Простой детекторный приёмник

Схема простейшего радиоприёмника содержит в себе две детали: германиевый диод (подойдут Д8 и Д9) и главный телефон с высоким сопротивлением (ТОН1 или ТОН2). Так как в цепи не присутствует колебательный контур, ловить сигналы определённой радиостанции, транслирующиеся в данной местности, он не сможет, но со своей основной задачей справиться.

Для работы понадобится хорошая антенна, которую можно закинуть на дерево, и провод заземления. Для верности его достаточно присоединить к массивному металлическому обломку (например, к ведру) и закопать на несколько сантиметров в землю.

Вариант с колебательным контуром

В прошлую схему для внедрения избирательности можно добавить катушку индуктивности и конденсатор, создав колебательный контур. Теперь при желании можно поймать сигнал конкретной радиостанции и даже усилить его.

Ламповый регенеративный коротковолновой приёмник

Ламповые радиоприёмники, схема которых довольно проста, изготавливаются для приёма сигналов любительских станций на небольших расстояниях - на диапазоны от УКВ (ультракоротковолнового) до ДВ (длинноволнового). На этой схеме работают пальчиковые батарейные лампы. Они лучше всего генерируют на УКВ. А сопротивление анодной нагрузки снимает низкая частота. Все детали приведены на схеме, самодельными можно считать только катушки и дроссель. Если вы хотите принимать телевизионный сигналы, то катушка L2 (EBF11) составляется из 7 витков диаметром 15 мм и провода на 1,5 мм. Для подойдет 5 витков.

Радиоприёмник прямого усиления на двух транзисторах

Схема содержит и двухкаскадный усилитель НЧ - это настраиваемый входной колебательный контур радиоприёмника. Первый каскад - детектор ВЧ модулированного сигнала. Катушка индуктивности намотана в 80 витков проводом ПЭВ-0,25 (от шестого витка идёт отвод снизу по схеме) на ферритовом стержне диаметром 10 мм и длиной 40.

Подобная простая схема радиоприёмника рассчитана на распознавание мощных сигналов от недалёких станций.

Сверхгенеративное устройство на FM-диапазоны

FM-приёмник, собранный по модели Е. Солодовникова, несложен в сборке, но обладает высокой чувствительностью (до 1 мкВ). Такие устройства используют для высокочастотных сигналов (более 1МГЦ) с амплитудной модуляцией. Благодаря сильной положительной обратной связи коэффициент возрастает до бесконечности, и схема переходит в режим генерации. По этой причине происходит самовозбуждение. Чтобы его избежать и использовать приёмник как высокочастотный усилитель, установите уровень коэффициента и, когда дойдет до этого значения, резко снизьте до минимума. Для постоянного мониторинга усиления можно использовать генератор пилообразных импульсов, а можно сделать проще.

На практике нередко в качестве генератора выступает сам усилитель. С помощью фильтров (R6C7), выделяющих сигналы низких частот, ограничивается проход ультразвуковых колебаний на вход последующего каскада УНЧ. Для FM-сигналов 100-108 МГц катушка L1 преобразуется в полувиток с сечением 30 мм и линейной частью 20 мм при диаметре провода 1 мм. А катушка L2 содержит 2-3 витка диаметром 15 мм и провод с сечением 0,7 мм внутри полувитка. Возможно усиление приёмника для сигналов от 87,5 МГц.

Устройство на микросхеме

КВ-радиоприёмник, схема которого была разработана в 70-е годы, сейчас считают прототипом Интернета. Коротковолновые сигналы (3-30 МГц) путешествуют на огромные расстояния. Нетрудно настроить приёмник для прослушивания трансляции в другой стране. За это прототип получил название мирового радио.

Простой КВ-приёмник

Более простая схема радиоприёмника лишена микросхемы. Перекрывает диапазон от 4 до 13 МГц по частоте и до 75 метров по длине. Питание - 9 В от батареи "Крона". В качестве антенны может служить монтажный провод. Приёмник работает на наушники от плейера. Высокочастотный трактат построен на транзисторах VT1 и VT2. За счёт конденсатора С3 возникает положительный обратный заряд, регулируемый резистором R5.

Современные радиоприёмники

Современные аппараты очень похожи на радиоприёмники СССР: они используют ту же антенну, на которой возникают слабые электромагнитные колебания. В антенне появляются высокочастотные колебания от разных радиостанций. Они не используются непосредственно для передачи сигнала, но осуществляют работу последующей цепи. Сейчас такой эффект достигается с помощью полупроводниковых приборов.

Широкое развитие приёмники получили в середине 20-го века и с тех пор непрерывно улучшаются, несмотря на замену их мобильными телефонами, планшетами и телевизорами.

Общее устройство радиоприёмников со времён Попова изменилось незначительно. Можно сказать, что схемы сильно усложнились, добавились микросхемы и транзисторы, стало возможным принимать не только аудиосигнал, но и встраивать проектор. Так приёмники эволюционировали в телевизоры. Сейчас при желании в аппарат можно встроить всё, что душе угодно.

Для построения предающей части предварительно рассмотрим особенности формирование сигнала в прямом (с узла 1) и обратном (с узла 2) каналах системы CDMA.

Особенности формирования прямого и обратного каналов

Прямой канал . Формирование сигнала в системе CDMA начинается с преобразования аналогового речевого сигнала (в передающем узле 1) в цифровой сигнал, для чего используется вокодер с переменной скоростью кодирования, в основу работы которого положен алгоритм, который учитывает особенности человеческой речи. Вокодер перекодирует цифровой поток, имеющий скорость 64 кбит/с в поток со скоростью 8 или 13 кбит/с. В ходе этого преобразования информационный поток делится на кадры длиной 20мс, а содержащие паузы интервалы удаляются. Результирующий поток имеет скорость от 1 до 8 кбит/с.

Другой важной особенностью вокодера с переменной скоростью кодирования является использование адаптивного порога для определения требуемой скорости кодирования данных. Уровень порога изменяется в соответствии с фоновым шумом, в результате улучшается качество речи.

После вокодера сигнал попадает в устройство сверточного кодирования, которое позволяет исправлять до трех ошибок в пакете данных.

С устройства сверточного кодирования поток, имеющий скорость 19,2 кбит/с, попадает на устройство перемежения, где перемешиваются во временном интервале 20 мс. Это делается для того, чтобы равномерно распределить в потоке данных потерянные во время передачи биты и устранить пачки ошибок в эфире. Принцип такой - поток данных записывается в матрицу по строкам. Как только матрица заполнена, начинаем с нее передавать информацию по столбцам. Следовательно, когда в эфире искажаются несколько бит информации, при приеме пачка ошибок, пройдя через обратную матрицу, преобразуется в одиночные ошибки.

После перемежения цифровой поток преобразуется с помощью длинного кода (кодами максимальной длины), который могут быть получены с помощью регистра сдвига и равен 2n -1 двоичных символов, где n - число разрядов регистра сдвига. В аппаратуре CDMA длинный код формируется в результате нескольких логических операций с псевдослучайной двоичной последовательностью, генерируемой в 42 - разрядном регистре сдвига, и двоичной 32 - битовой маской, которая определяется индивидуально для каждого абонента. Такой регистр сдвига применяется во всех базовых станциях этого стандарта для обеспечения режима синхронизации всей сети. Так как скорость информационного потока 19,2 кбит/с, то в прямом канале используется только каждый 64 - й символ длинного кода.

Следующий этап, это кодирование сообщения с помощью кодов Уолша. Это самая важная часть, поскольку именно она обеспечивает разделение 64 каналов CDMA на одном участке частоты. Один ряд матрицы Уолша ставится в соответствие каналу связи между абонентом и БС. Если на входе кодера «0», то посылается соответствующий ряд матрицы (код Уолша), если «1» -посылается последовательность, сформированная путем логического отрицания соответствующего ряда матрицы (кода Уолша). Это повышает скорость информационного потока с 19,2 кбит/с до 1,2286 Мбит/с. Соответственно расширяется и спектр сигнала до 1,22886 МГц.

Далее двоичный поток разделяется на синфазный и квадратурный каналы (I- и Q-канал) для передачи сигнала с использованием квадратурной фазовой манипуляции (QPSK). До подачи на смесители цифровой поток в каждом из каналов преобразуется с помощью короткого кода. Короткий код представляет собой псевдослучайную двоичную последовательность длиной 32768 двоичных символов, генерируемую со скоростью 1,3288 Мбит/с. Эта последовательность является общей для всех базовых станций в корпоративной сети. Короткий код формируется в 15-разрядном регистре сдвига. Результирующий двоичный поток в каждом канале проходит через цифровой фильтр с конечной импульсной характеристикой (КИХ- фильтр), что позволяет ограничить полосу излучаемого сигнала. Частота среза фильтра составляет около 615 кГц. Полученные аналоговые сигналы поступают на соответствующие входы I/Q-модулятора.

Поскольку все пользователи (узел 2, узел 3 и т.д.) получают объединенный сигнал, то для выделения информации необходимо передавать опорный сигнал по пилотному каналу . В пилотном канале передается нулевой информационный сигнал, а его код Уолша формируется из нулевого ряда матрицы Уолша. Обычно на пилотном канале излучается около 20% общей мощности. Опорный сигнал необходим для последующей фазовой демодуляции. Короткий код позволяет многократно использовать в каждой ячейке один и тот же набор кодов Уолша. Каждая БС имеет свой временной сдвиг при формировании кода и поэтому может быть однозначно определена в сети. Описав основную часть формирования сигнала в передающей части CDMA, на рис. 2.1 отобразим описанную выше схему формирования сигнала в прямом канале узла 1.

Рисунок 1.1 - Формирование сигнала в прямом канале

Обратный канал. В узле 2 применяется такой же, как и в прямом канале, вокодер и сверточное кодирование со скоростью 1/3, что повышает скорость передачи данных с 9,6 до 28,8 кбит/с, и перемежение в пакете длительностью 20 мс (рис.2.2).


Рисунок 1.2 - Формирование сигнала в обратном канале

После перемежения выходной поток разбивается на слова (по шесть бит в каждом), которым слову можно поставить в соответствие один из 64 кодов Уолша. Таким образом, каждый приемный узел корпоративной системы использует весь их набор. После этой операции скорость потока данных повышается до 307,2 кбит/с. Далее поток преобразуется с помощью длинного кода, аналогичного используемому коду передающего узла 1. На этом этапе происходит разделение пользователей.

Окончательное формирование потоков данных происходит таким же образом, как и в узле 1, за исключением дополнительного элемента задержки на 1/2 длительности символа в 0-канале для реализации смещенной QPSK.

Рассмотрим основные схемы передатчиков, используемых в системах связи, на основе стандарта CDMA.

Архитектура интегральных схем тракта передачи отличается у различных производителей. Поэтому при проектировании передатчика важнейшим является учет типа используемой модуляции. Методы модуляции могут быть разделены на две группы: методы модуляции с постоянной огибающей (constant envelope) и с изменяющейся огибающей (variable envelope). Первая группа методов имеет постоянную амплитуду промодулированного сигнала. Примером такой модуляции является GFSK сигнал - гауссовская частотная манипуляция (Gaussian filtered frequency shift keying). Сигналы с постоянной огибающей более эффективны в энергетическом плане.

У сигналов с изменяющейся огибающей типа квадратурной фазовой манипуляции QPSK (quadrature phase shift keying) происходит вариация и амплитуды и фазы, что приводит к необходимости использования на выходе передатчика высоколинейного усилителя мощности. Они энергетически не очень эффективны.

В последнее время появились новые разновидности архитектур передатчиков. Наиболее распространенные разновидности рассмотрены далее.

Квадратурные модуляторы

Квадратурный модулятор (Quadrature Modulator) или I/Q (In-phase/quadrature) модулятор (рис. 2.2) представляет собой универсальное устройство, с помощью которого могут быть получены сигналы практически со всеми видами модуляции. Это устройство имеет РЧ вход и РЧ выход и два информационных входа I и Q. РЧ сигнал может быть изображен в декартовых координатах как величины векторов X и Y. В терминологии цифровых сигналов, вектор X заменяется на синфазный I (In-phase), а вектор Y заменяется на квадратурный Q (Quadrature), отсюда следует название I/Q модулятор/демодулятор.

На модуляционные IQ входы квадратурных модуляторов с информационного тракта поступают две информационные последовательности. Они формируются в цифровых узлах из исходного информационного потока с помощью последовательно-параллельного преобразования.

Квадратурные опорные сигналы получаются при использовании фазосдвигающего узла, формирующего два опорных ортогональных сигнала со сдвигом фазы на 90 градусов.

Рисунок 1.3 - Структура квадратурного модулятора

Фаза выходного сигнала перемножителя в канале I может иметь значения 0 или 180, в канале Q - 90 или 270 градусов. После суммирования этих сигналов на выходе модулятора может быть получен модулированный сигнал с требуемыми параметрами.

Тракт передачи с прямой квадратурной модуляцией

Блок с прямой квадратурной модуляцией (Direct quadrature modulation) (рис. 1.3) непосредственно выполняет преобразование сигнала вверх по частоте на радиочастоту рабочего канала.


Рисунок 1.4 - Структура блока с прямой квадратурной модуляцией

Конструктивно в таком тракте передачи используются два радиочастотных перемножителя сигналов и петля ФАПЧ с перестраиваемым РЧ гетеродином (генератор, управляемый напряжением - ГУН). При этом достигается высокая степень интеграции радиочастотного блока, так как подавление зеркального канала проводится в активных каскадах с использованием фазовых методов. Побочные составляющие на выходе передатчика, связанные с формированием промежуточной частоты, отсутствуют в силу отсутствия в передатчике самой ПЧ.

В данной архитектуре, по сравнению с непрямой модуляцией, используется меньшее количество компонентов, но применение двух перемножителей, работающих на высоких канальных частотах, может привести к значительному увеличению тока, потребляемого радиочастотным блоком. Трудность обеспечения точного сдвига фазы в квадратурных каналах на высоких частотах ведет к недостаточному подавлению сигнала зеркального канала.

Достоинствами схемы с прямой модуляцией на РЧ являются: простота, больший динамический диапазон передатчика по сравнению с передатчиком, выполненным с трактом преобразования частоты, уменьшение энергопотребления, уменьшение массогабаритных показателей устройства из-за отсутствия фильтров ПЧ, смесителей.

Чтобы уменьшать эффект затягивания частоты гетеродина, используется ряд технических решений:

  • § формирование сигнала гетеродина с помощью сдвига по частоте (путем смешения с сигналом второго гетеродина);
  • § удвоение частоты гетеродина;
  • § деление частоты гетеродина;
  • § дробное деление и умножение с использованием регенеративного смесителя;
  • § использование широкополосной системы ФАПЧ.

Передатчики с двойным преобразованием частоты

В передатчиках с двойным преобразованием частоты модулятор выполняет модуляцию и преобразование сигнала вверх по частоте на фиксированную частоту ПЧ. Сигнал фильтруется с помощью фильтра нижних частот (ФНЧ). Смеситель с преобразованием вверх по частоте выполняет преобразование на РЧ частоту рабочего канала. Так как на выходе второго смесителя генерируется две боковые полосы, внешний фильтр после смесителя отфильтровывает нежелательную боковую. Затем сигнал усиливается и подается на выход для передачи.

Во многих передатчиках систем CDMA используется двухступенчатый принцип построения передатчика. Необходимость использования внешнего полосового фильтра для осуществления хорошего подавления побочных составляющих не позволяет достигать основной цели разработчиков - выполнения радиочастотного блока в виде полностью интегрированного узла. По сравнению с прямым преобразованием, использование этого подхода создает меньше проблем, но требует добавления фильтров в тракт РЧ и ПЧ. Для подавления уровня широкополосного шума и более высоких гармоник ПЧ, сгенерированных квадратурным I/Q модулятором, необходим фильтр промежуточной частоты. Трудность в реализации фильтра нижних частот высокого порядка между каскадами ПЧ и РЧ может приводить к недостаточному подавлению побочных сигналов, являющихся гармониками ПЧ. Другой проблемой при использовании двухступенчатого построения передатчика является формирование гетеродинных частот для первого и второго преобразований сигнала вверх по частоте. По сравнению с архитектурой прямого преобразования в данной структуре должен быть сгенерирован дополнительный гетеродинный сигнал.

Передатчик с квадратурным модулятором внутри петли

обратной связи

Вариант построения передатчика с обратной связью, которая включает квадратурный модулятор, показан на рис. 2.5.


Рисунок 2.5 - Передатчик с квадратурным модулятором внутри петли обратной связи

При таком построении используется I/Q модулятор, смеситель с понижением частоты, фазовый детектор с генератором тока на выходе, два программируемых делителя частоты, петлевой фильтр и ГУН.

Преимущество этой схемы в том, что программируемые делители обеспечивают дополнительную гибкость в частотном планировании.

Передатчики с цифровой промежуточной частотой

Развитие техники и технологии цифровых интегральных схем привело к тому, что такие преобразования сигнала, как модуляция, перенос по частоте и фильтрация, осуществляемые в каскадах промежуточной частоты, могут проводиться в цифровой области. В каскадах с цифровой ПЧ происходит оцифровывание сигнала промежуточной частоты (рис. 2.6). В качестве ПЧ гетеродина используется прямой цифровой синтезатор (ПЦС) частот DDS (Direct Digital frequency Synthesizer), называемый иногда генератором с программным или цифровым управлением. Генератор формирует цифровые выборки двух синусоидальных сигналов с точным сдвигом по фазе на 90 градусов, создавая сигналы косинуса и синуса.


Рисунок 2.6 - Тракт передачи с использованием цифрового квадратурного модулятора

Важно иметь в виду, что интенсивность формирования выходных выборок синусоиды всегда определяется опорной частотой fs , независимо от генерируемой частоты. Номинал выходной частоты изменяется путем изменения величины приращения фазы на выборку (phase advance per sample). Малое приращение фазы на выборку соответствует низким частотам, большое приращение - высоким частотам. Величина приращения фазы на выборку прямо пропорциональна выходной частоте и программируется от 0 до fs /2.

Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом. В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б). 1 Б = 1 имп / 1 с. Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод. Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо. Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство. Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение.

Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3). Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным. Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.

На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в весьма широких пределах, поэтому радиоканал принято считать каналом связи с переменными параметрами. Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма.

Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.

Структурная схема и принцип построения приёмопередающих радиостанций.

Любой вид радиосвязи осуществляется при помощи элек­тромагнитных волн, распространяющихся в пространстве со скоростью света. Электромагнитные волны образуются вокруг антенного устройства, которое питается переменным током высокой ча­стоты. Токи высоких частот вырабатываются (генерируются) передатчиком радиостанции. Радиопередатчиком называется устройство, предназначенное для выполнения двух основных функций:

1. генерирования колебаний высокой частоты, т. е. пре­образования энергии источников электропитания в электро­магнитные колебания высокой частоты;

2. модуляции этих колебаний в соответствии с сигнала­ми, подлежащими передаче.

Получаемые в радиопередатчике модулированные коле­бания высокой частоты передаются в антенну и далее излучается в виде свободных электромагнитных волн. В зависимости от предназначения, диапазона рабочих волн, мощности, вида управления колебаниями передатчиков их конструкция и схемы могут быть различными.

Каждый радиопередатчик состоит из нескольких каскадов, выполняющих определенную роль. Блок-схема радиопередат­чика показана на рис. 1.1.

Основным элементом радиопередатчика является возбу­дитель, предназначенный для генерирования колебаний высо­кой частоты в заданном диапазоне при высокой их стабиль­ности. В качестве возбудителя обычно применяют маломощ­ный ламповый генератор с самовозбуждением (автогене­ратор).

Полученные в возбудителе высокостабильные колебания высокой частоты подаются на следующий элемент - проме­жуточный усилитель. В этом каскаде осуществляется пред­варительное усиление колебаний высокой частоты до вели­чины обеспечивающей нормальную работу следующего ка­скада - каскада усилителя мощности. В усилителе мощности происходит усиление сигнала высокой частоты до необходи­мой мощности. Усиленный сигнал передается в передающую антенну. В антенне высокочастотный ток преобразуется в электромагнитные волны, распространяющиеся в про­странстве.

В маломощных передатчиках может не быть промежу­точного каскада, а высокочастотные колебания с возбуди­теля подаются непосредственно на усилитель мощности. В передатчиках средней и большой мощности может быть несколько промежуточных каскадов. В этом случае в про­межуточных каскадах может производиться не только усиле­ние колебаний высокой частоты, но и умножение частоты ко­лебаний возбудителя. Умножение частоты дает возможность расширить диапазон частот передатчика при узкодиапазон­ном возбудителе. Блок-схема такого передатчика представ­лена на рис. 1.2. Этот передатчик четырехкаскадный. В его состав входят: возбудитель, первый промежуточный каскад (усилитель-удвоитель), второй промежуточный каскад (усилитель-удвоитель) и усилитель мощности.

Диапазон частот возбудителя 1,5 - 3,0 МГц, диапазон же частот передатчика 1,5-12,0МГц. Такой широкий диапа­зон частот передатчика получается благодаря умноже­нию частоты в промежуточных каскадах. Весь диапазон передатчика разбивается на три поддиапазона. На первом под­диапазоне оба промежуточных каскада работают как усили­тели колебаний частоты возбудителя, т. е. усиливают высоко­частотные колебания возбудителя в диапазоне 1,5 - 3,0МГц. На втором поддиапазоне первый промежуточный каскад работает, как удвоитель частоты возбудителя.

Осталь­ные каскады работают как усилители. Так получается второй поддиапазон 3-6 МГц. Наконец, на третьем поддиапазоне удвоителями частоты работают оба промежуточных каскада, образующих третий поддиапазон передатчика 6-12МГц.


Усилитель мощности передатчика во всех случаях рабо­тает только в режиме усиления. Принцип образования рабо­чих частот такого передатчика иллюстрируется табл. 1.1.

Для передачи сообщений необходимо колебания этих со­общений наложить на колебания высокой частоты, генери­руемые передатчиком и называемые колебаниями несущей частоты Процесс управления колебаниями несущей частоты передаваемым сигналом называется модуляцией. Он осуще­ствляется специальным устройством - модулятором (Мод.) Кроме перечисленных элементов, в каждом передатчике имеются источники электропитания. Радиоприемное устройство (радиоприемник) является по­следним звеном линии радиосвязи.

Радиоприемник предназначен для выделения высокоча­стотного сигнала корреспондента из множества сигналов различных радиостанций, усиления выделенного слабого сигнала, преобразования высокочастотного сигнала в сигнал звуковой частоты и усиления сигнала звуковой частоты до ве­личины, обеспечивающей нормальную работу выходного устройства (телефонов, громкоговорителей). По принципу ра­боты различают несколько типов радиоприемников. Наибо­лее распространены из них приемники прямого усиления и приемники супергетеродинного типа.

В радиоприемниках прямого усиления, наиболее простых по устройству, основная избирательность и усиление сигна­ла осуществляются по высокой частоте принимаемого сиг­нала. Усиленный до нужной величины сигнал высокой ча­стоты затем преобразуется в напряжение низкой звуковой частоты и после соответствующего усиления приводит в дей­ствие телефоны либо громкоговорители. Блок-схема такого радиоприемника приведена на рис. 1.26,

Радиоприемники прямого усиления просты в устройстве, но не обеспечивают необходимой избирательности и доста­точного усиления. Поэтому такие приемники в настоящее время в военных радиостанциях не применяются. Более со­вершенными, хотя и значительно более сложными, являются радиоприемники супергетеродинного типа. В радиоприемни­ках супергетеродинного типа принятые колебания высокой частоты преобразуются в специальном устройстве в колеба­ния промежуточной частоты. Основное усиление сигнала и обеспечение высокой избирательности осуществляются по промежуточной частоте. Лишь после этого усиленный моду­лированный сигнал промежуточной частоты преобразуется в напряжение звуковой частоты.

Современный связной радиоприемник должен обеспечи­вать хорошую слышимость слабых сигналов в нужном диапа­зоне волн, обеспечивать хорошую избирательность и не иска­жать принимаемый сигнал. Поэтому к радиоприемнику предъявляются определенные требования.

Для приема слабых сигналов радиоприемник должен об­ладать высокой чувствительностью. Количественно чувстви­тельность приемника оценивается той наименьшей ЭДС сигнала, которую надо подать на вход радиоприемника, при которой обеспечивается нормальная громкость сигнала на выходе приемника при заданном соотношении напряжения полезного сигнала и напряжения шумов. Чем меньше входное напряжение, необходимое для нормальной работы радио­приемника, тем выше чувствительность радиоприемника.

Современные радиоприемники военной радиосвязи имеют чувствительность, равную единицам и даже долям микро­вольта.

В современных условиях работают многие тысячи радио­станций одновременно, причем многие из них работают на близких частотах. Для приема сигнала в таких условиях не­обходимо, чтобы радиоприемник обладал хорошей избира­тельностью, т. е. способностью выделить нужный сигнал из множества сигналов. Иными словами, радиоприемник дол­жен выделить определенную полосу частот, занимаемую нужным сигналом, и не пропустить (подавить) все сигналы, лежащие вне этой полосы.

Обычно избирательность выра­жают величиной ослабления сигнала при расстройке на опре­деленное число килогерц, изображенной графически в виде кривой избирательности. На рис. 1.27 изображены кривые избирательности двух приемников: кривая а выражает изби­рательность плохого приемника, криваяб - хорошего при­емника. Из кривых следует, что сигнал мешающей станции, работающей на частоте 1020кГц, по сравнению с сигналом принимаемой станции, работающей на частоте 1000кГц, будет ослаблен вторым приемником (кривая б) почти в 10 000 раз, а первым приемником (криваяа) почти не ослаблен. В приведенном примере сигнал мешающей станции во втором приемнике практически не слышен (подавлен), в то время как в первом приемнике он принимается так же, как и сигнал корреспондента.

Современные военные радиоприемники обладают очень хорошей избирательностью.

Военные радиоприемники работают в широком диапазоне волн, причем во всем диапазоне обеспечивается высокая чув­ствительность и хорошая избирательность. Наиболее полно всем этим требованиям отвечают радиоприемники супергете­родинного типа.

Блок-схема радиоприемника супергетеродинного типа при­ведена на рис. 1.28. В состав радиоприемника входят сле­дующие основные элементы:

  • входная цепь;
  • усилитель напряжения высокой частоты;

Преобразователь частоты, состоящий из смесителя и гетеродина;

  • усилитель напряжения промежуточной частоты;
  • детектор;
  • усилитель напряжения низкой частоты.

Если радиоприемник предназначен для приема телеграф­ных сигналов с амплитудной манипуляцией, то в этом слу­чае в нем имеется дополнительный элемент - второй гетеро­дин. Принцип работы супергетеродинного приемника рас­смотрим на примере приема телефонного сигнала (рис. 1.28). Радиотелефонный сигнал частотой 2000 кГц, принятый прием­ной антенной, выделяется входной цепью приемника (рис. 1.28, а).

Выделенный входной цепью сигнал очень слаб. Для уси­ления сигнал с входной цепи подается на усилитель напря­жения высокой частоты. Усиление этого усилителя невелико, особенно на высоких частотах. Обычно оно составляет еди­ницы или десятки раз. Но даже это небольшое усиление очень важно для получения высокой чувствительности радио­приемника, так как позволяет более успешно осуществлять преобразование сигнала и, главное, создать на входе пре­образователя преобладание полезного сигнала над собствен­ными шумами смесителя. Кроме того, усилитель напряжения высокой частоты улучшает избирательность радиоприемника, так как колебательные контуры, включенные в анодные цепи ламп усилителя, настраиваются также на частоту сигнала и совместно с контурами входной цепи формируют кривую избирательности по высокой частоте. Для улучшения чув­ствительности и избирательности радиоприемника, особенно на высоких частотах, усилители напряжения высокой час­тоты делают двух-трехкаскадными.

Выделенный и усиленный входной цепью и усилителем напряжения высокой частоты сигнал (рис. 1.28,6) подается на смеситель. Одновременно на смеситель подается напряже­ние вспомогательной частоты от специального маломощного генератора - гетеродина, работающего на частоте 2460 кГц (рис. 1.28, в). В результате работы преобразователя на на­грузке смесителя выделяется напряжение промежуточной ча­стоты, равной разности частот генератора и сигнала 460кГц (рис. 1.28,г) и постоянной во всем диапазоне приемника. Характер модуляции высокочастотного сигнала при преобра­зовании не меняется. С нагрузки смесителя выделенный сиг­нал промежуточной частоты подается на усилитель напряже­ния промежуточной частоты. В супергетеродинных радио­приемниках основное усиление сигнала осуществляется в тракте промежуточной частоты. Поэтому усилители для по­лучения большого усиления делают многокаскадными. Основ­ное усиление вне зависимости от частоты принимаемого сиг­нала осуществляется на одной промежуточной частоте, что дает возможность в таком усилителе применить колебатель­ные системы высокой добротности. Наряду с усилением на­пряжения промежуточной частоты усилитель обеспечивает высокую избирательность приемника. Усиленный сигнал про­межуточной частоты (рис. 1.28,д) подается затем на детектор. В детекторе амплитудно-модулированный сигнал промежу­точной частоты преобразуется в напряжение звуковой ча­стоты. Напряжение (рис. 1.28,е), выделившееся на нагрузке детектора, усиливается усилителем напряжения низкой (зву­ковой) частоты и подается на телефоны либо громкоговори­тель (рис. 1.28,ж).

При приеме телеграфного амплитудно-манипулированного сигнала прохождение сигнала до детектора не отличается от прохождения телефонного амплитудно-модулированного сигнала. Для «озвучивания» телеграфных посылок в прием­нике используется второй гетеродин. С помощью колебаний второго гетеродина телеграфные посылки в детекторе пре­образуются в напряжение звуковой частоты, которое затем усиливается в усилителе напряжения звуковой частоты.

В зависимости от типа и назначения радиоприемника его блок-схема может видоизменяться, но перечисленные основ­ные элементы являются обязательными для каждого супергетеродинного радиоприемника.

Любой вид связи предназначен для передачи информации на расстояние. Информация - это совокупность сведений о событиях в окружающем мире. Формой представления информации является сообщение, которое может представлять собой речь, текст, последовательность чисел и т.д.

Чтобы передать сообщение от источника информации получателю, необходимо использовать любой физический процесс, способный распространяться с некоторой скоростью от источника к получателю информации, например: звуковые колебания, электрический ток в проводниках, свет, электромагнитное поле и др.. физическая величина, определяющая данный процесс, изменяющаяся во времени и отображающая передаваемое сообщение (сила тока, интенсивность электромагнитного поля, яркость света и т.д.называется сигналом. Сигналы не являются передаваемым сообщением, а лишь отображают его. Часто сигнал, полученный в результате преобразования сообщения, называют первичным электрическим сигналом.

В зависимости от характера сообщения.первичные электрические сигналы могут быть непрерывными или дискретными

Непрерывные сигналы принимают любые значения по состояниям в некотором интервале. Такие сигналы описываются на некотором достаточно большом интервале времени непрерывными функциями времени. Типичным примером непрерывного сигнала является речевой сигнал, его амплитуда непрерывно меняется во времени в пределах ±Umax. При передаче такого телефонного сигнала необходимо в первую очередь учитывать его спектр частот.

Известно, что спектр звуков, воспринимаемых человеческим ухом, занимает полосу частот в пределах от 16 до 20000 Гц. Однако передача такого широкого спектра частот по каналам связи сопряжена с определёнными трудностями, связанными с увеличением полосы частот, занимаемой каналом связи, а, следовательно, и с уменьшением количества каналов связи, обеспечиваемых в определённом диапазоне частот. Поэтому при телефонной связи спектр речевого сигнала ограничивают полосой частот от 300 до 3400 Гц, в которой расположены основные частотные составляющие и основная энергия звуков человеческой речи (рис. 2.1).

При этом такое ограничение спектра частот телефонного сигнала не ведёт к заметному искажению сигнала. Ширина спектра 0,3¸3,4 КГц получила название стандартного телефонного канала.

Дискретные сигналы принимают конечное число вполне определённых значений по состоянию. Наиболее общим примером дискретных сигналов могут служить телеграфные сигналы, отображающие текст сообщения с помощью определённого алфавита (кода). При этом каждая буква или цифра кода выражается вполне определённым дискретным состоянием сигнала. На рис.2.2. показаны дискретные состояния, которые принимает сигнал при передаче буквы «Ж» с помощью кода Морзе.


Передача телеграфных сигналов может осуществляться с различной скоростью телеграфирования. Скорость телеграфирования определяется количеством элементарных импульсов, передаваемых в единицу времени (1с) и измеряется в Бодах (Б).

1 Б = 1 имп / 1 с

Для большинства буквопечатающих телеграфных аппаратов скорость телеграфирования составляет 50 Бод.

Первичный электрический сигнал независимо от его вида носит низкочастотный характер. Он может быть непосредственно переданным по проводным линиям связи, но не может эффективно излучаться в среду распространения радиоволн, так как практически невозможно создать антенны, геометрические размеры которых были бы соизмеримы с длинной волн сигнала.

Например, при F=1кГц длина волны l=300(км), а длина антенны L=l/4 = 75(км), что практически не осуществимо.

Следовательно, для передачи по радио первичный электрический сигнал должен быть преобразован в высокочастотный сигнал, способный эффективно излучаться в окружающее пространство.

Такой сигнал принято называть радиосигналом. Преобразование первичных низкочастотных электрических сигналов в радиосигналы осуществляется в радиопередатчиках, являющихся основной частью радиопередающих устройств. Процесс преобразования непрерывных первичных сигналов в радиосигналы носит название модуляции, а дискретных - манипуляции.

Радиосигнал, сформированный и излучённый в окружающую среду в виде радиоволн, распространяясь с определённой скоростью, достигает места расположения получателя информации. При прохождении радиосигнала в среде распространения на него воздействуют другие сигналы, определяемые как свойствами самой среды распространения, так и другими источниками электрических сигналов. В точке получения переданной информации необходимо произвести обратное преобразование радиосигнала в сообщение. Преобразование радиосигналов, пришедших в точку приёма, в исходное сообщение осуществляется радиоприёмным устройством. Задача преобразования принимаемого радиосигнала в сообщение более сложная, чем преобразование сообщения в радиосигнал, так как преобразованию подвергаются не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение.

Источник информации, радиопередающее устройство, среда распространения радиоволн, радиоприёмное устройство и получатель информации образуют линию радиосвязи (рис. 2.3).

Структурная схема линии радиосвязи, изображённая на рис.2.3., обеспечивает передачу сообщения только в одном направлении - от источника информации к получателю, т.е. одностороннюю радиосвязь. Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее радиоприемное устройство. В этом случае источник информации и получатель информации периодически меняются функциями, выполняемыми в линии радиосвязи, поэтому их принято объединять одним понятием корреспондент.

Для двусторонней радиосвязи режим работы радиолинии может быть симплексным или дуплексным.

Линия радиосвязи, в которой передача и приём сообщений осуществляются поочерёдно, называется симплексной, если же линия радиосвязи обеспечивает одновременную передачу и приём информации, то такая радиолиния называется дуплексной. Линия радиосвязи, которая позволяет одновременно передавать несколько сигналов, отображающих независимые сообщения, называется многоканальной (двухканальной, трёхканальной и т.д.), если же линия радиосвязи предназначена для передачи только одного сигнала, соответствующего одному сообщению, то она называется одноканальной. Таким образом, под каналом радиосвязи понимают часть линии, обеспечивающую передачу и приём сигнала.

В общем случае под каналом радиосвязи понимают часть радиопередающего устройства, среду распространения радиоволн и часть радиоприёмного устройства. Какие части радиопередающего и радиоприёмного устройства входят в понятие радиоканала, оговаривается отдельно. Наиболее часто канал радиосвязи (радиоканал) ограничивается только средой распространения радиоволн. Это объясняется тем, что наиболее характерные особенности радиоканала, отличающие его от других каналов связи, определяются именно средой распространения. В дальнейшем, если не будет специально оговорено, под радиоканалом будем понимать среду распространения радиоволн.

Таким образом, любое радиопередающее устройство должно обеспечивать выполнение следующих трех функций:

1. Преобразование сообщения в первичный электрический сигнал, которое осуществляется оконечной передающей аппаратурой (микрофон, телеграфный ключ, телеграфный аппарат, передающая телевизионная трубка и т.д.).

2. Преобразование первичного электрического сигнала путём модуляции (манипуляции) высокочастотного колебания в радиосигнал, способный эффективно излучаться и распространяться в виде радиоволн на заданное расстояние. Эту функцию выполняет собственно радиопередатчик.

3. Излучение сформированных радиопередатчиком радиосигналов в виде электромагнитных волн, осуществляемое передающим антенно-фидерным устройством (АФУ).

На приёмном конце линии радиосвязи с помощью радиоприёмного устройства производиться обратное преобразование радиосигналов в сообщение. Радиоприёмное устройство также выполняет следующие три основные функции:

1. Приёмное антенно-фидерное устройство (АФУ) улавливает энергию электромагнитных волн и преобразует её в радиосигнал.

2. Выделение принимаемого радиосигнала из множества сигналов, наводимых в антенне, и преобразование его в первичный низкочастотной сигнал необходимой мощности, осуществляемые радиоприёмником.

3. Преобразование первичного сигнала в сообщение, выполняемое приёмной оконечной аппаратурой (головные телефоны, динамик, приёмный телеграфный аппарат, телевизионная трубка и т.д.). Для обеспечения двусторонней радиосвязи необходимо на каждом конце радиолинии иметь радиопередающее и радиоприёмное устройства, которые организационно, а часто и конструктивно, вместе с устройствами управления объединяются в единый комплекс-радиостанцию.


На рис.2.4 представлена обобщенная структурная схема линии радиосвязи между корреспондентами А и Б.

Основные свойства радиоканала, отличающие его от других каналов связи, определяются, главным образом, свойствами среды распространения. Поэтому, при рассмотрении данного вопроса понятие радиоканала ограничим средой распространения радиоволн.

В радиосвязи в качестве среды распространения используется пространство, окружающее земную поверхность. Такая среда не обладает направленными свойствами, как это имеет место, например в проводных и кабельных линиях связи. В линиях радиосвязи излучённые передающей антенной, распространяются практически во все стороны от излучателя и только незначительная часть их энергии излучается в сторону радиоприёмного устройства корреспондента. Происходит рассеивание энергии радиоволн в среде распространения. Кроме того, за счет поглощения энергии радиоволн в земной поверхности и ионосфере, а также за счет преломления радиоволн происходит дополнительное уменьшение энергии радиоволн, приходящих в точку приёма. В тех случаях, когда энергия радиоволн, пришедших в точку приёма оказывается недостаточной для преобразования её в первичный сигнал, радиосвязь оказывается невозможной.

Первое свойство радиоканала и заключается в том, что в процессе распространения радиоволн из-за их рассеивания и поглощения в земной поверхности и ионосфере происходит резкое уменьшение мощности радиосигналов на входе радиоприёмников. Поэтому радиоканал в отличии от других каналов связи рассматривается, как канал с большим затуханием.

Большое затухание радиоканала приводит к тому, что уровень радиосигнала на входе радиоприёмного устройства оказывается соизмеримым с уровнем флуктуационных токов (собственных шумов) радиоприёмника, что затрудняет, а в некоторых случаях делает и невозможным, распознавание принимаемых сигналов и отделение их от шумов.

«Уменьшить» затухание радиоканала можно за счет выбора оптимальных рабочих частот для данного времени требуемой дальности радиосвязи, а также за счет более направленных и эффективных передающих и приёмных антенных устройств.

Вторым свойством радиоканала является изменение затухания во времени в
весьма широких пределах, поэтому радиоканал принято считать каналом связи с
переменными параметрами.

Изменение затухания радиоканала может происходить по различным причинам. На величину затухания в радиоканале влияют изменения взаимного расположения радиостанций на местности и расстояний между ними, что особенно заметно при осуществлении радиосвязи земными волнами. Поскольку напряжённость электромагнитного поля убывает практически пропорционально квадрату длины пути, проходимому волной в процессе распространения, то любое изменение расстояния между работающими радиостанциями приводит к изменению мощности радиосигнала в точке приёма. Очевидно, что эти изменения особенно сильно влияют на обеспечение радиосвязи между подвижными объектами. Но даже в случаях, когда расстояние между работающими радиостанциями остаётся постоянным, а изменяется только их взаимное расположение на местности, могут происходить достаточно резкие изменения затухания в радиоканале, вызываемые изменениями параметров почвы, а, следовательно, и её поглощающих свойств. Параметры сухой почвы отличаются от параметров влажной почвы и от параметров водной поверхности, а также зависят от вида самой почвы - песок, глина и т.д.

В диапазоне метровых волн, на поглощающие свойства среды распространения сильное влияние оказывают рельеф местности и местные предметы - холмы, горы, растительный покров, строения и т.д. Всё это приводит к изменению величины затухания радиоканала, которое может достигать сотен децибел.

Третьим свойством радиоканала является его общедоступность, т.е. возможность использования одной и той же среды распространения любыми радиотехническими устройствами. Общедоступность среды распространения обеспечивает возможность одновременного функционирования большого количества линий радиосвязи.

Таким образом, на входе приёмного устройства всегда кроме принимаемого радиосигнала будут присутствовать помехи, которые искажают его, а. следовательно, и первичный сигнал, непосредственно отображающих переданное сообщение. Степень искажения первичною сигнала определяет правильность принятого сообщения, т.е. его достоверность.

Итак, для повышения надежности радиосвязи и обеспечения высокой достоверности принятого сообщения необходимо принимать следующие меры:

Осуществлять радиосвязь на оптимально выбранных по радио прогнозам частотах, свободных от помех;

Использовать такие виды радиосигналов, которые обеспечивают требуемую надёжность радиосвязи при возможно меньших значениях степени превышения сигнала над помехой;

Применять эффективные и направленные передающие и приёмные антенны;

Уменьшать полосу пропускания радиоприёмника до возможно меньших значений, определяемых спектром принимаемого радиосигнала.

Принципы ведения радиосвязи. Канал и линия радиосвязи

Слово “радио” происходит от латинского radiare - излучать или испускать лучи и является общим термином, используемым к любым практическим применениям радиоволн. При этом под радиоволнами понимаются электромагнитные волны, распространяющиеся через открытое пространство (среду распространения радиоволн) без искусственных направляющих сред, таких, как провода или трубы - волноводов. При использовании электромагнитных волн в качестве материального носителя для передачи информации на расстояние приходим к радиосвязи как к одному из способов электросвязи, применяющей для обмена информацией электрические системы передачи. Таким образом, радиосвязь - это электросвязь, осуществляемая посредством радиоволн.

В широком смысле радиосвязь представлена несколькими родами связи, использующими для передачи сообщений различные механизмы распространения радиоволн: вдоль земной поверхности, с применением отражения в разных слоях атмосферы или посредством космических ретрансляторов. Каждый род радиосвязи характеризуется своими принципами, определяемыми, главным образом, особенностями диапазонов используемых для передачи сообщений радиоволн. В дальнейшем, говоря о радиосвязи, будет иметься в виду такой ее род, который дает возможность непосредственной связи между пространственно разнесенными точками на земной поверхности без использования промежуточных пунктов связи, осуществляющих переприем (ретрансляцию) сигналов. При этом ретрансляция, в принципе, может быть применима для повышения дальности связи или в других случаях, например, для повышения эффективности связи в сложных условиях помеховой обстановки. Другой отличительной особенностью того рода радиосвязи, который будет рассмотрен ниже, является возможность передачи и приема сообщений в движении.

Все поступающие от источника для передачи посредством радиоволн сообщения преобразуются в передающем оконечном устройстве в первичный электрический сигнал u (t), представляющий собой изменяющееся во времени напряжение (ток), отображающее сообщения. В зависимости от характера сообщений и вида преобразования первичный электрический сигнал может быть дискретным или непрерывным. В качестве передающего оконечного устройства могут выступать микрофон гарнитуры микрофонно-телефонной (МТГ) или телефонной трубки, телеграфный ключ, телеграфный аппарат и другие технические средства.

Характерной особенностью первичных электрических сигналов является их сравнительно медленное изменение во времени, т. е. низкая частота колебаний. Спектры большинства первичных электрических сигналов ограничены максимальной частотой, не превышающей нескольких килогерц. Такие низкочастотные сигналы не могут эффективно излучаться в среду распространения радиоволн, так как для этого необходимы излучатели, имеющие геометрические размеры, соизмеримые с длиной волны сигнала. Поэтому далее в радиопередатчике первичный электрический сигнал преобразуется в удобный для передачи радиосигнал uс(t). Процесс преобразования называется модуляцией для непрерывных первичных сигналов или манипуляцией для дискретных. В процессе модуляции (манипуляции) первичный электрический сигнал выступает в роли модулирующего сигнала, изменяющего один из параметров (амплитуду, частоту, фазу) высокочастотного гармонического колебания несущей частоты.

В общем случае процессу модуляции первичного электрического сигнала предшествует операция его кодирования, в результате которой последовательность элементов сообщения по определенному правилу заменяется последовательностью кодовых символов.

Радиосигналы по аналогии с первичными электрическими сигналами, которые они отображают, могут быть непрерывными (аналоговыми) или дискретными. В некоторых случаях дискретные сигналы называют цифровыми, поскольку их можно представить в цифровой форме - в виде чисел с конечным числом разрядов. В радиосвязи наибольшее применение нашли цифровые сигналы, имеющие только два дискретных значения. Дискретные сигналы могут использоваться для передачи не только дискретных, но и непрерывных сообщений, и обратно, непрерывные сигналы - для передачи дискретных сообщений.

Радиосигнал с выхода радиопередатчика при помощи соединительной линии, которая называется фидером, подводится к передающей антенне и в виде радиоволн излучается ею в открытое пространство. Скорость распространения радиоволн зависит от свойств среды, при этом максимальная скорость имеет место в свободном пространстве (вакууме), и она совпадает со скоростью света в вакууме, равной 3×108 м/с. В других средах скорость радиоволн меньше и определяется относительными диэлектрической и магнитной проницаемостями среды.

В точке приема радиоволны преобразуются приемной антенной в высокочастотный сигнал, который далее по фидеру подается в радиоприемник, где происходит восстановление переданного первичного электрического сигнала u (t). Для этого выполняются операции, обратные тем, которые были осуществлены в радиопередатчике - демодуляция (детектирование) и декодирование сигнала. В приемном оконечном устройстве (например, телефонах МТГ, телеграфном аппарате, громкоговорителе) первичные сигналы преобразуются в сообщения и подаются их получателю.

Задача преобразования принимаемых сигналов в сообщения более сложная, чем преобразование сообщений в радиосигнал, так как преобразованию подвергается не только переданный радиосигнал, а его смесь с другими сигналами (помехами), которые могут исказить переданное сообщение. Наличие помех при передаче сообщений связано с тем, что среда распространения радиоволн является общей для многих источников электромагнитного излучения, т. е. имеет свободный доступ.

Совокупность технических устройств и среды распространения радиоволн, обеспечивающая передачу сообщений от источника к получателю с помощью радиоволн, называется линией радиосвязи (радиолинией). При этом источники и получатели, использующие линии радиосвязи для передачи и приема сообщений, являются абонентами радиосвязи. Абоненты могут передавать сообщения самостоятельно или с помощью радистов (радиотелеграфистов). Абонентов радиосвязи и радистов, осуществляющих непосредственную передачу сообщений по радиолинии, принято называть корреспондентами.

Структурная схема линии радиосвязи, предназначенной для передачи сообщений между абонентами (корреспондентами) А и Б, показана на рис. 2.1. В ней радиопередатчик (передатчик) и передающую антенну принято объединять в радиопередающее устройство, а радиоприемник (приемник) и приемную антенну - в радиоприемное устройство. Кроме того, передающую антенну и фидер, соединяющий ее с передатчиком, называют передающим антенно-фидерным устройством (АФУ) или трактом, а приемную антенну и фидер, связывающий ее с приемником, - приемным АФУ или трактом.

В общем смысле линию радиосвязи можно считать одним из видов канала электросвязи (канала связи), под которым понимается путь прохождения сигналов электросвязи, обеспечивающий при подключении к его окончаниям абонентских оконечных устройств передачу сообщений от источника к получателю (получателям). Каналам электросвязи в зависимости от вида сети связи присваиваются названия, например, телефонный канал, телеграфный канал, канал передачи данных, канал звукового вещания.

Линия радиосвязи может быть одноканальной или многоканальной. В последнем случае ей принадлежит несколько одновременно действующих каналов связи, по которым передаются сигналы, отображающие различные (иногда одинаковые) сообщения. В отличие от одноканальной в состав многоканальной радиолинии могут входить несколько передающих и приемных оконечных устройств, осуществляющих преобразование сообщений от разных источников в первичные электрические сигналы и обратно. Кроме того, в многоканальной линии радиосвязи должны быть предусмотрены устройства, выполняющие функции объединения и разделения сигналов разных абонентов.

Линии радиосвязи могут быть прямыми, соединяющими абонентов непосредственно, без использования промежуточных пунктов (ретрансляторов радиосигналов), или составными, проходящими через такие пункты (в этом случае в состав радиолинии включаются технические устройства ретранслятора, обеспечивающие прием, преобразование, усиление и последующую передачу радиосигналов, принимаемых от обоих корреспондентов).

Часть линии радиосвязи, которая создает путь прохождения радиосигналов, принято называть каналом радиосвязи (радиоканалом). Границы канала радио-
связи в зависимости от решаемых задач или исследуемых вопросов могут быть выбраны произвольно, лишь бы по каналу проходили радиосигналы, отображающие сообщения. В одних случаях под каналом радиосвязи понимают совокупность технических устройств, обеспечивающих образование радиосигнала и его излучение в радиопередатчике, а также прием радиосигнала и обратное его преобразование в радиоприемнике, и среды распространения радиоволн. В других случаях, например, при рассмотрении свойств каналов электросвязи, каналом радиосвязи называют только среду распространения радиоволн.

Канал радиосвязи, аналогично радиолинии, является частным случаем канала передачи, под которым понимается комплекс технических средств и среды распространения, обеспечивающий передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью между узлами и станциями сети. Радиоканал представляет собой канал передачи, в котором сигналы электросвязи передаются посредством радиоволн. В зависимости от методов передачи сигналов электросвязи канал передачи может быть аналоговым или цифровым (дискретным). Вид канала радиосвязи, кроме того, определяется типом радиоволн, используемых для передачи сообщений.

Канал передачи, параметры которого соответствуют принятым нормам, называется типовым каналом передачи. Типовые каналы передачи в радиосвязи будут рассмотрены в главе 7.

Показанная на рис. 2.1 линия радиосвязи реализует двустороннюю радиосвязь, так как ее состав позволяет обоим корреспондентам и передавать, и принимать сообщения. При односторонней радиосвязи один из корреспондентов осуществляет только передачу сообщений, и другой (или другие) - только прием.

Двусторонняя радиосвязь может быть симплексной или дуплексной. В первом случае передача и прием информации между корреспондентами производятся поочередно, при этом радиообмен возможен на одной частоте или на разнесенных частотах приема и передачи. В этом случае радиосвязь является симплексной одночастотной (или просто симплексной), а во втором - симплексной двухчастотной. При ведении дуплексной радиосвязи передача и прием информации осуществляются одновременно. Причем, если передатчики корреспондентов включены постоянно, независимо от того, происходит передача информации или нет, радиосвязь принято называть дуплексной, а если передатчики включаются только на время передачи информации, а когда передачи нет, выключаются - полудуплексной.

Для передачи сообщений по радиоканалам используется часть спектра электромагнитных колебаний, находящаяся в пределах от 3 кГц до 3000 ГГц. Эта часть спектра называется радиочастотным спектром (радиоспектром), а частоты радиоспектра - радиочастотами. Согласно международному документу - Регламенту радиосвязи, радиоспектр содержит 9 полос (диапазонов), начиная с четвертой. Деление спектра на диапазоны произведено так, что отношение верхней граничной частоты диапазона к его нижней граничной частоте равно 10. При этом верхняя граничная частота любого диапазона включается в него, а нижняя - исключается. В пределах одного диапазона свойства распространения радиоволн практически одинаковы. В табл. 2.1 приведены соответствующие Регламенту радиосвязи наименования, буквенные обозначения (международные и русские) и границы частотных полос, составляющих радиоспектр.

Волны в диапазоне от 10 м до 1 см часто объединяют названием - ультракороткие волны (УКВ), а под сверхвысокими частотами понимают ДМВ, СМВ и ММВ. Первое объясняется тем, что каждый из диапазонов с номерами от 8 и выше, имея особенности распространения, обладает некоторыми общими для всех диапазонов УКВ свойствами; а второе - тем, что в технических устройствах СВЧ для получения и выделения колебаний высоких частот в резонансных цепях вместо традиционных для более низких частот конденсаторов и катушек индуктивности используются другие конструкции: короткие отрезки проводных линий, металлические полоски, волноводы и коробчатые объемные резонаторы. Кроме того, радиоволны диапазонов от 9 и выше часто называют микроволнами.

Радиоволнам присущи общие для электромагнитных волн законы и явления, важнейшими из которых являются:

прямолинейное распространение радиоволн - распространение радиоволн в однородной (или слабо неоднородной) среде непосредственно от источника к месту приема по прямолинейным или близким к ним траекториям;

отражение радиоволн - изменение направления распространения радиоволн вследствие отражения от поверхности раздела двух сред или от неоднородностей среды;

дифракция радиоволн - изменение структуры поля волны под влиянием препятствий, представляющих собой пространственные неоднородности среды распространения, в частности, приводящие к огибанию радиоволной этих препятствий;

рефракция радиоволн - изменение направления распространения радиоволн вследствие изменения скорости их распространения при прохождении через неоднородную среду;

поглощение радиоволн - уменьшение энергии радиоволны вследствие частичного перехода ее в тепловую энергию в результате взаимодействия со средой;

рассеяние радиоволн - преобразование распространяющихся в одном направлении радиоволн в радиоволны, распространяющиеся в различных направлениях;

многолучевое распространение - распространение радиоволн от передающей к приемной антенне по нескольким траекториям;

интерференционные замирания радиоволн - квазипериодические изменения уровня поля вследствие прихода в место приема множества радиоволн с меняющимися во времени друг относительно друга фазами.

Таблица 2.1

Классификация диапазонов радиочастот и радиоволн

Номер полосы

Границы частот

Наименование частот

Границы
длин волн

Наименование волн

Очень низкие

Мириаметровые, или сверхдлинные (МИМВ, СДВ)

Километровые, или длинные

300…3000 кГц

Гектометровые, или средние

Декаметровые, или короткие

(ДКМВ, КВ)

Очень высокие

Метровые

300…3000 МГц

Ультравысокие

Дециметровые

Сверхвысокие

Сантиметровые

Миллиметровые

300…3000 ГГц

Гипервысокие

Децимилли-

метровые

В радиосвязи передача радиосигналов может производиться двумя путями: вдоль земной поверхности и с излучением в ионосферу и от нее обратно к поверхности Земли.

Исходя их этого, различают земные и ионосферные радиоволны.

Радиоволны, распространяющиеся в непосредственной близости (в масштабе длины волны) земной поверхности, называются земными радиоволнами. Земные радиоволны включают прямые волны (распространяющиеся прямолинейно), волны, отраженные от земли, и поверхностные радиоволны (распространяющиеся вдоль поверхности раздела сред). Ионосферными называются радиоволны, распространяющиеся в свободном пространстве путем отражения от ионосферы или рассеяния в ней. Радиосвязь, использующую ионосферные волны, также определяют как ионосферную.

Ионосферу образует ионизированная область атмосферы, расположенная на высотах от 60…80 до 1000…1200 км над Землей. Основным источником ионизации атмосферы, под действием которой нейтральные молекулы и атомы газов, входящие в состав ионосферы, расщепляются на положительно заряженные ионы и свободные электроны, является ультрафиолетовое и рентгеновское излучение Солнца, а также корпускулярные потоки, в основном солнечного происхождения. Кроме того, ионизация атмосферы происходит под действием космических лучей дальних звезд и космической пыли, непрерывно попадающих в атмосферу Земли.

Степень ионизации, характеризуемая электронной плотностью, неодинакова по высоте вследствие неоднородности атмосферы. Поэтому ионосфера приобретает сложную многослойную структуру, в ней образуются ионизированные облака, электронная концентрация которых зависит как от высоты облака, так и от степени солнечной активности, толщины атмосферы и некоторых других причин. Распределение интенсивности ионизации по высоте в реальной атмосфере имеет несколько максимумов. Различают три области D, E, F (в порядке возрастания высоты над поверхностью Земли), в пределах которых существуют три ионизированных слоя того же названия. В дневные часы ионизированный слой F распадается на два слоя F1 и F2. Степень ионизации зависит от времени года, суток и географического месторасположения, причем для разных слоев эти зависимости различны. Средние высоты слоев и степень их ионизации (плотность электронов) показаны в табл. 2.2.

Для каждого слоя характерна своя критическая частота fкр, определяемая как наивысшая частота радиосигнала, при которой происходит отражение вертикально направленной радиоволны от этого слоя. При частоте выше критической радиоволна не отражается, а проходит через ионизированный слой ионосферы.

Одновременно с появлением новых электронов в ионосфере часть имеющихся в ней электронов исчезает, присоединяясь к положительным ионам и нейтральным молекулам. Процесс воссоединения заряженных частиц и образования молекул в атмосфере называется рекомбинацией.

Ионизацию, кроме Солнца, создают метеоры, вторгающиеся в земную атмосферу со скоростями несколько десятков километров в секунду. Метеорное вещество при попадании в плотные слои атмосферы нагревается и испаряется, причем частицы вещества, будучи ионизированными, ионизируют окружающий воздух. За счет этого средний уровень ионизации атмосферы возрастает. Кроме того, за метеором образуется столб ионизированного воздуха, имеющий форму цилиндра, который создает местную ионизацию. След метеора быстро расширяется и рассеивается, существуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метеоров образуются на высоте 80…120 км над земной поверхностью приблизительно между слоем D и слоем E. Радиосвязь, основанная на использовании отражения радиоволн от ионизированных слоев метеоров, называется метеорной радиосвязью. В линиях метеорной радиосвязи применяется прерывистый режим работы с предварительным накоплением информации и ее последующей передачей в период возникновения метеорных следов.